跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/08/02 17:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳燿賢
研究生(外文):Yao-Xian Chen
論文名稱:應用有限元素法於U型異形材熱輥軋製程與孔型設計之分析
論文名稱(外文):Analysis of the hot rolling of U-shaped cross-section and its design of the caliber by using finite element method
指導教授:許源泉許源泉引用關係
指導教授(外文):Yuan-Chuan Hsu
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:105
中文關鍵詞:U型異型材熱輥軋有限元素
外文關鍵詞:U-shaped cross-sectionhot rollingfinite element
相關次數:
  • 被引用被引用:2
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究係針對U型異型材熱輥軋進行研究,應用有限元素軟體DEFORM-3D分析輥軋加工時,製程參數對於輥軋的影響。探討的對象有壓延力分析、殘留應力分析以及組織變化分析。分析模式在壓延力與組織變化分析時採用塑性模式,而在殘留應力部分則採用彈塑性模式,皆假設輥軋之輥輪為剛體,並對板材施以一前向拉力。探討孔型設計、摩擦因子、輥軋速度及板材溫度對於壓延力、殘留應力及組織變化有何影響,之後利用田口方法找出最佳製程參數,與模擬之值做一比較,並利用類神經網路法來預測與比較其最佳製程參數所模擬而得到之值,研究後可得到:
孔型設計對於壓延力之影響不大,而對於殘留應力之影響,則是孔型設計越大其殘留應力越大,而對於組織變化之影響則是孔型設計越大其25μm以下之結晶所佔之區域也越大。
摩擦因子對於壓延力之影響為摩擦因子越小壓延力也越小,而對於殘留應力其趨勢相同,而對於組織變化之影響則是當摩擦因子大到某一程度時其影響程度不明顯。
輥軋速度對於壓延力之影響為輥軋速度越快其壓延力越大,而對於殘留應力之趨勢較不明顯,而對於組織變化之影響看來,輥軋速度越快時其25μm以下之結晶所佔之區域也越大。
板材溫度對於壓延力之影響為,當板材溫度越高其壓延力則越小,而對於殘留應力來說,也是板材溫度越高時其殘留應力則越小,而對於組織變化來說,當板材溫度越高時則其25μm以下之結晶所佔之區域也會越大。
利用田口法及類神經網路法來預測模擬方面,在塑性問題,如壓延力與組織變化方面有較為準確之預測性,但若為預測較為複雜之彈塑性問題時,因彈塑性問題有彈性與塑性交互間之影響,其預測之準確性較為不佳。

關鍵字:U型異型材、熱輥軋、有限元素
To research the hot rolling of U-shaped cross-section in this study. Using finite element method DEFORM-3D to analyze the hot rolling process. The effect of parameter to rolling. Investigated the load, residual stress and microstructure. When analyzing load and microstructure, used Rigid-Plastic model. The part of residual stress used Elastic-Plastic model. Suppose the rolls of rolling were rigid and give the sheet a front-speed. Investigated the effect of the design of the caliber, friction, speed of rolling and temperature of sheet to load, residual stress and microstructure. Then Taguchi method will be applied to find out the value of Optimal Process Parameters and compare with the value of simulation. Finally, using abductive network to forecast the value and compare with the value of simulation. After research:
The effect of the design of the caliber isn’t important to load. When the design of the caliber is bigger, the residual stress will be bigger. Also, the design of the caliber is bigger, under the 25μm of grains will have more area.
The effect of the fraction is when the fraction is smaller, the load will be smaller. And the trend is the same to the residual stress. The effect to microstructure is, when the fraction is bigger until certain level, the effect will be not obvious.
The effect of the speed of rolling is when the speed of rolling is faster, the load will be bigger. And the trend of the residual stress isn’t obvious. The effect to the microstructure is, when the speed of rolling is faster, under the 25μm of grains will have more area.
