跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭御芳
研究生(外文):Yu-Fang Peng
論文名稱:AISI-M42高速鋼十字沖頭擠鍛成形製程之研究
論文名稱(外文):Study on Extrusion-Forging for Philips Punch of AISI-M42 High Speed Steel
指導教授:許源泉許源泉引用關係
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:創意工程與精密科技研究所
學門:藝術學門
學類:視覺藝術學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:124
中文關鍵詞:AISI-M42十字沖頭擠鍛有限元素分析
外文關鍵詞:AISI-M42Philips punchExtrusion forgingFinite element analysis
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
十字沖頭用於沖製螺絲頭之十字型槽,對於產量及品質要求高;而十字沖頭於擠鍛生產時,易產生充填不足及表面裂紋等缺陷,而影響生產效率及產品品質。對於現場技術人員憑藉個人經驗和試誤法已無法滿足未來技術研發的需求;因此,必須對此製程建立科學化的分析,以提升生產技術及產品品質。
本研究係針對十字沖頭擠鍛製程進行探討,先以AISI-M42進行材料性質分析;再經由壓縮試驗結合FEM求得材料之破裂值,並利用材料之應變硬化情況建立等效應變及硬度的相關性,以便於預測鍛件成形之破裂及應變硬化狀況;而後進行十字沖頭擠鍛傳統製程模擬分析與實驗,並相互比對以驗證其之間的差異性。接著對十字沖頭擠鍛之鍛件破裂值、等效應變及等效應力進行分析,以得更為詳細之製程分析資料。另一方面,本文也針對擠鍛製程中的介面摩擦因子、胚料預成形角度、母模圓角半徑及頂桿球面形狀等參數對成形的影響性進行探討;並結合田口法作最佳化分析,以求得最佳製程參數;最後應用類神經網路建構出製程參數對成形負荷與充填品質之預測模式。
經由研究結果發現,本文使用的破裂準則中,以Normalized Cockcroft & Latham可較準確的預測鍛件的破壞,而鍛件肋部表面之破裂值皆高於壓縮試驗所得之破裂值。十字沖頭經擠鍛成形後有明顯的加工硬化現象,而等效應變-硬度預測值高於實際鍛件,但在等效應變0.4-1之間具有相差約38HV之相對應性。本文並歸納出製程參數中,介面摩擦因子越大,成形負荷越大,充填狀況則越差;胚料預成形角度越大,成形負荷越小,充填狀況亦越好;而母模圓角半徑越小,十字沖頭肋部與凹角處的破裂值則越大。利用田口法分析分別得到成形負荷與充填品質之最佳製程參數,並以變異數分析了解各製程參數中,影響成形負荷以摩擦因子與胚料預成形角度佔有較大比重,而對於充填品質的影響則是以摩擦因子佔有較大比重。最後利用類神經網路所建構出製程參數對成形負荷與充填品質的預測模式,其平均誤差分別為4.73%與6.24%,故此模組用於擠鍛製程的預測具有相當的準確性。透過本文對AISI-M42十字沖頭擠鍛製程之研究結果,建立完整分析資料,以期提供於此相關鍛造製程設計之參考。
The Philips punch forming the cross groove of screw’s convex-head is a mass-produced and high-quality product. The defects such as unfilled cavity and surface fissures, found effortlessly in extrusion-forging process for producing the Philips punch, would influence the production efficiency and the products quality. Relying on experiences from the technicians and the trial-and-error approach can not fulfill the requirements of the future technological research and development. Therefore, it’s necessary to apply the scientific analyzing methods to promote the production technology and the products quality in the extrusion-forging process.
The current study probed into the extrusion-forging for Philips punch. It firstly analyzed the material characteristics of AISI-M42 High Speed Steel. To predict the fracture and strain hardening of the forgings, the compression test combined with FEM was employed to get the damage value of material, and the condition of strain hardening was considered to construct the relationship between the effective strain and hardness. Next, analysis was made through finite element simulation and experiment on the conventional extrusion-forging for Philips punch. Comparison result was used to verify their differences too. Then, the distributions of damage value, effective stress, and effective strain on the forgings were analyzed to get more detailed analytic data of extrusion-forging for Philips punch.In addition, the study also explored the influence of various parameters on forming, such as friction factors of die/workpiece interface, angle of the preformed workpiece, shoulder radii of the upper die, and geometries of the ejector pin. To obtain the optimal process parameters, Taguchi method was also applied to make an optimum analysis. Finally, Abductive network was employed to construct the prediction model of the influence of process parameters on the forming load and the die cavity filling quality.
