跳到主要內容

臺灣博碩士論文加值系統

(3.235.185.78) 您好!臺灣時間:2021/07/27 16:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭元祐
研究生(外文):Yuan-Yo Cheng
論文名稱:難削材切削性能與加工技術之研究
論文名稱(外文):A Study of Cutting Performance and Cutting Strategy for Difficult-to-cut Materials
指導教授:林盛勇
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:創意工程與精密科技研究所
學門:藝術學門
學類:視覺藝術學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:102
中文關鍵詞:鈦合金Ti-6Al-4V鎳基超合金Inconel718超音波輔助車鋸齒狀切屑
外文關鍵詞:titanium alloy Ti-6Al-4Vnickel-base superalloy Inconel718ultrasonically assisted turningserrate chip
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1063
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
隨著航太科技與生醫科技的蓬勃發展,鎳基超合金與鈦合金等難加工合金的應用也日益廣泛,因其在高溫具有良好機械性質、高強度、高溫耐蝕性。能否高效率加工這些材料,關係到汽車、航太、生醫、石化和民生用品等等重要工業的發展速度。因此必須解決切削難加工材所帶來的難題,加快關鍵技術的開發應用和創造新的加工技術來滿足製造業的需求。
本文旨在開發難加工材料切削之關鍵技術,利用有限元素法建立一套鈦合金Ti-6Al-4V銑削及鎳基超合金Inconel718超音波輔助車削模型,藉由此模型探討不同參數時切屑形成的過程,切屑和工件的切削溫度分佈、切削力和等效應力等物理量的變化。實驗方面則是使用水性切削液與油性切削液銑削鈦合金及利用超音波輔助並配合液態氮冷卻來車削Inconel718,將超音波產生機架設在刀具上,其振動方向為切線方向,並利用動力計所量測的切削力與表面粗糙度輪廓測定器量測到的表面粗糙度值,進行分析與探討。結果顯示:利用鈦合金銑削與Inconel 718車削實驗結果與模擬結果作驗證,其切削力大小是接近的,證實此模型是可被使用的。模擬鈦合金銑削時,其切屑為鋸齒狀切屑。銑削實驗使用油性切削液時,在高切削速度、低進給率和淺軸向切深,可以得到較好的表面粗糙度。模擬Inconel718車削時,發現超音波輔助車削可有效的降低其切削力。車削實驗時,利用超音波輔助並配合液態氮冷卻,可降低其切削力,對於表面粗糙度也有極大的改善。由以上的幾點結果,冀望能對難切削材加工之參數規劃有所幫助,有助於提高實際加工時成品的尺寸精度和改善成品品質,並且設計出切削過程之最佳參數。
As the vigorous development of aerospace and medical technology. Titanium alloy and nickel-base superalloy has been widely utilized in various applications, because they have good mechanical property, high strength and good corrosive resistance to high temperature. For these reasons whether high efficiency to machining these materials or not, related to the development of automobile, aerospace, medical, and petrochemical industry. So the encountered great difficulties in machining difficult-to-cut materials must be solved. To development and application of key technologies be quickly, and create new cutting technology, so as to meet the demand of manufacture industry.
The main purpose of study is to develop key technologies for machining difficult-to-cut materials. Construct the titanium alloy of milling and Inconel 718 of ultrasonically assisted turning models using finite element method. The changes of chip shape, cutting temperature, cutting force and effective stress with different cutting conditions are analyzed. The experiments using different cutting fluids to milling titanium alloy; combine ultrasonically assisted and liquid nitrogen to turning Inconel 718. When turning Inconel 718, tangential direction as the direction for ultrasonically assisted vibration. The cutting performance has been investigated and analyzed in terms of cutting force, surface roughness and tool wear. Results show that a good agreement of cutting force was found between simulation and experiment. This demonstrates the developed model in this study can be used. And using this model to simulate titanium alloy cutting, serrated chip produced is obviously. Using oil cutting fluid to milling titanium alloy under high cutting speed, low feed rate and small depth of cut, good surface roughness can be obtained. Turning of Inconel 718 by combining ultrasonically assisted and liquid nitrogen has an advancement of reduced cutting force and enhanced workpiece surface quality. From the above results, design of optimization parameter to increase surface finish precision and cutting quality for machining difficult-to-cut materials, expectantly.