The effect of temperature of sheet is when the temperature is higher, the load will be smaller. And the effect to the residual stress is the same. To the microstructure, when the temperature of sheet is higher, under the 25μm of grains will have more area.
Using Taguchi method and abductive network to forecast in the simulation. In the Plastic problem, such as load and microstructure have the better accuracy of forecast. But when forecast the complex of Elastic-Plastic problem, the accuracy of forecast is low. Because Elastic-Plastic problem had effect between Elastic and Plastic.


Key word: U-shaped cross-section, hot rolling, finite element
摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 xi
符號說明 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 6
1.4 研究方法與步驟 7
1.5 文獻回顧 9
1.6 論文架構 14
第二章 文獻探討 15
2.1 輥軋塑性變形原理 15
2.2 輥軋件結構組織 18
2.2.1 再結晶 18
2.2.2 高溫加工 24
第三章 研究方法 32
3.1有限元素模擬 32
3.1.1 概述 32
3.1.2 剛塑性材料的基本方程式 35
3.1.3 Deform 3D軟體之簡介 38
3.2 田口法 49
3.2.1 最佳化問題定義 49
3.2.2 田口法介紹 50
3.2.3 田口法的應用規劃 53
3.3 類神經網路法 56
3.3.1 類神經網路法基本原理 56
3.3.2 類神經網路法應用規劃 58
第四章 結果與討論 60
4.1 U型輥軋件壓延力之影響分析 60
4.1.1 孔型設計對U型輥軋件壓延力之影響 61
4.1.2 摩擦因子對U型輥軋件壓延力之影響 62
4.1.3 輥輪速度對U型輥軋件壓延力之影響 63
4.1.4 板材溫度對U型輥軋件壓延力之影響 64
4.2 U型輥軋件殘留應力之影響分析 65
4.2.1孔型設計對U型輥軋件殘留應力之影響 66
4.2.2摩擦因子對U型輥軋件殘留應力之影響 67
4.2.3輥軋速度對U型輥軋件殘留應力之影響 69
4.2.4板材溫度對U型輥軋件殘留應力之影響 70
4.3 U型輥軋件組織變化之影響分析 72
4.3.1 孔型設計對U型輥軋件組織變化之影響 73
4.3.2 摩擦因子對U型輥軋件組織變化之影響 74
4.3.3 輥輪速度對U型輥軋件組織變化之影響 75
4.3.4 板材溫度對U型輥軋件組織變化之影響 76
4.4 最佳參數設計 78
4.4.1 壓延力之最佳參數設計 78
4.4.2 殘留應力之最佳參數設計 80
4.4.3 組織變化之最佳參數設計 83
4.5 參數影響預測 86
4.5.1 壓延力之預測 86
4.5.2 殘留應力之預測 87
4.5.3 組織變化之預測 88
第五章 結論與建議 90
5.1 結論 90
5.2 建議 92
參考文獻 93
英文論文大綱 99
簡歷 105
[1] http://www.hiwin.com.tw/index.aspx, 上銀科技公司網頁.
[2] http://www.tncia.org.tw/~gssp/3.htm, 宏剛公司.
[3] 吳宗明、王珉玟, 塑膠機械塑化螺桿參數設計(田口品質工程技術之應用), 機械工業雜誌, 第117-127頁, 85年10月號.
[4] 黃信凡、杜家方、陳坤基編譯, 電子薄膜科學, 科學出版社出版, 1997.
[5] 吳家駒編譯, 金屬成形加工, 徐氏基金會出版,四版,1984.
[6] Behzadipour, S., Khajepour, A., Lenard, J.G. andBiglou, J. A new shape change quantification method for estimation of power in shape rolling, Journal of Materials Processing Technology, 148, 353-361, 2004.
[7] Zhang, W., Zhu, C. and Widera, G.E.O. On theuse of the upper-bound method for load determination in H-bean rolling, Journal of Materials Processing Technology, 56, 820-833, 1996.