Results showed that the Normalized Cockcroft & Latham was the most accurate fracture criteria to predict defect, and the damage values of ribs surface on Philips punch were higher than those obtained by the compress testing. An obvious work hardening was found in the Philips punch formed by extrusion-forging, and the effective strain-hardness prediction value was higher than the real forging sample; but the difference was about 38HV in the effective strain between 0.4 and 1. It can also be concluded that the higher the friction factor of die/workpiece interface, the higher the forming load will be, but the less the die cavity filling ability will be. When the angle of the preformed workpiece is larger, the forming load will be smaller, and the die cavity filling ability will be better. When the shoulder radius of the upper die is smaller, the damage value of the concave on Philips punch will be bigger. In the current study, the optimal process parameters of the forming load and filling quality were obtained by Taguchi method respectively. Through the variance analysis, it has been found that the friction factor and the preform angle were the main process parameters affecting the forming load. The predictive model of the process parameters to the forming load and the die cavity filling quality were also constructed by Abductive network, and the average error of the forming load and the filling quality were 4.73% and 6.24% respectively. Therefore, a conclusion can be drawn that the model constructed in this study is accurate to predict the extrusion-forging processes. Through this exploration, a detailed analytic data of AISI-M42 Philips punch has been developed, and hopefully it can provide the industry with the guidelines in the process design of the extrusion-forging for Philips punch.
摘要............................................i
Abstract........................................iii
誌謝............................................v
目錄............................................vi
表目錄..........................................x
圖目錄..........................................xii
符號說明........................................xvi
第一章 緒論.....................................1
1.1 前言........................................1
1.2 研究動機與目的..............................3
1.3 文獻回顧....................................7
1.3.1 擠鍛成形研究..............................7
1.3.2 鍛造缺陷與改善研究........................10
1.3.3 田口方法與類神經網路的應用................10
1.3.4 冷鍛延性破裂研究..........................11
1.3.5 應變與硬度預測建立........................12
1.4 研究方法....................................13
1.5 論文總覽....................................15
第二章 理論基礎.................................16
2.1 鍛造加工基本理論............................16
2.1.1 鍛造加工技術概述..........................16
2.1.2 鍛造之分類................................16
2.1.3 冷間塑性變形之影響........................17
2.1.4 鍛流線之影響 ..............................18
2.1.5 鍛胚預成形設計............................19
2.1.6 鍛件缺陷..................................19
2.1.7 潤滑......................................20
2.1.8 擠鍛原理..................................20
2.2 AISI-M42材料特性............................23
2.3 延性破裂準則模式............................26
2.4 塑性加工力學分析............................28
2.4.1 塑性理論之力學解析法......................28
2.4.2 有限元素於塑性成形之應用..................29
2.4.3 有限元素於塑性成形之力學模式..............31
2.4.4 DEFORM模擬軟體簡介........................35
2.5 田口實驗方法................................39
2.5.1 田口方法簡述 ..............................39
2.5.2 實驗計劃方法 ..............................39
2.5.3 信號雜音比特性............................39
2.5.4 變異數分析................................40
2.6 類神經網路..................................41
第三章 研究方法.................................44
3.1 前言........................................44
3.2 材料性質試驗................................44
3.2.1 圓柱壓縮試驗..............................44
3.2.2 圓環壓縮試驗 ..............................49
3.2.3 圓柱壓縮破裂試驗..........................53
3.2.4 硬度-等效應變之相對應性建立...............54
3.3 模具設計、製作及十字沖頭擠鍛實驗............55
3.3.1 模具設計與製作............................55
3.3.2 實驗步驟..................................56
3.3.3 鍛件之硬度檢測............................57
3.3.4 鍛件之鍛流線檢測..........................58
3.4 模擬分析規劃................................59
3.4.1 十字沖頭3D模型建構與模具建構..............59