中文摘要 ………………………………………………………… i
英文摘要 ………………………………………………………… ii
誌謝 ………………………………………………………… iii
目錄 ………………………………………………………… iv
圖目錄 ………………………………………………………… vi
表目錄 ……………………………………………………… x
第一章 前言…………………………………………………… 1
1.1 研究背景…………………………………………… 1
1.2 研究動機目的……………………………………… 5
1.3 文獻回顧……………………………………………… 7
1.5 論文架構……………………………………………… 16
第二章 理論基礎……………………………………………… 17
2.1 難加工材料…………………………………………… 17
2.2 金屬切削理論………………………………………… 19
2.3 超音波輔助車削…………………………………… 23
2.4 切屑剝離準則………………………………………… 25
第三章 數值模擬分析………………………………………… 27
第四章 實驗量測分析………………………………………… 34
4.1 實驗儀器設備與規格.………………………………… 35
4.2 Ti-6Al-4V銑削實驗量測執行方法與步驟………… 42
4.3 Inconel 718車削實驗量測執行方法與步驟………… 47
第五章 結果與討論…………………………………………… 53
5.1 Ti-6Al-4V銑削………………………………………… 53
5.1.1 模擬與實驗結果之驗證…………………… 53
5.1.2 模擬結果與分析…………………………… 54
5.1.3 實驗量測結果與分析……………………… 61
5.2 Inconel 718車削……………………………………… 72
5.2.1 模擬與實驗結果之驗證…………………… 72
5.2.2 模擬結果與分析…………………………… 73
5.2.3 實驗量測結果與分析……………………… 81
第六章 結論與建議…………………………………………… 96
參考文獻 ………………………………………………………… 98
作者簡歷 ………………………………………………………… 102
[1]陳紹賢、郭春寶,2006,Inconel-718與Mar-247銑削性能研究,中正大學機械所博士論文.
[2]J. Hua and R. Shivpuri, 2004, Prediction of chip morphology and segmentation during the machining of titanium alloys, Journal of Materials Processing Technology, Vol.150, pp.124–133
[3]Z. A. Zoya and R. Krishnamurthy, 2000, The performance of CBN tools in the machining of titanium alloys, Journal of Materials Processing Technology, Vol.100, pp.80–86
[4]N. Corduan, T. Himbert, G. poulachon, M. Dessoly, M, Lambertin, J. Vigneau and B. Payoux, 2003, Wear Mechanisms of New Tool Materials for TiBAI4V High Perfonnance Machining, CIRP Annals Manufacturing Technology, Vol.52,No.1, pp.73–76
[5]E. O. Ezugwu, R. B. Da Silva, J. Bonney and A. R. Machado, 2005, Evaluation of the performance of CBN tools when turning Ti–6Al–4V alloy with high pressure coolant supplies, International Journal of Machine Tools & Manufacture, Vol.45, pp.1009–1014
[6]Z. G. Wang, M. Rahman and Y. S. Wong, 2005, Tool wear characteristics of binderless CBN tools used in high-speed milling of titanium alloys, Journal of Materials Processing Technology, Wear, Vol.258, pp.752–758
[7]Z. G. Wang, Y. S. Wong and M. Rahman, 2005, High-speed milling of titanium alloys using binderless CBN tools, International Journal of Machine Tools & Manufacture, Vol.45, pp.105–114
[8]F. Nabhani, 2001, Machining of aerospace titanium alloys, Robotics and Computer Integrated Manufacturing, Vol.17, pp.99–106
[9]K. A.Venugopal, S. Paul and A. B. Chattopadhyay, 2007, Growth of tool wear in turning of Ti-6Al-4V alloy under cryogenic cooling, Wear, Vol.262, pp.1074–1078
[10]Y. Su, N. He, L. Li and X. L. Li, 2006, An experimental investigation of effects of cooling/lubrication conditions on tool wear in high-speed end milling of Ti-6Al-4V, Wear, Vol.261, pp.760-766
[11]S. Y. Hong, I. Markus and W. C. Jeong, 2001, New cooling approach and tool life improvement in cryogenic machining of titanium alloy Ti-6Al-4V, International Journal of Machine Tools & Manufacture, Vol.41, 2245-2260
[12]Jawaid, S. Sharif and S. Koksal, 2000, Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy, Journal of Materials Processing Technology ,99, pp.266-274
[13]F. Nabhani, Machining of aerospace titanium alloys, 2001, Robotics and Computer Integrated Manufacturing, Vol.17, pp.99-106
[14]R. R. Boyer, An overview on the use of titanium in the aerospace industry, 1996, Materials Science and Engineering A, Vol.213, pp.103-114
[15]M. Rahman, Z. G. Wang and Y. S. Wong, 2006, A review on high-speed machining of titanium alloys, JSME Int. J. Series C, Vol.49, No.1, pp.11-20
[16]王曉琴,艾興,趙軍和李甜甜,2007,Ti6Al4V車削刀具磨損及切削力研究,組合機床與自動化加工技術,Vol.7,pp14-16.
