跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范育誠
研究生(外文):Yu-Cheng Fan
論文名稱:奈米碳管探針應用於自組裝分子膜與碳膜之機械特性研究
論文名稱(外文):Mechanical characteristics of self-assembly monolayers and carbon films using carbon nanotube probes
指導教授:方得華方得華引用關係
指導教授(外文):Te-Hua Fang
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:機械與機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:115
中文關鍵詞:分子動力學奈米壓痕石墨鑽石自組裝分子膜
外文關鍵詞:molecular dynamicsnanoindentationgraphitediamondself-assembly monolayer
相關次數:
  • 被引用被引用:6
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這個研究中,主要使用分子動力學的方法來研究奈米碳管針在sp2、sp3結構的碳膜與自組裝分子膜的力學分析。探針、石墨片與鑽石薄膜方面使用Tersoff-Brenner勢能,探針對基板與石墨片層與層之間被Lennard-Jones勢能所描述。自組裝分子(SAMs)以tight-binding多體勢能模擬金薄膜內部的交互作用力,非鍵結能則以Lennard-Jones勢能來描述。本文中分析奈米碳管的材料特性,藉由此特性分別應用在石墨、鑽石材料與SAMs上。在壓痕或刮痕的程序中,改變了溫度、深度與速度,分別討論材料在物理上的機械特性。研究發現,當壓痕與刮痕的受力接觸面積改變,對於材料表面特性也會隨之改變;溫度改變時會造成材料內能與性質變化;探針速度改變則能觀察基板受力後能量傳遞的反應現象。最後,將探針模擬的破壞與黏著特性做有系統的分析與討論。
In this study, mechanical characteristic of a single-walled carbon nanotube probe nanoindentation of alkanethiol self-assembly monolayers (SAMs) and carbon film surfaces were performed using molecular dynamics (MD) simulations. Carbon nanotubes, diamond and graphite sheets have been investigated through MD simulations using the Tersoff-Brenner potential and between probe and substrate were performed by Lennard-Jones potential. The interaction of SAM atoms is described by a general universal force field (UFF), second-moment approximation for tight-binding (TB-SMA) is used for Au substrate, and Lennard-Jones potential function is employed to describe interaction among the indenter, SAMs, and the Au substrate atoms. The results showed that when the indention depths of the sample increased during indentation process, the maximum load and the adhesion were increased. The indention region showed obvious, and the force relaxation took place at the holding process. The fracture and adhesion of the nanoindented carbon nanotubes were discuused.
摘要 .......................................i
Abstract .......................................ii
誌謝 .......................................iii
目錄 .......................................iv
表目錄 .......................................viii
圖目錄 .......................................ix
符號說明 .......................................xiv
第一章 緒論 .......................................1
1.1 前言 .......................................1
1.2 文獻回顧 .......................................1
1.2.1 分子動力學之文獻回顧 .......................................1
1.2.2奈米壓痕之文獻回顧 .......................................4
1.2.3奈米碳管分子動力學模擬之文獻回顧 .......................................5
1.2.4自組裝分子膜之文獻回顧 .......................................6
1.3 研究動機與目的 .......................................7
1.4 本文架構 .......................................9
第二章 理論基礎 .......................................13
2.1 分子動力學之基本理論與假設 .......................................13
2.2 勢能函數介紹 .......................................13
2.2.1 二體勢能函數 .......................................14
2.2.2 多體勢能函數 .......................................15
2.3 速度分佈法則 .......................................16
2.4 原子級之應力 .......................................17
2.5 滑移向量 .......................................18
2.6 奈米壓痕試驗之硬度與彈性模數理論建立 .......................................18
第三章 分子動力學數值模擬方法 .......................................28
3.1 物理模型 .......................................28
3.2 勢能函數的選擇 .......................................29
3.3 Lorentz-Berelot之結合律 .......................................33
3.4模擬參數與無因次化 .......................................34
3.5 週期邊界條件 .......................................34
3.6 最小映像法則 .......................................35
3.7 設定初始條件 .......................................35
3.8 溫度修正方法 .......................................36
3.9 運動方程式 .......................................37
3.9.1 Gear五階預測修正法 .......................................37
3.9.2 Verlet法 .......................................39
3.10 截斷半徑法 .......................................39
3.10.1 Verlet表列法 .......................................40
3.10.2 Cell link表列法 .......................................41
3.10.3 Cell link表列法結合Verlet List表列法 .......................................41
3.11 程式流程圖 .......................................41
第四章 實驗方法及步驟 .......................................53
4.1 實驗目的 .......................................53
4.2 薄膜製作程序 .......................................53
4.3量測儀器 .......................................53
4.4 實驗結果 .......................................54
第五章 碳奈米膜結構壓痕模擬結果探討 .......................................58
5.1 變形機制過程 .......................................58
5.2 探針外型效應 .......................................59
5.3 溫度效應 .......................................59
5.4 速度效應 .......................................60
第六章 自組裝分子膜吸附金薄膜壓痕模擬結果探討 .......................................67
6.1 變形機制過程 .......................................67
6.2 深度效應 .......................................68
6.3 溫度效應 .......................................70
6.4 速度效應 .......................................71
第七章 結論與建議 .......................................102
7.1 結論 .......................................102
7.2 建議與未來展望 .......................................103
參考文獻 .......................................105
附錄A 奈米碳管結構 .......................................110
Extended abstract .......................................112
簡歷 .......................................115
[1]D. Marinova, M. M. Aleer, Nanotechnology, 14, 1-7, 2003.