3.4.2 十字沖頭擠鍛分析與相關參數設定............60
3.4.3 田口直交表L9(34)分析設計..................63
3.4.4 類神經網路預測模型建構設計................65
第四章 結果與討論...............................67
4.1 材料基本性質分析............................67
4.1.1 塑流應力之分析............................67
4.1.2 摩擦因子之分析............................68
4.1.3 延性破裂值之分析..........................69
4.1.4 等效應變與硬度相對應關係之分析............71
4.2 十字沖頭擠鍛製程模擬分析與驗證..............74
4.2.1 擠鍛成形狀態之比較........................74
4.2.2 擠鍛成形負荷之比較........................76
4.2.3 鍛件等效應變與硬度分佈狀況之比較..........78
4.2.4 鍛流線分析之比較..........................85
4.2.5 鍛件破裂值之比較..........................87
4.3 延性破裂之影響分析..........................89
4.3.1母模圓角對鍛件破裂值之影響.................89
4.4 等效應變與微硬度之相對應關係................91
4.5 等效應變之影響分析..........................91
4.5.1 胚料預成形角度之影響......................91
4.5.2 母模圓角半徑之影響........................92
4.6鍛件等效應力與殘留應力分析...................93
4.7 擠鍛對成形負荷及充填狀況之影響分析..........95
4.7.1 摩擦因子之影響............................95
4.7.2 胚料預成形角度之影響......................97
4.7.3 母模圓角半徑之影響........................99
4.7.4 頂桿球面高度之影響........................102
4.8 田口法最佳化分析............................104
4.8.1 成形負荷之最佳組合分析與預測..............105
4.8.2 充填品質之最佳組合分析與預測..............106
4.8.3 變異數分析................................107
4.9 類神經網路預測建構與應用....................108
4.9.1 類神經網路預測模型建構....................108
4.9.2 類神經網路預測與驗證......................109
第五章 結論與建議...............................111
5.1 結論........................................111
5.2 建議........................................113
參考文獻........................................114
附錄:十字沖頭擠鍛模具圖.........................119
[1]M. S. J. Hashmi, and F. B. Klemz, Axisymmetric extrusion forging: effects of material property and product geometry, International Journal of machine tool design and research, 26, (1986) 157-170
[2]G. Maccarini, C. Giardini, and A. Bugini, Extrusion operations: F.E.M. Approach and experimental results, Journal of material processing technology, 24, (1990) 395-402.
[3]K. P. Rao, S. M. Doraivelu, and K. Sivaram, Physical modelling studies using spike forging to verify analytical predictions, Journal of materials processing technology, 28, (1991) 295-306.
[4]G. Maccarini, C. Giardini, G. Pellegrini, and A. Bugini, The influence of die geometry on cold extrusion forging operations: FEM and experimental results, Journal of materials processing technology, 27, (1991) 227-238.
[5]W. Hu, and M. S. J. Hashmi, Study of metal flow in extrusion forging of rectangular billets, Journal of materials processing technology,43, (1994) 51-59.
[6]C. Giardini, Ceretti, E. Ceretti and G. Maccarini, Formability in extrusion forging: the influence of die geometry and friction conditions, Journal of materials processing technology, 54, (1995) 302-308.
[7]許光城、周清耀、蔡濬瑋、李宗樺,鈦合金非恆溫鍛造試驗模組之建立,鍛造,第九卷,第二期,2000年。
[8]Chun-Yin Wu, Yuan-Chuan Hsu, The influence of die shape on the flow deformation of extrusion forging, Journal of materials processing technology,
124, (2002) 67-76.
[9]S.Y. Lin, F.C. Lin, Influences of the geometrical conditions of die and workpiece on the barreling formation during forging-extrusion process, ournal of materials processing technology, 140, (2003) 54-58.
[10]傅欽鉦、黃裕樺、許源泉,非軸對稱模孔對擠鍛變形的影響,第十九屆機械工程研討會論文集,2002年
[11]許源泉,應用田口法於擠鍛模形狀最佳化設計,技術學刊,第十六卷,第四期,2001年。
[12]廖鴻賓,MARC應用於冷鍛加工分析及其驗證,國立中央大學機械工程研究所碩士論文,2003年6月。
[13]何維宏,渦輪葉片鍛造之模具最佳化設計,國立中央大學機械工程研究所碩士論文,2006年7月。
[14]Y.K. Lee, S.R Lee, C.H. Lee, D.Y. Yang, Process modification of bevel gear forging using three-dimensional finite element analysis,Journal of Materials Processing Technology, 113, (2001) 59-63.
[15]J.H. Song, Y.T. Im, Process design for closed-die forging of bevel gear by finite element analyses, Journal of Materials Processing Technology, 192-193, (2007) 1-7.
[16]張桓、莊道良、涂瑞庭、林長毅,以對照組分析方法研判因鍛流線分佈不佳造成之鍛件破損案例,鍛造,第十卷,第二期,2001年。
[17]X. Duan, T. Sheppard, Influence of forming parameters on the final subgrain size during hot rolling of aluminium alloys, Journal of Materials Processing Technology, 130-131, (2002) 245-249.
[18]李榮顯、王水鐸、朱凌毅,以田口實驗設計法進行多道次冷打頭模具設計最佳化之研究,鍛造,第十四卷,第四期,2005年。
[19]S.Y. Lin, F.C. Lin, Prediction of Fold Defect in Barreling Formations of Cylinder Upsetting, Finite Elements in Analysis and Design, 39, (2003) 325-341.
