跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳蓉
研究生(外文):Chia-jung Wu
論文名稱:多酚奶粉對老化促進小鼠延緩衰老之相關研究
論文名稱(外文):Effect of polyphenol-rich milk powder on anti-aging in senescence accelerated mice
指導教授:王銘富王銘富引用關係
指導教授(外文):Ming-fu Wang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:154
中文關鍵詞:學習記憶老化促進小鼠綠茶多酚抗氧化
外文關鍵詞:learning and memorysenescence accelerated micegreen tea polyphenolantioxidative status
相關次數:
  • 被引用被引用:1
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
先前研究顯示,綠茶中多酚以EGCG生物活性為最高,具抗氧化之功效。本研究目的為探討指標成分為EGCG之多酚奶粉,對老化促進小鼠學習記憶能力及抗氧化狀態之影響。實驗以3月與6月齡雄性及雌性SAMP8 (senescence-accelerated mouse) 小鼠為對象,隨機分為對照組及實驗組,實驗組又分為給予1.04、2.08、5.20 mg多酚組,每組20隻。實驗為期12週,飼養期間紀錄其攝食量與體重變化,並於攝食第11週判定老化指數;在行為測試方面測其活動量,於攝食第12週以單次被動迴避試驗及主動迴避試驗評估其學習記憶能力。動物犧牲後,採血進行生化分析,取肝臟測定肝中抗氧化酵素含量,另取腦部做丙二醛試驗及病理切片以觀察類澱粉蛋白沉積情形。
結果顯示,實驗期間體重變化、攝食量及活動量於四組間無顯著差異。老化指數評估方面,無論在3、6月齡雄性或雌性小鼠,多酚組之老化指數總分皆顯著低於對照組 (p<0.05),且隨著年齡增加,老化指數有增加的趨勢。學習記憶方面,主動迴避試驗結果顯示, 3、6月齡雄性及雌性小鼠之對照組皆比實驗組有顯著較高之逃脫反應次數(p<0.05) ,表示多酚組有較佳的學習記憶能力。另於單次被動迴避試驗中發現,3、6月齡雄性及雌性實驗組在學習記憶保留上顯著較對照組佳 (p<0.05)。血液生化分析,3、6月齡雄性及雌性小鼠各實驗組之三酸甘油酯及總膽固醇濃度與對照組相比皆顯著降低 (p<0.05)。體內抗氧化防禦系統方面,3、6月齡雄性及雌性小鼠各實驗組之腦部MDA含量及肝臟蛋白質羰基濃度與對照組相比皆顯著降低 (p<0.05)。於肝臟超氧歧化酶、觸酶活性、麩胱苷肽過氧化酶、總含硫化合物及血液葡萄糖-6-磷酸去氫酶方面,不論在3、6月齡雄性及雌性小鼠,多酚組顯著高於對照組 (p<0.05)。在腦部β類澱粉蛋白沉積方面,3、6月齡雄性及雄性小鼠皆以多酚組顯著較對照組低 (p<0.05)。
綜合以上結果,長期於飼料中添加指標成分為EGCG之多酚奶粉,可提升老化促進小鼠體內抗氧化防禦系統之能力,減少腦部β-類澱粉蛋白沉積,進而達到增進學習記憶的能力。
Previous studies indicated that EGCG is the major and most active component of green tea catechins, and it acts as an antioxidant in the biological system. The purpose of our study was to investigate the effects of polyphenol-rich milk powder composed mainly of EGCG on learning and memory ability, and antioxidant status in 3 and 6-month-old senescence accelerated mice (SAMP8). SAMP8 mice were devised to four groups: control, 1.04 mg, 2.08 mg and 5.20 mg polyphenol (PP). Each group was consisted of twenty male and female mice. During feeding period, intake amount, body weight measurement and aging scores were recorded. Locomotion was recorded in evaluation of behavior; and single-trail passive avoidance test and active shuttle avoidance test in evaluation of learning and memory abilities. After the experiment, the mice were sacrificed to analyze the biochemical parameters, the antioxidant ability of serum, liver and brain, and the histopathological examination of brain were also observed and evaluated.