[17]王小翠,張新遠和郭寶億,2007,鈦合金正交切削過程數值模擬,西安工業大學學報,Vol.27,No.4,pp.334-336.
[18]E.O. Ezugwu and J. Bonney, 2004,Effect of high-pressure coolant supply when machining nickel-base,Inconel 718, alloy with coated carbide tools, Journal of Materials Processing Technology, Vol.153–154, pp.1045–1050
[19]J. P. Costes, Y. Guillet, G. Poulachon and M. Dessoly, 2007, Tool-life and wear mechanisms of CBN tools in machining of Inconel 718, International Journal of Machine Tools & Manufacture, Vol.47, pp.1081–1087
[20]E. Z. Li, H. Zeng and X. Q. Chen, 2006, An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts, Journal of Materials Processing Technology, Vol.180, pp.296–304
[21]Altin, M. Nalbant and A. Taskesen, 2007, The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools, Materials and Design, Vol.28, pp.2518–2522
[22]E. Kose, A. Kurt and U. Seker, 2008, The effects of the feed rate on the cutting tool stresses in machining of Inconel 718, Journal of Materials Processing Technology, Vol.196, pp.165–173
[23]A. R. C. Sharman, J. I. Hughes and K. Ridgway, 2006, An analysis of the residual stresses generated in Inconel 718TM when turning, Journal of Materials Processing Technology, Vol.173, pp.359–367
[24]M. Nabant, A. Altin and H. Gokkaya, 2007, The effect of cutting speed and cutting tool geometry on machinability properties of nickel-base Inconel 718 super alloys, Materials and Design, Vol.28, pp.1334–1338
[25]R.S. Pawade, Suhas S. Joshi, P.K. Brahmankar, M. Rahman, 2007, An investigation of cutting forces and surfaces damage in high-speed turning of Inconel 718, Journal of Materials Processing Technology, Vol.192-193, pp.139-146
[26]E.O. Ezugwu, J. Bonney, D.A. Fadare, W.F. Sales, 2005, Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing condition with various coolant supply pressures, J. Mater. Process. Technol., Vol.162-163, pp.609-614.
[27]A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski, D. Larrouquere, 2007, Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools, Wear, Vol.262, pp.931-942.
[28]J. Monaghan, T. MacGinley, 1999, Modelling the orthogonal machining process using coated carbide cutting tools, Computational Materials Science, Vol.16, pp.275-284.
[29]D.K. Aspinwall, R.C. Dewes, E.G. Ng, C. Sage, S.L. Soo, 2007, The influence of cutter orientation and workpiece angle on machinability when high-speed milling Inconel 718 under finishing conditions, Int. J. Mach. Tools Manuf., Vol.47, pp.1839-1846.
[30]R.M. Arunachalam, M.A. Mannan, A.C. Spowage, 2004, Residual stress and surface roughness when facing age hardened Inconel 718 with CBN and ceramic cutting tools, Int. J. Mach. Tools Manuf., Vol.44, pp.879-887.
[31]N. Ahmed, A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, 2006, Analysis of material response to ultrasonic vibration loading in turning Inconel 718, Materials Science and Engineering A, Vol.424, pp.318-325.
[32]A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, 2004, Finite element analysis of ultrasonically assisted turning of Inconel 718, J. Mater. Process. Technol., Vol.153-154, pp.233-239.
[33]Z.Y. Wang, K.P. Rajurkar, J. Fan, S. Lei, Y.C. Shin, G.. Petrescu, 2004, Hybrid machining of Inconel 718, Int. J. Mach. Tools Manuf., Vol.43, pp.1391-1396.
[34]T. Kitagawa, A. Kubo and K. Maekawa, 1997, Temperature and wear of cutting tools in high-speed machining of Inconel 718 and Ti-6Al-6V-2Sn, Wear, Vol.202, pp.142-148
[35]S. M. Darwish, 2000, Machining of difficult-to-cut materials with bonded tools, International Journal of Adhesion & Adhesives, Vol.20, pp.279–289
[36]S. W. Kim, D. W. Lee, M. C. Kang and J. S. Kim, 2001,Evaluation of machinability by cutting environments in high-speed milling of difficult-to-cut materials, Journal of Materials Processing Technology, Vol.111, pp.256–260
[37]Y. Su, N. He, L. Li, A. Iqbal, M. H. Xiao, S. Xu and B. G. Qiu, 2007, Refrigerated cooling air cutting of difficult-to-cut materials, International Journal of Machine Tools & Manufactur, Vol.47, pp.927–933
[38]洪良得、陳正仁、陳昌順、謝壬癸、李鈞澤、郭柏立、傅光華,1997,切削刀具學,高立圖書.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top