[8] Zhang, W., Zhu, C. and Widera, G.E.O. Determination of forward slip in H-beam rolling, Journal of Materials Processing Technology, 54, 114-119, 1995.
[9] Komori, K. and Koumura, K. Simulation of deformation and temperature in multi-pass H-shape rolling, Journal of Materials Processing Technology, 105, 24-31, 2000.
[10] Hwang, Y.M. and Chen, J.R. Analysis of the shape rolling of a V-sectioned sheet by the dual-stream function method, Journal of Materials Processing Technology, 88, 33-42, 1999.
[11] Xu, J., Miao, Y., Liu, X., Wang, G. and Bai, G. Theory and experimental research on the process of rolling shape slab, Journal of Materials Processing Technology, 121, 182-188, 2002.
[12] Kim, S.Y. and Im, Y.T. Three-dimensional finite element analysis of non-isothermal shape rolling, Journal of Materials Processing Technology, 127, 57-63, 2002.
[13] Hsiang, S.H. and Lin, S.L. Study of a 3-D FEM combined with the slab method for shape rolling, Journal of Materials Processing Technology, 100, 74-79, 2000.
[14] Hsiang, S.H. and Lin, S.L. Application of 3D FEM-slab method to shape rolling, International Journal of Mechanical Sciences, 43, 1155-1177, 2001.
[15] Iankov, R. Finite element simulation of profile rolling of wire, Journal of Materials Processing Technology, 142, 355-361, 2003.
[16] M. Kazeminezhad、A. Karimi Taheri, A theoretical and experimental investigation on wire flat rolling process using deformation pattern, Materials and Design 26, 99-103, 2005.
[17] M. Kazeminezhad、 A. Karimi Taheri, Calculation of the rolling pressure distribution and force in wire flat rolling process, Journal of Materials Processing Technology 170, 253-258, 2006.
[18] M. Kazeminezhad、A. Karimi Taheri, An experimental investigation on the deformation behavior during wire flat rolling process, Journal of Materials Processing Technology 160, 313-320, 2005.
[19] Dyi-Cheng Chen、Cheng-Fu Chen, Use of Taguchi method to develop a robust design for the shape rolling of porous sectioned sheet, Journal of Materials Processing Technology 177, 104-108, 2006.
[20] 陳狄成、陳正富, 多孔性H型異型材輥軋之有限元素分析, 中國機械工程學會第二十三屆全國學術研討會論文集, C2-005, 中華民國九十五年十一月二十四日、二十五日.
[21] F. Wang、Q. Zhu、J. Lin、T.A. Dean, Prediction of microstructural evolution in hot rolling, Journal of Materials Processing Technology 177, 530-533, 2006.
[22] H.-W. Lee、H.-C. Kwon、Y.-T. Im、P.D. Hodgson, Numerical investigation of austenite grain size distribution in square-diamond pass hot bar rolling, Journal of Materials Processing Technology 191, 114-118, 2007.
[23] M.T. Perez-Prado、J.A. del Valle、O.A. Ruano. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling, Scripta Materialia 50, 667-671, 2004.
[24] A. El-Morsy、A. Ismail、M. Walyb, Microstructural and mechanical properties evolution of magnesium AZ61 alloy processed through a combination of extrusion and thermomechanical processes, Materials Science and Engineering A, 2007.
[25] Z. Wusatowski著、關昌揚譯, 金屬輥軋學第1-20頁, 徐氏基金會出版, 中華民國七十五年四月二十四日再版.
[26] Cook, M., and RICHARDS, T., Fundamental aspects of the cold working of metals, J. Inst. Metal. , 78, p.463-482, 1951.
[27]KRUPKOWSKI, A., and BALICKI, M., Nowa teria rekrystalizacji metali zgniecionych (A new theory of recrystallization of work-hardened metals), Hutnik, p.624-643., 1938.
[28]SAMOKHOTSKI, A., and KUNIAVSKI, M., Metalovedenie (Physical Metallurgy), Moscow, 1952.