Our results showed that there was no significant difference in the body weight, food intake, and locomotion among four groups in 3 and 6-month-old mice. The aging score were increased with age, and the score of control groups were higher than the experimental groups in both male and female 3 and 6-month-old mice (p<0.05). The experimental groups had better active shuttle avoidance response in both male and female 3 and 6-month-old mice (p<0.05). 3 and 6-month-old male and female mice fed with polyphenol had significantly better single-trial passive avoidance results (p<0.05). 3 and 6-month-old male and female mice fed with polyphenol experiment diet had significantly lower triglycerol, total cholesterol than control group (p<0.05). Hepatic protein carbonyl levels, and malondialdehyde concentration and Aβ deposition of brain were significant lower in the experimental groups than in control ones in 3 and 6-month-old male and female mice. Polyphenol also brought about an augmentation in the activities of enzymic antioxidants in the liver, such as superoxide dismutase, catalase, glutathione peroxidase and total thiol levels, and increased the activity of glucose-6-phosphate dehydrogenase in the blood.
In summary, we conclude that the consumption of polyphenol-rich milk powder composed mainly of EGCG may improve the learning and memory ability of SAMP8 mice. And it may due to the mediation by EGCG promoting the antioxidative ability and reducing the brain pathological changed that lower the oxidative injury.
目 錄
頁次
中文摘要……….………..……………………………………………………Ⅰ
英文摘要……….…. …………………………………………………………III
目錄…..…………. ……….…………………………………………..………Ⅵ
表目錄………………….....…………………………..………………..……..X
圖目錄…………………...……………………………………………….…XII

第一章 前言……………………………………………..……………………1
第二章 文獻回顧……………………………………………………………..4
第一節 自由基與抗氧化防禦系統……………....…………………..…..4
壹、自由基與氧化壓力.…..……….…...………..……….……..4
貳、抗氧化防禦系統……………...…...………………………..5
一、酵素型抗氧化系統.…….…...………………………..5
二、非酵素型抗氧化系統……...…..……………………..7
第二節 老化…...……………………...…..……………..………………11
壹、老化之定義……. ...…...…………………………..………11
貳、老化的原因..……..…...………………………………..….11
參、老化與抗氧化…...…...……..……………………….……..12
肆、老年失智症……...…...…....….…………….……………..13
第三節 老化促進小鼠..…………..…...…..…..………………………...15
壹、老化促進小鼠…………...……...…………………………15
貳、老化促進小鼠之老化及病理特徵... ……..…....…………15
參、老化促進小鼠與學習記憶..…….. ..…….…….….…...….16
肆、老化指數系統………………..……....………………...….16
第四節 綠茶多酚…...………..……............……..………………...……21
壹、茶之簡介……....…………………..………….….….…….21
貳、綠茶之化學組成….…...........……..………………...…….22
參、綠茶多酚 (兒茶素類) 的代謝…...…………....……..…..26
肆、綠茶之生理功能...…..………………………....………….27
第五節 蘋果多酚……………….…..……………………………...……30
壹、蘋果之簡介…….…….....……………….……….….…….30
貳、蘋果中酚類化合物…..….…...……………………...…….30
參、蘋果多酚之生理功能..……….…...…………………..…..32
第六節 紅酒多酚…………....…..….……………………………...……33
壹、紅酒之簡介…………..……….…...………….….….…….33
貳、紅酒成分組成……….............…….………………...…….33
參、紅酒多酚之生理功能..……….……...………………..…..36

