跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:90c8:68ff:e28a:b3d9) 您好!臺灣時間:2025/01/16 07:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊忠賢
研究生(外文):Jhong-Sian Yang
論文名稱:資料探勘於繼續經營意見模式之研究
論文名稱(外文):The application of data mining in going concern opinion
指導教授:齊德彰齊德彰引用關係
指導教授(外文):Der-Jang Chi
學位類別:碩士
校院名稱:中國文化大學
系所名稱:會計研究所
學門:商業及管理學門
學類:會計學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:52
中文關鍵詞:繼續經營意見主成份分析古典多元尺度法等距離映射法局部線性嵌入法支援向量機
外文關鍵詞:going concern opinionprincipal component analysisclassical multidimensional scalingisometric mappinglocally linear embeddingsupport vector machine
相關次數:
  • 被引用被引用:1
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
審計人員於企業破產前如未被出具繼續經營意見疑慮,將被視為審計報導失敗。因此,如何正確評估繼續經營意見,對審計人員來說相當重要。近年來相關研究開始以資料探勘建構繼續經營意見決策模式,其中,支援向量機顯示出良好的分類能力。但當輸入變數的維數過高,在運用支援向量機時,會造成無法預料之影響與噪音干擾。為了解決支援向量機現存之缺點,故本研究嘗試整合資料探勘中的流形學習與支援向量機來建構繼續經營意見決策之分類模式,以提高模式的分類正確率之外,並比較主成份分析法、古典多元尺度法、等距離映射法及局部嵌入法等四種流形學習的降維效果。實證結果顯示,本研究建立之整合流形學習與支援向量機的兩階段模式建構程序,能有效的提昇繼續經營意見決策模式的正確率。此外,本研究進一步發現運用等距離映射法進行資料降維,可有效提昇模式的正確率,其次為主成份分析法。但古典多元尺度法與局部線性嵌入法的整合模式之實證結果卻是低於單純使用支援向量機之模式。
It is viewed as audit reporting failures that the auditors don’t issue going concern uncertainty opinion to the companies before bankrupt. It is important how auditors assess going concern of client correctly Prior study about going concern opinion focused on finding factors of going concern opinion. Some researches use data mining techniques to develop going concern opinion model in recent years. Support vector machine (SVM) is good performance of classification, but it often causes dramatic inefficiency and noise when using SVM that input data is high dimension-al data. For solving defects of SVM, we attempt to integrate manifold learning and SVM to construct going concern opinion decision model in order to improve accu-racy of model in our study, and we do a comparison of principal component analysis (PCA), Classical Multidimensional Scaling (cMDS), isometric mapping (ISOMAP), and locally linear embedding (LLE) on dimensionality reduction effect. The empirical result shows that two-stage model of integration of manifold learning and SVM improve effective accuracy for going concern opinion decision model in our study. In addition, we further find that using ISOMAP on dimensionality reduction can improve best accuracy of model, next best is PCA. But accuracy of integration models which use cMDS and LLE are worse than SVM model.
內容目錄
中文摘要 ..................... iii
英文摘要 ..................... iv
誌謝辭  ..................... v
內容目錄 ..................... vi
表目錄  ..................... viii
圖目錄  ..................... ix
第一章  緒論................... 1
  第一節  研究背景與動機............ 1
  第二節  研究目的............... 4
  第三節  論文研究架構與流程.......... 4
第二章  文獻探討................. 7
  第一節  繼續經營意見之定義及文獻探討..... 7
  第二節  小結................. 11
第三章  研究設計................. 15
  第一節  研究架構............... 15
  第二節  研究變數............... 16
  第三節  樣本選取與資料蒐集.......... 20
  第四節  研究方法............... 21
第四章  實證結果與分析.............. 31
  第一節  流形學習............... 31
  第二節  模式分析及比較............ 37
第五章  結論與建議................ 42
  第一節  研究結論............... 42
  第二節  研究限制............... 43
  第三節  未來研究建議............. 44
參考文獻 ..................... 45

表目錄
表 2- 1 繼續經營意見決策模型相關研究彙總表.... 13
表 3- 1 研究變數彙總表.............. 17
表 4- 1 流形學習參數彙總表............ 35
表 4- 2 五組交叉驗證之構成樣本.......... 38
表 4- 3 支援向量機之測試結果........... 39
表 4- 4 整合流形學習與支援向量機模型的測試結果.. 40
表 4- 5 型一及型二錯誤率之彙總表......... 41

