一、中文部分
施人英,陳文華,吳壽山(2007),探討支持向量機器在發行人信用評等分類模型之應用,資訊管理學報,14(3),155-178。財團法人中華民國會計研究發展基金會審計準則委員會(2006),審計準則公報及審計實務指引合訂本。台北:著者發行,71-78。
二、英文部分
Anandarajan, M., & Anandarajan, A. (1999). A comparison of ma-chine learning techniques with a qualitative response model for auditor’s going concern reporting. Expert Systems with Applications, 16(4), 385-392.
Behn, B. K., Kaplan, S. E., & Krumwiede, K. R. (2001). Further evidence on the auditor’s going-concern report: The influence of management plans. Auditing: A Journal of Practice and Theory, 20(1), 13-29.
Bell, T. B., & Tabor, R. H. (1991). Empirical analysis of audit uncertainty qualifications. Journal of Accounting Research, 29(2), 350-370.
Borg, I., & Groenen, P. J. F. (1997). Modern multidimensional scaling: Theory and application. New York: Springer-Verlag.
Carcello, J. V., & Neal, T. L. (2000). Audit committee composition and auditor reporting. The Accounting Review, 75(4), 453-467.
Cayton, L. (2008). Algorithms for manifold learning (UCSD Tech-nical Report CS2008-0923). California: University of California.
Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines [Online]. Available at http://www.csie.ntu.edu.t
w/~cjlin/libsvm [2008, August 30].
Chen, K. C. W., & Church, B. K. (1992). Default on debt obligations and the issuance of going-concern opinions. Auditing: A Journal of Practice and Theory, 11(2), 30-50.
Chen, W. H., Hsu, S. H., & Shen, H. P. (2005). Application of SVM and ANN for intrusion detection. Computers & Operations Research, 32(10), 2617-2634.
Choo, J., Kim, H., Park, H., & Zha, H. (2007). A comparison of unsupervised dimension reduction algorithms for classifica-tion. In X. Hu, I. I. Mandoiu, Z. Obradovic, & J. Xia (Eds.), 2007 IEEE International Conference on Bioinformatics and Biomedicine (71-77), California: IEEE Computer Society Press.
Dopuch, N., Holthausen, R. W., & Leftwich, R. W. (1987). Predicting audit qualifications with financial and market variables. The Accounting Review, 62(3), 431-455.
Duan, K., Keerthi, S. S., & Poo., A. N. (2003). Evaluation of simple performance measures for tuning SVM hyperparameters. Neurocomputing, 51(April), 41-59.
Errity, A., & McKenna, J. (2006, September 18-21). An investigation of manifold learning for speech analysis. Paper presented at the Ninth International Conference on Spoken Language Processing, Pennsylvania.
Friedrich., T. (2004). Nonlinear dimensionality reduction-locally linear embedding versus isomap (Sheffield S1 4DP). United Kingdom: The University of Sheffield-Machine Learning Group.
Geiger, M. A., & Raghunandan, K. (2001). Bankruptcies, audit re-ports, and the reform act. Auditing: A Journal of Practice and Theory, 20(1), 187-195.
Geiger, M. A., & Rama, D. V. (2003). Audit fees, nonaudit fees, and auditor reporting on stressed companies. Auditing: A Journal of Practice and Theory, 22(2), 53-69.
Hansen, J. V., McDonald, J. B., & Stice, J. D. (1992). Artificial intelligence and generalized qualitative-response models: An empirical test on two audit decision-making domains. Decision Sciences, 23(3), 708-723.
Hopwood, W., McKeown, J. C., & Mutchler, J. F. (1994). A reexamination of auditor versus model accuracy within the context of the going concern opinion decision. Contemporary Accounting Research, 10(2), 409-431.
Hsu, C. W., Chang, C. C., & Lin, C. J. (2008). A practical guide to support vector classification [Online]. Available: http://www.cs ie.ntu.edu.tw/~cjlin [2003, July 15].
Jolliffe, I. T. (1986). Principal component analysis. New York: Springer-Verlag.
Kadoury, S., & Levine, M. D. (2007). Face detection in gray scale images using locally linear embeddings. Computer Vision and Image Understanding, 105(1), 1-20.
Koh, H. C. (2004). Going concern prediction using data mining techniques. Managerial Auditing Journal, 19(3), 462-476.
Krirkos, E., Spathis, C., Nanopoulos, A., & Manolopoulos, Y. (2007). Identifying qualified auditors’ opinions: A data mining approach. Journal of Emerging Technologies in Accounting, 4(1), 183-197.
Lee, G., Rodriguez, C., & Madabushi, A. (2007). An empirical comparison of dimensionality reduction methods for classifying gene and protein expression datasets. In I. Mandoiu & A. Zelikovsky (Eds.), Proceedings of International Symposium on Bioinformatics Research and Applications (pp.170-181), New York: Springer Berlin Heidelberg.
Lee, Y. C. (2007). Application of support vector machines to corporate credit rating prediction. Expert Systems with Applications, 33(1), 67-74.
Lenard, M. J., Alam, P., & Madey, G. R. (1995). The application of neural networks and a qualitative response model to the auditor’s going concern uncertainty decision. Decision sciences, 26(2), 209-227.
Levitan, A. S., & Knoblett, J. A. (1985). Indicators of exceptions to the going-concern assumption. Auditing: A Journal of Practice and Theory, 5(1), 26-39.
Li, B., Zheng, C. H., & Huang, D. S. (2008). Locally linear discriminant embedding: An efficient method for face recognition. Pattern Recognition, 41(12), 3813-3821.
Luo, Z., Wu, X., Guo, S., & Ye, B. (2008, June 20-23). Diagnosis of breast cancer tumor based on manifold learning and support vector machine. Paper presented at 2008 IEEE International Conference on Information and Automation, New York.
Martens, D., Bruynseels, L., Baesens, B., Willekens, M., & Vanthienen, J. (2008). Predicting going concern opinion with data mining. Decision Support Systems, 45(4), 765-777.
McKeown, J. C., Mutchler, J. F., Hopwood, W., & Bell, T. B. (1991). Towards an explanation of auditor failure to modify the audit opinions of bankrupt companies; discussion; reply. Auditing: A Journal of Practice and Theory, 10(Suppl. 1), 1-24.
Menon, K., & Schwartz, K. B. (1987). An empirical investigation of audit qualification decisions in the presence of going-concern uncertainties. Contemporary Accounting Research, 3(2), 302-315.
Minoux, M. (1986). Mathematical programming: Theory and algo-rithms. New York: John Wiley and Sons.
Mutchler, J. F. (1985). A multivariate analysis of the auditor’s going-concern opinion decision. Journal of Accounting Re-search, 23(2), 668-682.
Mutchler, J. F., Hopwood, W., & McKeown, J. C. (1997). The influ-ence of contrary information and mitigating factors on audit opinion decisions on audit opinion decisions on bankrupt companies. Journal of Accounting Research, 35(2), 295-310.
Rowets, S. T., & Saul, L. K. (2000, December 22). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323-2326.
Tenebaum, J. B., Silvam, V. D., & Langford, J. C. (2000, December 22). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319-2323.
Übeyli, E. D. (2008). Support vector machines for detection of electrocardiographic changes in partial epileptic patients. Engineering Applications of Artificial Intelligence, 21(8), 1196-1203.
Wong, W. T., & Hsu, S. H. (2006). Application of SVM and ANN for image retrieval. European Journal of Operational Research, 173(3), 938-950.
Vapnik, V. N. (1995). The nature of statistical learning theory (2nd ed.). New York: Springer-Verlag.