第三章 材料與方法………………………..…………………….…….…….37
第一節 實驗動物………..………………………………….….………..37
第二節 實驗材料…………………………………………....…………..37
第三節 實驗劑量………...……………………………….……………..39
第四節 實驗方法及步驟…...………………………….………………..41
壹、實驗流程…………………...……………...………………41
貳、老化指數判定………………...…….…..…………………43
參、活動量試驗………...............………….………….……….43
肆、學習記憶測試……………...………………………….…..45
一、主動迴避試驗…………..…...………………………45
二、單次被動迴避試驗…….……..………...……….…..47
伍、血液生化學分析……………..……..….…………………50
陸、腦部脂質過氧化物及肝臟抗氧化能力…..……..…...….50
一、丙二醛…….….………………………….………..50
二、超氧歧化酶….…….….....………………….……..53
三、麩胱苷肽過氧化酶..…....………….………..…….57
四、觸酶...………..……..….…..………………..…….58
五、蛋白質羰基…..….…...……………..…………..….60
六、總含硫化合物….………..…………………..…….62
柒、血液抗氧化能力分析.………..…………………………..64
捌、腦部病理切片觀察……..……..……………..………….65
第五節 統計分析...………….…………………………………..……….76
第四章 結果與討論…...………..…………………… ……………….……..77
第一節 體重及攝食量變化…........………....………………….………..77
第二節 活動量…………………………………………………….……..77
第三節 老化指數………………...………………………………………82
第四節 學習與記憶能力…………………....………………….………..88
壹、主動迴避試驗…………………...…………………………88
貳、單次被動迴避試驗…………………………………….…..92
第五節 器官重量…………...……………………………………………95
第六節 血液生化值分析………....………………………………….…..95
第七節 腦部脂質過氧化物與肝臟抗氧化能力………..……..………101
一、脂質過氧化物丙二醛……..……..............………………101
二、超氧歧化酶………………..…………….…………….…107
三、麩胱苷肽過氧化酶…….…..…………...…………….….111
四、觸酶…….……..……...…….....…...………………….….115
五、蛋白質羰基……………….............………………….…..118
六、總含硫化合物…………………...…..……………….…..123
第八節 血液抗氧化能力.……….…………….....…………………….127
第九節 腦部β類澱粉蛋白沉積………………….…………………...130
第五章 綜合討論…………..……...……………………………………..136
第六章 結論………………………...……………………………………..138
第七章 參考文獻……………………..…………………..……………..….139

















表 目 錄
頁次
表一、老化指數判定標準……….…………………..…………………….….18
表二、SAM之病理生物學表型…………………...…………………….........20
表三、紅葡萄酒中酚類物質的抗氧化能力..………….………...……..…….35
表四、實驗飼料組成………………………..…………...….…………..…….40
表五、3月及6月齡雄性SAMP8小鼠餵食不同飼料12週後體重及攝食量之變化…………….……….………………………………..…………..….78
表六、3月及6月齡雌性SAMP8小鼠餵食不同飼料12週後體重及攝食量之變化……………..……………………………………………..……..….79
表七、3月齡SAMP8系小鼠餵食不同飼料11週後之活動量.....................….80
表八、6月齡SAMP8系小鼠餵食不同飼料11週後之活動量……………......81
表九、3月齡雄性SAMP8系小鼠餵食不同飼料11週後之老化指數…........................................................................................................84
表十、3月齡雌性SAMP8系小鼠餵食不同飼料11週後之老化指數……………………………………………………………...…...….85
表十一、6月齡雄性SAMP8系小鼠餵食不同飼料11週後之老化指數……………………………………………….…………….…..….86
表十二、6月齡雌性SAMP8系小鼠餵食不同飼料11週後之老化指數…………………………………………………………….…..….87
表十三、3及6月齡雄性SAMP8系小鼠餵食不同飼料12週後之器官重…………………………………………….…………….……..….97
表十四、3及6月齡雌性SAMP8系小鼠餵食不同飼料12週後之器官重……………………………………….…..……………….…..….98
表十五、3及6月齡雄性SAMP8系小鼠餵食不同飼料12週後血液生化值之比較………………………………...……………………….……..….99
表十六、3及6月齡雌性SAMP8系小鼠餵食不同飼料12週後血液生化值之比較………………………………………...………………….…..….100
表十七、3、6月齡雄性SAMP8小鼠餵食不同飼料12週後其腦部β-類澱粉蛋白沉積之比較…………………………..………………….…..….132
表十八、3、6月齡雌性SAMP8小鼠餵食不同飼料12週後其腦部β-類澱粉蛋白沉積之比較……………………………...…………………...….133












圖 目 錄
頁次
圖一、體內抗氧化防禦系統…………...……….…………………………..10
圖二、兒茶素類化學結構與分類…………….……………………………..25