圖目錄
圖 1- 1 論文流程圖................ 6
圖 3- 1 研究架構................. 16
圖 3- 2 局部線性嵌入法降維之流程圖........ 26
圖 4- 1 主成份分析特徵值陡坡圖.......... 32
圖 4- 2 古典多元尺度法特徵值陡坡圖........ 32
圖 4- 3 等距離映射法殘值圖............ 33
圖 4- 4 局部線性嵌入法殘值圖........... 34
圖 4- 5 主成份分析低維空間分佈圖......... 35
圖 4- 6 古典多元尺度法低維空間分佈圖....... 36
圖 4- 7 等距離映射法低維空間分佈圖........ 36
圖 4- 8 局部線性嵌入法低維空間分佈圖....... 37
圖 4- 9 γ及C參數值等高線圖............ 37
一、中文部分

施人英,陳文華,吳壽山(2007),探討支持向量機器在發行人信用評等分類模型之應用,資訊管理學報,14(3),155-178。

財團法人中華民國會計研究發展基金會審計準則委員會(2006),審計準則公報及審計實務指引合訂本。台北:著者發行,71-78。


二、英文部分

Anandarajan, M., & Anandarajan, A. (1999). A comparison of ma-chine learning techniques with a qualitative response model for auditor’s going concern reporting. Expert Systems with Applications, 16(4), 385-392.

Behn, B. K., Kaplan, S. E., & Krumwiede, K. R. (2001). Further evidence on the auditor’s going-concern report: The influence of management plans. Auditing: A Journal of Practice and Theory, 20(1), 13-29.

Bell, T. B., & Tabor, R. H. (1991). Empirical analysis of audit uncertainty qualifications. Journal of Accounting Research, 29(2), 350-370.

Borg, I., & Groenen, P. J. F. (1997). Modern multidimensional scaling: Theory and application. New York: Springer-Verlag.

Carcello, J. V., & Neal, T. L. (2000). Audit committee composition and auditor reporting. The Accounting Review, 75(4), 453-467.

Cayton, L. (2008). Algorithms for manifold learning (UCSD Tech-nical Report CS2008-0923). California: University of California.

Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines [Online]. Available at http://www.csie.ntu.edu.t
w/~cjlin/libsvm [2008, August 30].

Chen, K. C. W., & Church, B. K. (1992). Default on debt obligations and the issuance of going-concern opinions. Auditing: A Journal of Practice and Theory, 11(2), 30-50.

Chen, W. H., Hsu, S. H., & Shen, H. P. (2005). Application of SVM and ANN for intrusion detection. Computers & Operations Research, 32(10), 2617-2634.

Choo, J., Kim, H., Park, H., & Zha, H. (2007). A comparison of unsupervised dimension reduction algorithms for classifica-tion. In X. Hu, I. I. Mandoiu, Z. Obradovic, & J. Xia (Eds.), 2007 IEEE International Conference on Bioinformatics and Biomedicine (71-77), California: IEEE Computer Society Press.

Dopuch, N., Holthausen, R. W., & Leftwich, R. W. (1987). Predicting audit qualifications with financial and market variables. The Accounting Review, 62(3), 431-455.

Duan, K., Keerthi, S. S., & Poo., A. N. (2003). Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 51(April), 41-59.

Errity, A., & McKenna, J. (2006, September 18-21). An investigation of manifold learning for speech analysis. Paper presented at the Ninth International Conference on Spoken Language Processing, Pennsylvania.

Friedrich., T. (2004). Nonlinear dimensionality reduction-locally linear embedding versus isomap (Sheffield S1 4DP). United Kingdom: The University of Sheffield-Machine Learning Group.

Geiger, M. A., & Raghunandan, K. (2001). Bankruptcies, audit re-ports, and the reform act. Auditing: A Journal of Practice and Theory, 20(1), 187-195.

Geiger, M. A., & Rama, D. V. (2003). Audit fees, nonaudit fees, and auditor reporting on stressed companies. Auditing: A Journal of Practice and Theory, 22(2), 53-69.