[2]J. H. Irving, and J. G. Kirkwood, Journal of Chemical Physics, 18, 817-829, 1950.
[3]V. V. Pokropivny, V. V. Skorokhod, and A. V. Pokropivny, Materials Letters, 31, 49-54, 1997.
[4]D. Erts, A. Lohmus, R. Lohmus, H. Olin, A. V. Pokropivny, L. Ryen, K. Svensson, Applied Surface Science, 188, 460-466, 2002.
[5]D. Christopher, R. Smith, and A. Richter, Nanotechnology, 12, 372-383, 2001.
[6]C. H. Liu, T. H. Fang, J. F. Lin, Materials Science Engineering A, 452-453, 135-141, 2007.
[7]J. Schotz, T. Rasmussen, K. W. Jacobsen, O. H. Nielsen, Philosophical Magazine Letters, 74, 339-344, 1996.
[8]N. Miyazaki, Y. Shiozaki, JSME International Journal Series A, 39, 606-612, 1996.
[9]A. M. Krivtsov, M. Wiercigroch, Materials Physics and Mechanics, 3, 45-51, 2001.
[10]K. Gall, M. F. Horstemeyer, Journal of Engineering Materials and Technology, 122, 355-362, 2000.
[11]M. F. Horstemeyer, M. I. Baskes, V. C. Prantil, J. Philliber, S. Vonderheide, Modelling and Simulation in Materials Science and Engineering, 11, 265-286, 2003.
[12]J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, John Wiley and Sons, New York, 1992.
[13]J. Hauman, M. L. Klein, Journal of Chemical Physics, 91, 4994-5001, 1989.
[14]J. Hauman, M. L. Klein, Journal of Chemical Physics, 93, 7483-7492, 1990.
[15]K. J. Tupper, D. W. Brenner, Langmuir, 10, 2335-2338, 1994.
[16]P. V. Coveney, and P. Espanol, Journal of Physics A: Mathematical and General, 30, 779-784, 1997.
[17]S. Chen, N. P. Thien, X. J. Fan, and B. C. Khoo, Journal of Non-Newtonian Fluid Mechanics, 118, 65-81, 2004.
[18]H. Hertz, Journal Reine und Angewandte Mathematik, 92, 156-171, 1882.
[19]I. N. Sneddon, International Journal of Engineering Science, 3, 47-57, 1965.
[20]W. C. Oliver, G. M. Pharr, Journal of Materials Research, 7, 1564-1583, 1992.
[21]H. Jang, D. Farkas, Materials Letters, 61, 868-871, 2007.
[22]K. Yashiro, A. Furuta, Y. Tomita, Computational Materials Science, 38, 136-143, 2006.
[23]D. Saraev, R. E. Miller, Acta Materialia, 54, 33-45, 2006.
[24]吳書帆,多重尺度 CGMD在奈米壓痕的應用,國立成功大學碩士論文,2006。
[25]P. Kizler, S. Schmauder, Computational Materials Science, 39, 205-213, 2007.
[26]Y. H. Lin, T. C. Chen, P. F. Yang, S. R. Jian, Y. S. Lai, Applied Surface Science, 254, 1415-1422, 2007.
[27]T. H. Fang, and H. H. Wu, Computational Materials Science, 43, 785-790, 2008.
[28]S. Iijima, Nature 354, 56-58, 1991.
[29]C. F.Cornwell, L.T. Wille, Solid State Communications, 101, 555-558, 1997.
[30]J. A. Harrison, S.J. Stuart, D. H. Robertson, et al, Journal of Physical Chemistry B, 101, 9682-9685, 1997.
[31]Y. Nan, L. Vincenzo, Physical Review B, 58 (19), 12649-12651, 1998.
[32]G. Ajay, H. jie, B. S. Susan, Physical Review Letters, 81 (11), 2260-2263, 1998.
[33]W. C. Bigelow, D. L. Pickett, and W. A. Zisman, Journal of Colloid and Interface Science, 1, 513-538, 1946.
[34]R. G. Nuzzo, and D. L. Allara, Journal of the American Chemical Society, 105, 4481-4483, 1983.
[35]A. Ulman, An Introduction to Ultrathin Organic Films From Langmuir-Blodgett to Self-Assembly, Academic Press Boston, 1991.
[36]D. L. Allara, Biosensors and Bioelectronics, 10, 771-783, 1995.