圖三、ECG之抗氧化反應機制………………………………..…….……27
圖四、蘋果多酚種類……………………….…………………………..……31
圖五、實驗流程圖……….………………………………………….….…….42
圖六、活動量裝置…………………………………….…….………..………44
圖七、主動迴避試驗裝置圖……………………………….…………..…….49
圖八、被動迴避試驗裝置圖………………………………..…………..……49
圖九、病理組織切片流程圖…………………………………………...…….74
圖十、腦部F區域切面圖…………………………………………...…….75
圖十一、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後經主動迴避試驗之逃脫反應次數………………………….……………….….………90
圖十二、3、6月齡雌性SAMP8系小鼠餵食不同飼料12週後經主動迴避試驗之逃脫反應次數…………………………………………..……..…91
圖十三、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後經單次被動迴避試驗之滯留時間………………………………………………...……93
圖十四、3、6月齡雌性SAMP8系小鼠餵食不同飼料12週後經單次被動迴避試驗之滯留時間……………………………………………..………94
圖十五、3月及6月齡雄性SAMP8系小鼠餵食不同飼料12週後之腦部丙二醛濃度…………………………………………………………………104
圖十六、3月及6月齡雌性SAMP8系小鼠餵食不同飼料12週後之腦部丙二醛濃度………………………………………………………….………105
圖十七、比較3月及6月齡雄、雌性SAMP8系小鼠餵食不同飼料12週後之腦部丙二醛濃度……………………………………………….………106
圖十八、3月及6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟超氧歧化酶活性……………………………………………………….……109
圖十九、3月及6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟超氧歧化酶活性………………………………………………………….…110
圖二十、3月及6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟麩胱苷肽過氧化酶活性…………………………………………….………113
圖二十一、3月及6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟麩胱苷肽過氧化酶活性…………………………………………….……114
圖二十二、3月及6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟觸酶活性…………………………………………………………………116
圖二十三、3月及6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟觸酶活性………………………………………………………………….117
圖二十四、3月及6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟蛋白質羰基濃度…………………………………………………..……120
圖二十五、3月及6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟蛋白質羰基濃度……………………………………………………….…121
圖二十六、比較3月及6月齡雄、雌性SAMP8系小鼠餵食不同飼料12週後之肝臟蛋白質羰基濃度……………………………………….………122
圖二十七、3月及6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟總含硫化合物之濃度……………………………………………….……124
圖二十八、3月及6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟總含硫化合物之濃度………………………………………………..…125
圖二十九、比較3月及6月齡雄、雌性SAMP8系小鼠餵食不同飼料12週後之肝臟總含硫化合物之濃度…………………………………….……126
圖三十、3月及6月齡雄性SAMP8系小鼠餵食不同飼料12週後之血液葡萄糖-6-磷酸去氫酶……………………………………………….…...…128
圖三十一、3月及6月齡雌性SAMP8系小鼠餵食不同飼料12週後之血液葡萄糖-6-磷酸去氫酶…………………………...………………….……129
圖三十二、SAMP8小鼠腦部β-類澱粉蛋白沉積形成……..………….…...…134
圖三十三、對照組SAMP8小鼠腦部β-類澱粉蛋白沉積情形.……….…...…135
圖三十四、實驗組SAMP8小鼠腦部β-類澱粉蛋白沉積情形…...………...…135
甘子能:茶中的多元酚成份(之二)製茶過程中的多元酚類的傳統。食品工業,13(7) : 10(1981)。
呂鋒洲:抗氧化酵素之介紹。自由基生物學及醫學,1: 1-7 (1994)。
李世代:老年醫學的發展與貢獻-從老化研究談起。醫學繼續教育,5(3):287-93 (1995)。
周君蘭:茶中極品-寶珍綠茶-讓您喝出健康與美麗。食品資訊,145:54-5 (1998)。
陳清泉:茶紅質與茶黃質之探討。食品工業,29(12): 7-16(1997)。
夏彩藍和黃青真:茶對消化酵素活性之抑制作用。中國農業化學會誌,27(3): 406 (1989)。
黃中洋:自由基與自由基排除劑,藥學雜誌,12: 130-38 (1996)。
黃村能:釀酒葡萄品種。製酒科技專論彙編,19: 130-44 (1997)。
黃季芳:葡萄酒有關微生物之研究。製酒科技專論彙編,9: 307-19(1987)。
Ahmad N, Feyes DK, Nieminen AL, Agarwal R, Mukhtar H. Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 1997; 89:1881-85.
Ahmad N, M. Hasan. Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev 1999;57: 78-83.