[20]V. Sljapic, P. Hartley, I. Pillinger, Observations on fracture in axi- symmetric and three-dimensional cold upsetting of brass. Journal of Materials Processing Technology , 125-126, (2002) 267-274.
[21]J. Landre, A. Pertence, P.R. Cetlin, J.M.C. Rodrigues, P.A.F. Martins, On the utilisation of ductile fracture criteria in cold forging. Finite Elements in Analysis and Design, 39, (2003) 175-186.
[22]Hyunkee Kim, Sang-Mae Lee, Taylan Altan, Prediction of hardness distribution in cold backward extruded cups. Journal of Materials Processing Technology, 59, (1996) 113-121.
[23]黃守成、周金龍、陳怡安、王凱弘,316L不�袗�骨板鍛件開發,鍛造,第十二卷,第四期,2003年11月。
[24]許源泉,塑性加工學,全華科技圖書股份有限公司,pp.4-1~4-64臺北,臺灣,2005年2月。
[25]吳春甫,板材沖鍛成形製程各工序基本成形原理簡介(一),鍛造,第十卷,第一期,2001年4月。
[26]黃振賢,機械材料,新文京開發出版股份有限公司,臺北,臺灣,pp.226~229,2005年7月。
[27]余尚翰,金屬線材多道次伸線過程中鑽石眼模之尺寸設計及磨耗分析,國立虎尾科技大學機械與機電工程研究所碩士論文,雲林,臺灣,2007年7月。
[28]A. M. Freudenthal, The Inelastic Behaviour of Engineering Materials and Structure, John Wiley, 1950.
[29]M. G. Cockroft and D. J. Latham, Ductility and workability of metals, J. Inst. Metals , pp.33-39, 1966.
[30]P. Brozzo, B. Deluca, R. Rendina, A new method for the prediction of formability limits in metal sheets, sheet metal forming and formability, Proceeding of the Seventh Biennial Conference of the International Deep Drawing Research Group,1972.
[31]F. A. McClintock, A criterion for ductile fracture by the growth of holes, Trans. ASME J. Applied Mech, pp.363-371, 1968.
[32]許源泉,鍛造製程分析講義,國立虎尾科技大學機械製造工程系,雲林,臺灣。
[33]陳俊豪,有限元素法導論,科技圖書股份有限公司,臺北,臺灣,pp.155~183,1992年12月。
[34]蘇品書,材料加工力學解析,復漢出版社,臺南,臺灣, pp.127~147,1992年12月。
[35]S. Kobayashi, S. I. Oh and T. Altan, Metal Forming and The Finite-element Method, Oxford university press, New York, 1989.
[36]李俊賢,具高深寬比深微孔精微零件之擠壓成形研究,國立虎尾科技大學機械與機電工程研究所碩士論文,雲林,臺灣,2005年7月。
[37]DEFORM User’s Guide, Scientific Forming Technologies Corporation, Columbus OH, 1999.
[38]DEFORM User’s Guide, Scientific Forming Technologies Corporation, Columbus OH, 1999.
[39]李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,2005年8月。
[40]T. Kondo, The learning algorithms of the GMDH neural network and their application to the medical image recognition, SICE, 1998.
[41]T. Kondo, A. S. Pandya and J. M. Zurada, Logistic GMDH-type neural networks and their application to the identification of the x-ray film characteristic curve, IEEE, 1999.
[42]A. Patrikar and J. Provence, Nonlinear system identification and adaptive control using polynomial networks, Mathl. Compute. Modeling, vol.23, 1996.
[43]A. R. Barron, Predicated square error: a criterion for automatic model selection in self-organizing methods in modeling: GMDH type algorithm, Farlow, S. J. Ed. Marcel-Dekker, New York, 1984.
[44]李榮顯,塑性加工學,三民書局,臺北,臺灣,pp.43~46,1986年9月。
[45]林榮盛,潤滑學,全華科技圖書股份有限公司,台北,臺灣,pp.24~38,1987年6月。
[46]B. Avitzur, Metal Forming: Processes and Analysis, McGraw Hill, pp.102 -111, 1968.
[47]C. H. Lee and T. Altan, Influence of flow stress and friction upon metal flow in upset forging of rings and cylinders, Journal of Engineering for Industry, Transactions of the American Society of Mechanical Engineers, Vol.31, pp.775-782, 1972.
[48]陳燿賢,應用有限元素法於U型異形材熱輥軋製程與孔型設計之分析,國立虎尾科技大學機械與機電工程研究所碩士論文,雲林,臺灣,2009年1月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top