Hansen, J. V., McDonald, J. B., & Stice, J. D. (1992). Artificial intelligence and generalized qualitative-response models: An empirical test on two audit decision-making domains. Decision Sciences, 23(3), 708-723.

Hopwood, W., McKeown, J. C., & Mutchler, J. F. (1994). A reexamination of auditor versus model accuracy within the context of the going concern opinion decision. Contemporary Accounting Research, 10(2), 409-431.

Hsu, C. W., Chang, C. C., & Lin, C. J. (2008). A practical guide to support vector classification [Online]. Available: http://www.cs ie.ntu.edu.tw/~cjlin [2003, July 15].


Jolliffe, I. T. (1986). Principal component analysis. New York: Springer-Verlag.

Kadoury, S., & Levine, M. D. (2007). Face detection in gray scale images using locally linear embeddings. Computer Vision and Image Understanding, 105(1), 1-20.

Koh, H. C. (2004). Going concern prediction using data mining techniques. Managerial Auditing Journal, 19(3), 462-476.

Krirkos, E., Spathis, C., Nanopoulos, A., & Manolopoulos, Y. (2007). Identifying qualified auditors’ opinions: A data mining approach. Journal of Emerging Technologies in Accounting, 4(1), 183-197.

Lee, G., Rodriguez, C., & Madabushi, A. (2007). An empirical comparison of dimensionality reduction methods for classifying gene and protein expression datasets. In I. Mandoiu & A. Zelikovsky (Eds.), Proceedings of International Symposium on Bioinformatics Research and Applications (pp.170-181), New York: Springer Berlin Heidelberg.

Lee, Y. C. (2007). Application of support vector machines to corporate credit rating prediction. Expert Systems with Applications, 33(1), 67-74.

Lenard, M. J., Alam, P., & Madey, G. R. (1995). The application of neural networks and a qualitative response model to the auditor’s going concern uncertainty decision. Decision sciences, 26(2), 209-227.

Levitan, A. S., & Knoblett, J. A. (1985). Indicators of exceptions to the going-concern assumption. Auditing: A Journal of Practice and Theory, 5(1), 26-39.

Li, B., Zheng, C. H., & Huang, D. S. (2008). Locally linear discriminant embedding: An efficient method for face recognition. Pattern Recognition, 41(12), 3813-3821.

Luo, Z., Wu, X., Guo, S., & Ye, B. (2008, June 20-23). Diagnosis of breast cancer tumor based on manifold learning and support vector machine. Paper presented at 2008 IEEE International Conference on Information and Automation, New York.

Martens, D., Bruynseels, L., Baesens, B., Willekens, M., & Vanthienen, J. (2008). Predicting going concern opinion with data mining. Decision Support Systems, 45(4), 765-777.

McKeown, J. C., Mutchler, J. F., Hopwood, W., & Bell, T. B. (1991). Towards an explanation of auditor failure to modify the audit opinions of bankrupt companies; discussion; reply. Auditing: A Journal of Practice and Theory, 10(Suppl. 1), 1-24.

Menon, K., & Schwartz, K. B. (1987). An empirical investigation of audit qualification decisions in the presence of going-concern uncertainties. Contemporary Accounting Research, 3(2), 302-315.

Minoux, M. (1986). Mathematical programming: Theory and algo-rithms. New York: John Wiley and Sons.

Mutchler, J. F. (1985). A multivariate analysis of the auditor’s going-concern opinion decision. Journal of Accounting Re-search, 23(2), 668-682.

Mutchler, J. F., Hopwood, W., & McKeown, J. C. (1997). The influ-ence of contrary information and mitigating factors on audit opinion decisions on audit opinion decisions on bankrupt companies. Journal of Accounting Research, 35(2), 295-310.

Rowets, S. T., & Saul, L. K. (2000, December 22). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323-2326.

Tenebaum, J. B., Silvam, V. D., & Langford, J. C. (2000, December 22). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319-2323.

Übeyli, E. D. (2008). Support vector machines for detection of electrocardiographic changes in partial epileptic patients. Engineering Applications of Artificial Intelligence, 21(8), 1196-1203.

Wong, W. T., & Hsu, S. H. (2006). Application of SVM and ANN for image retrieval. European Journal of Operational Research, 173(3), 938-950.

Vapnik, V. N. (1995). The nature of statistical learning theory (2nd ed.). New York: Springer-Verlag.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top