August DA, Landau J, Caputo D, Hong J, Lee MJ, Yang CS. Ingestion of green tea rapidly decreases prostaglandin E2 levels in rectal mucosa in humans. Cancer Epidemiol Biomark Prev 1998;19:501-7.
Bartus RT, Dean RL 3rd, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217: 408-17.
Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid β protein toxicity. Cell 1994;77: 817-27.
Behl C. Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Prog Neurobiol 1999;57: 301-23.
Bonorden WR, Priza MW. Antioxidant nutrients and protection from free radicals, In: Nutr. Toxicol, Kostsonis FN, Mackey M and Hjelle J ed. Raven press. New York, 1994;19-48.
Buring JE, Hennekens CH. Antioxidant vitamins and cardiovascular disease. Nutr Rev 1997;55: 53-60.
Brand MD, Buckingham JA, Esteves TC, Green K, Lambert AJ, Miwa S, Murphy MP, Pakay JL, Talbot DA, Echtay KS. Mitochondrial superoxide and aging: uncoupling-protein activity and superoxide production. Biochem Soc Symp 2004;71: 203-13.
Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998;56:317-33.
Cai YJ, Ma LP, Hou LF, Zhou B, Yang L, Liu ZL. Antioxidant effects of green tea polyphenols on free radical initiated peroxidation of rat liver microsomes. Chem Phys Lipids 2002; 120:109-17.
Cao Z, Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur J Pharmacol 2004;489:39-48.
Chan P, Cheng JT, Tsai JC, Lien GS, Chen FC, Kao PF, Liu JC, Chen YJ, Hsieh MH. Effect of catechin on the activity and geneexpression of superoxide dismutase in cultured rat brain astrocytes. Neurosci Lett 2002;328: 281-4.
Checler F. Processing of β-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 1995;65: 1431-44.
Chen ZP, Schell JB, Ho CT, Chen KY. Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 1998;129:173-9.
Coursin DB, Cihla HP, Will JA, McCreary JL. Adaptation to chronic hyperoxia. Biochemical effects and the response to subsequent lethal hyperoxia. Am Rev Respir Dis 1987;135: 1002-6.
Crespy V, Williamson G. A review of the health effect of green tea catechins in vivo animal models. J Nutr 2004;134: 3431-40.
DeKosky ST, Scheff SW, Markesbery WR. Laminar organization of cholinergic circuits in human frontal cortex in Alzheimer’s disease and aging. Neurology 1985;35:1425-30.
Elaine R, Peskind MD. Neurobiology of Alzheimer’s disease. J Clin Psychiatry 1996;57: 5-8.
Emre M, Geula C, Ransil BJ, Mesulam MM. The acute neurotoxicity and effects upon cholinergic axons of intracerebrally injected β-amyloid in the rat brain. Neurobiol of Aging 1992;13: 553-9.
Farr SA, Flood JF, Morley JE. The effect of cholinergic, GABAergic, serotonergic, and glutamatergic receptor modulation on posittrial memory processing in the hippocampus. Neurobiol Learn Mem. 2000; 83: 173-7.
Flood JF, Morley JE. Age-related changes in foodshock avoidance acquisition and retention in senescence accelerated mouse (SAM). Neurobiol Aging 1993;14: 153-7.
Flood JF, Harris FJ, Morley JE. Age-related changes in hippocampal drug facilitation of memory processing in SAMP8 mice. Neurobiol Aging. 1996;17: 15-24.
Flood JF, Morley JE. Early onset of age-related impairment of aversive and appetitive learning in the SAM-P/8 mouse. J Gerontol 1992;47: B52-9.
Fu Y, Zheng S, Lu SC, Chen A. Epigallocatechin-3-gallate inhibits growth of activated hepatic stellate cells by enhancing the capacity of glutathione synthesis. Mol Pharmacol 2008; 73:1465-73.
Fukuzawa K, Inokami Y, Tokumura A, Terao J, Suzuki A. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and alpha-tocopherol in liposomes. Lipids 1998; 33:751-6.
Fujiki H, Suganuma M, Okabe S, Sueoka N, Komori A, Sueoka E, Kozu T, Tada Y, Suga K, Imai K, Nakachi K. Cancer inhibition by green tea. Mutat Res 1998;402: 307-10.
Gilbert DL. Fifty years of radical ideas. Ann N Y Acad Sci 2000;899: 1-14.