[29]Mechanik. Poradnik Techniczny *Mechanics. Technical Handbood),vol. III, No. 1-2, Warszawa, 1957.
[30]WUSATOWSKI, Z., Proba krytyki dotychczasowych pojec z przerobki ptastycznej, (Critical estimation of contemporary terminotogy in metal working), Zeszyty Naukowe Politechniki Slqskiej, Mechanika, No. 2, p. 3-17, 1955.
[31] WUSATOWSKI, Z., Wlasciwe sposoby okreslania odksztalcen plastycznych (Proper methods of determining plastic deformation), Zeszyty Naukowe Politechniki Slqskiej, Mechanika, No. 4, p. 3, 1955.
[32] DEFORM User’s Guide, Scientific Forming Technologies Corporation, Columbus OH, 1999.
[33] Arora, J.S., Introduction to Optimum Desin, McGrawill, New York, 1989.
[34] Burden, R.L., and D.J. Faires, Numerical Analysis, PWS Publishing Company, Boston, 1993.
[35] 許源泉, 鍛造製程分析講義, 國立虎尾科技大學機械製造工程系, 雲林, 臺灣.
[36] 陳俊豪, 有限元素法導論, 科技圖書股份有限公司, 台北, 臺灣, pp.155-183, 1992年12月.
[37] 蘇品書, 材料加工力學解析, 復漢出版社, 台南, 臺灣, pp.36-40, pp.127-147, 1992年12月.
[38] Kobayashi S., Oh S.I., and Altan T., Metal Forming and The Finite-element Method. Oxford University Press, New York, pp.1-377, 1989.
[39] 唐志宏, 等徑角擠壓過程變形行為的研究, 中南大學碩士論文, 湖南長沙, 中國, pp.15-19, 2002年5月.
[40] 李俊賢, 具高深寬比深微孔精微零件之擠壓成形研究, 國立虎尾科技大學機械與機電工程研究所碩士論文, 雲林, 臺灣, 2005年7月.
[41] DEFORM User’s Guide, Scientific Forming Technologies Corporation, Columbus OH, 1999.
[42] Wang, B.T., Introduction to Genetic Algorithm for Optimum Design Problem, Department of Mechanical Engineering, National Ping-Tung Polytechnic Institute, Taiwan, 1996.
[43] 周宗易, 液壓成形(Hydro-forming)於閥製品之應用, 中國機械工程學會第二十一屆全國學術研討會論文集, 中華民國九十三年十一月二十六日、二十七日.
[44] Peace G.S., Taguchi Methods:A Hands-on Approach, Addison-Wesley Publishing Company, 1993.
[45] Phadke M.S., Quality Engineering Using Robust Design, PTR Prentice-Hall Inc., 1989.
[46] 王栢村、陳興忠, 田口法應用於最佳化設計問題, 屏東科技大學學報第七卷第一期13-20頁, 民國八十七年.
[47] Philip Chen C.L. and McAulay A.D., Robot Kinematics Learning Computations Using Polynomial Neural Networks, International Conference on Robotics and Automation, Sacramento, California, pp.2638-2643, April, 1991.
[48] Kondo T., GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem, SICE, pp.1143-1148, July, 1998.
[49] Kondo T., The learning algorithms of the GMDH neural network and their application to the medical image recognition, SICE, pp.1109-1114, July, 1998.
[50] Kondo T.、S.Pandya A. and M.Zurada J., Logistic GMDH-type neural networks and their application to the identification of the x-ray film characteristic curve, IEEE, pp.437-442, 1999.
[51] Patrikar A. and Provence J., Nonlinear system identification and adaptive control using polynomial networks, Mathl. and Comput. Modelling, 23, pp.159-173, 1996.
[52] Barron A.R., Predicated square error: a criterion for automatic model selection in self-organizing methods in modeling: GMDH type algorithm, Farlow, S. J. Ed. Marcel-Dekker, New York, 1984.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top