[37]B. W. Lee, N. A. Clark, Langmuir, 14, 5495-5501, 1998.
[38]T. Ye, D. Wynn, R. Dudek, and E. Borguet, Langmuir, 17, 4497-4500, 2001.
[39]Z. F. Li, E. Ruckenstein, Macromolecules, 35, 9506-9512, 2002.
[40]L. Hong, H. Sugimura, T. Furukawa, O. Takai, Langmuir, 19, 1966-1969, 2003.
[41]N. Saito, Y. Wu, K. Hayashi, H. Sugimura, O. Takai, The Journal of Physical Chemistry B, 107, 664-667, 2003.
[42]F. A. Nae, N. Saito, A. Hozumi, O. Takai, Langmuir, 21, 1398-1402, 2005.
[43]C. A. Widrig, C. A. Alves, M. D. Porter, Journal of the American Chemical Society, 113, 2805-2810, 1991.
[44]J. M. Lu, M. H. Su, J. G. Chang, C. C. Hwang, Journal of Physics D-Applied Physics, 37, 240-248, 2004.
[45]H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 384, 147-150, 1996.
[46]J. H. Hafner, C. L. Cheung, C. M. Lieber, Nature 398, 761-762 ,1999.
[47]C. L. Cheung, J. H. Hafner, and C. M. Lieber, Proceedings of the National Academy of Sciences of the United States of America 97, 3809-3813, 2000.
[48]J. H. Hafner, C. L. Cheung, and C. M. Lieber, Journal of the American Chemical Society. 121, 9750-9751, 1999.
[49]C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, and C. M. Lieber, Applied Physics Letters 76, 3136-3138, 2000.
[50]R. J. Arsenault, J. R. Beeler, Computer Simulation in Material Science, ASM International, USA, 1988.
[51]R. Smith, M. Jakas, Atomic and Ion Collisions in Solids and at Surfaces: Theory, Simulation and Application, Cambridge University Press, USA, 1997.
[52]S. Erkoc, Annual Reviews of Computational IX, World Scientific Publishing Company, Singapore, 2001.
[53]J. E. Lennard-Jones, Proceedings of the Royal Society of London Series A, 106, 441-463, 1924.
[54]L. A. Girifalco, V. G. Weizer, Physical Review, 114, 687-690, 1959.
[55]M. S. Daw, M. I. Baskes, Physical Review B, 29, 6443-6453, 1984.
[56]S. M. Foiles, M. I. Baskes, M. S. Daw, Physical Review B, 33, 7983-7991, 1986.
[57]M. S. Daw, S. M. Faoiles, M. I. Baskes, Material Science Reports, 9, 251-310, 1993.
[58]M. I. Baskes, J. S. Nelson, A. F. Wright, Physical Review B, 40, 6085-6100, 1989.
[59]M. I. Baskes, Physical Review B, 46, 2727-2742, 1992.
[60]V. Rosato, M. Guillope, B. Legrand, Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechical Properties, 59, 321-336, 1989.
[61]C. William Gear Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall PTR, Upper Saddle River, New Jersey, 1971.
[62]J. F. Lutsko, Journal of Applied Physics, 64, 1152-1154, 1988.
[63]H. S. Park, J. A. Zimmerman, Scripta Materialia, 54, 1127-1132, 2006.
[64]G. M. Pharr, W. C. Oliver, F. R. Brotzen, Journal of Materials Research, 7, 613-617, 1992.
[65]I. N. Sneddon, International Journal of Engineering Society, 3, 47-57, 1965.
[66]R. B. King, International Journal of Solids and Structures, 23, 1657-1664, 1987.
[67]A. C. Fischer-Cripps, Journal of Materials Research, 16, 2149-2157, 2001.
[68]A. C. Fischer-Cripps, Nanoindentation, Springer-Verlag, New York, 2002.
[69]J. B. Pethica, R. Hutchings, W. C. Oliver, Philosophical Magazine A, 48, 593-606, 1983.
[70]J. Tersoff, Physical Review Letters, 56, 632-635, 1986.
[71]J. Tersoff, Physical Review B, 37, 6991-7000, 1988.
[72]J. Tersoff, Physical Review B, 39, 5566-5568, 1989.
[73]J. Tersoff, Physical Review B, 38, 9902-9905, 1988.
[74]J. Tersoff, Physical Review Letters, 61, 2879-2882, 1988.
[75]J. Knap, and M. Ortiz, Journal of the Mechanics and Physics of Solids, 49, 1899-1923, 2001.
[76]K. C. Kwon, and S. K. Youn, International Journal of Solids and Structures, 43, 7450-7481, 2006.
[77]R. Delgado-Buscalioni, P. V. Coveney, Physica A, 362, 30-35, 2006.
[78]D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London, 1997.
[79]D. Frenkel, B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, 1996.
[80]P. M. Ajayan, Chemical Review, 99, 1787-1799, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