Giblin FJ, Reddan JR, Schrimscher L, Dziedzic DC, Reddy VN. The relative roles of the glutathione cycle and catalase in the detoxification of H2O2 by cultured rabbit lens epithelial cells. Exp Eye Res 1990; 50:795-804.
Glenner SH, Wong CW. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120:885-90.
Gottlieb K, Zarling EJ, Mobarhan S, Bowen P, Sugerman S. Beta-carotene decreases markers of lipid peroxidation in healthy volunteers. 1993; Nutr Cancer 1993;19:207-12.
Guo Q, Zhao B, Li M, Shen S, Xin W. Studies on protective mechanisms of four components of green tea polyphenols against lipid-peroxidation in synaptosomes. Biochim Biophys Acta 1996;1304:210-22.
Guan ZZ, Miao H, Tian JY, Unger C, Nordberg A, Zhang X. Suppressed expression of nicotinic acetylcholine receptors by nanomolor beta-amyloid peptides in PC12 cells. J Neural Transm 2001;108: 1417-33.
Halliwell, B., Gutteridge, J. M. C. & Cross, E. E. (1992) Free radicals, antioxidants and human disease. J Lab Clin Med 119: 598-620.
Hamauzu Y, Yasui H, Inno T, Kume C, Omanyuda M. Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J Agric Food Chem 2005;53:928-34.
Hara Y. Effects of dietary tea catechins on alpha-tocopherol levels, lipid peroxidation, and erythrocyte deformability in rats fed on high palm oil and perilla oil diets. Biol Pharm Bull 1993;16:1156-9.
Hara Y, Honda M. The inhibition of a-amylase by tea polyphenols. Agric Biol Chem 1990;54:1939-45.
Hosokawa, M. Grading score system; a method of evaluation of the degree of senescence in senescence-accelerated mouse (SAM). The SAM model of senescence. 1994;23-28.
Ikeda I. Multifunctional effects of green tea catechins on prevention of the metabolic syndrome. Asia Pac J Clin Nutr 2008;1:273-4.
Ieda I, Imasato Y, Sasaki E, Nakayama M, Nagao H, Takeo T, Yayabe F, Sugano M. Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim Biophys Acta 1992; 1127:141-6.
Ikigai H, Nakae T, Hara Y, Shimamura T. Bactericidal catechins damage the lipid bilayer. Biochim Biophys Acta 1993;1147:132-6.
Iwatsubo, T., Odaka, A., Suzuki, N., Mizusawa, H., Nukina, N., Ihara, Y. Visualization of A beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 1994;13:45-53.
Jialal I, Vega GL, Grundy SM. Physiologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein. Atherosclerosis. 1990;82:185-91.
Keys SA, Zimmerman WF. Antioxidant activity of retinal, glutathione, and taurine in bovine photoreceptor cell membranes. Exp Eye Res 1999;68:693-702.
Katzman R, Jackson JE. Alzheimer disease: basic and clinical advances. J Am Geriatr Soc 1991;39:516-25.
Kawanishi S, Hiraku Y, Oikawa S. Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutat Res 2001;488:65-76.
Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 2002;13:572-84.
Khan SA, Priyamvada S, Arivarasu NA, Khan S, Yusufi AN. Influence of green tea on enzymes of carbohydrate metabolism, antioxidant defense, and plasma membrane in rat tissues. Nutrition 2007;23:687-95.
Kim HG, Hong SM, Kim SJ, Park HJ, Jung HI, Lee YY, Moon JS, Lim HW, Park EH, Lim CJ. Age-related changes in the activity of antioxidant and redox enzymes in rats. Mol Cells 2003;16:278-84.
Kimura Y and Okuda H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J Nutr 2001;131: 8144-9.
Kishido T, Unno K, Yoshida H, Choba D, Fukutomi R, Asahina S, Iguchi K, Oku N, Hoshino M. Decline in glutathione peroxidase activity is a reason for brain senescence: consumption of green tea catechin prevents the decline in its activity and protein oxidative damage in ageing mouse brain. Biogerontology 2007;8:423–430.
Kubo J, Lee JR, Kubo I. Anti-Helicobacter pylori agents from the cashew apple. J Agric Food Chem 1999;47:533-7.
Kumar VB, Farr SA, Flood JF, Kamlesh V, Franko M, Banks WA, Morley JE. Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein an reverses deficits in learning and memory in aged SAMP8 mice. Peptides 2000;21: 1769-75.
Lambrechts MG, Pretorius IS. Yeast and its importance to wine
aroma - a review. S Afr J Enol Vitic 2000;21:97-129.
Levine M, Rumsey SC, Daruwala R, Park JB, Wang Y. Criteria and recommendations for vitamin C intake. JAMA 1999;281: 1415-23.
Lotito SB, Fraga CG. (+)-Catechin prevents human plasma oxidation. Free Radic Biol Med 1998;24:435-41.
Lotito SB and Frei B. Relevance of apple polyphenols as antioxidants in human plasma: contrasting in vitro and in vivo effects. Free Radic Biol Med 2004;36:201-11.
Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 1995;45: 1594-601.
Matsugo S, Kitagawa T, Minami S, Esashi Y, Oomura Y, Tokumaru S, Kojo S, Matsushima K, Sasaki K. Age-dependent changes in lipid peroxide levels in peripheral organs, but not in brain, in senescence-accelerated mice. Neurosci Lett 2000;278:105-8.
Mark RJ, Hensley K, Butterfield DA, Mattson MP. Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci. 1995;15: 6239-49.
Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1997;23: 134-47.
McCann MJ, Gill CI, O’ Brien G, Rao JR, McRoberts WC, Hughes P, McEntee R, Rowland IR. Anti-cancer properties of phenolics from apple waste on colon carcinogenesis in vitro. Food Chem Toxicol. 2007;45:1224-30.
Miyamoto M. Characteristics of age-related behavioral changes in senescence-accelerated mouse SAMP 8 mice. In: Takeda T ed. The SAM model of senescence. Amsterdam: Excerpta Medica, Elsevier Science BV, 1994;61-6.
Mehlhorn RJ, Cole G. The free radical theory of aging: a critical review. Adv Free Radic Biol Med 1985;1: 165.
Morley JE. The SAMP8 mouse: a model of Alzheimer disease? Biogerontology 2002;3: 57-60.
Morley JE, Banks WA, Kumar VB, Farr SA. The SAMP8 mouse as a model for Alzheimer disease: studies from Saint Louis University. Int Congr Ser. 2004;1260: 23-8.
Mukhtar H, Ahmad N. Green tea in chemoprevention of cancer. Toxicol Sci 1999;52:111-7.
Miura S, Watanabe J, Tomita T, Sano M, Tomita I. The inhibitory effects of tea polyphenols (flavan-3-ol derivatives) on Cu2+ mediated oxidative modification of low density lipoprotein. Biol Pharm Bull 994;17:1567-72.
Nakane H, Ono K. Differential inhibitory effects of some catechin derivatives on the activities of human immunodeficiency virus reverse transcriptase and alular deoxyribonudeic and ribonucleic acid polymerases. Biochemistry 1990;29;2841-5.
Nanjo F, Honda M, Okushio K, Matsumoto N, Ishigaki F, Ishigami T, Hara Y. Effects of dietary tea catechins on alpha-tocopherol levels, lipid peroxidation, and erythrocyte deformability in rats fed on high palm oil and perilla oil diets. Biol Pharm Bull 1993;16:1156-9.
Newton RK, Ducore JM, Sohal RS. Relationship between life expectancy and endogenous DNA single-strand breakage, strand break induction and repair in the adult housefly. Mech Ageing Dev 1989;49:259-70.
Nie G, Jin C, Cao Y, Shen S, Zhao B. Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch Biochem Biophys 2002;397:84-90.
Oguni I, Nasu K, Yamomoto S, Nomura T. On the antitumor activity of fresh green tea leaf. Agr Biol Chem 1988;52:1879-80.
Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y. Melatonin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neuroniol Aging 2002;23: 639-44.
Olariu A, Tran MH, Yamada K, Mizuno M, Hefco V, Nabeshima T. Memory deficits and increased emotionality induced by beta-amyloid (25-35) are correlated with the reduced acetylcholine release and altered phorbol dibutyrate binding in the hippocampus. J Neural Transm 2001;108:1065-79.
Osada K, Suzuki T, Kawakami Y, Senda M, Kasai A, Sami M, Ohta Y, Kanda T, Ikeda M. Dose-dependent hypocholesterolemic actions of dietary apple polyphenol in rats fed cholesterol. Lipids 2006;41:133-9.
Osada K, Funayama M, Fuchi S, Sami M, Ohta Y, Kanda T, Ikeda M. Effects of dietary procyanidins and tea polyphenols on adipose tissue mass and fatty acid metabolism in rats on a high fat diet. J Oleo Sci 2006;55:79-89.
Palomero J, Galán AI, Muñoz ME, Tuñón MJ, González-Gallego J, Jiménez R. Effects of aging on the susceptibility to the toxic effects of cyclosporine A in rats. Free Radic Biol Med 2001;30: 836-45.
Pierre LT, Nicolas L. Wine phenolics: contribution to dietary intake and bioavailability. Food Research Int 2000;33:461-7.
Quine SD, Raghu PS. Effects of (-)-epicatechin, a flavonoid on lipid peroxidation and antioxidants in streptozotocin-induced diabetic liver, kidney and heart. Pharmacol Rep 2005;57:610-5.
Reed G, Nagodawithana TW. International investment motivations of U.S. wineries. Int Food Agri Bus Manage Rev 1991;2:47-62.
Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005;25:8807-14.
Rice-Evan CA, Miller N, Paganga G. Structure antioxidant activity relationship of flavonoids and phenolic acid. Free Radical Biol Med 1996;20: 933-66.
Rice-Evans, CA, Miller NJ, Paganga G. Antioxidant properties of phenolic compounds. Trends Plant Sci 1997;2:152-9.
Roger BB, Vernon LS, Linda FB, Ralph EK. Principles and Practices of Winemaking 1996;13-64.
Sanderson GW. The chemistry of tea and tea manufacturing. Adv Phytochem. 1972;5: 247-55.
Sayama K, Lin S, Zheng G, Oguni I. Effects of green tea on growth, food utilization and lipid metabolism in mice. In Vivo 2000;14: 481-4.
Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 2005;308:1909-11.
Shimada A, Hosokawa M, Ohta A, Akiguchi I, Takeda T. Localization of atrophy-prone areas in the aging mouse brain: comparison between the brain atrophy model SAM-P/10 and the normal control SAM-R/1. Neuroscience 1994;59:859-69.
Skrzydlewska E, Ostrowska J, Stankiewicz A, Farbiszewski R. Green tea as a potent antioxidant in alcohol intoxication. Addict Biol 2002;7:307-14.
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FG, Provenzano MD, Fujimoto EKm Goeke NM, Olson BJ, Klenl DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150:76-85.
Sohal RS, Allen RG. Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol 1990; 25: 499-522.
Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P. Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci 2008;26:217-23.
Stadtman, E.R. The status of oxidatively modified proteins as a marker of aging. In: Esser, K., Martin, G.M. (Eds.), Molecular Aspects of Aging. John Wiley and Sons, Chichester. 1995;129–143.
Suganuma M, Okabe S, Kai Y, Sueoka N, Sueoka E, Fujiki H. Synergistic effects of (-)-epigallocatechin gallate with (-)-epicatechin, sulindac, or tamoxifen on cancer preventive activity in the human lung cancer cell line PC-9. Cancer Res 1999;59:44-7.
Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T. A new murine model of accelerated senescence. Mech Ageing Dev 1981;17: 183-94.
Takeda T, Hosokawa M, Higuchi K. Senescence-accelerated mouse (SAM): a novel murine model of accelerated senescence. J Am Geriatr Soc 1991; 39:911-9.
Takeda T. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging 1999;20:105–10.
Unno T, Tago M, Suzuki Y, Nozawa A, Sagesaka YM, Kakuda T, Egawa K, Kondo K. Effect of tea catechins on postprandial plasma lipid responses in human subjects. Brit J Nutr 2005;93:543-7.
van het Hof KH, Wiseman SA, Yang CS, Tijburg LB. Plasma and lipoprotein levels of tea catechins following repeated tea consumption. Proc Soc Exp Biol Med 1999;220:203-9.
Vayalil PK, Elmets CA, Katiyar SK. Treatment of green tea polyphenols in hydrophilic cream prevents UVB-induced oxidation of lipids and proteins, depletion of antioxidant enzymes and phosphorylation of MAPK proteins in SKH-1 hairless mouse skin. Carcinogenesis 2003;24:927-36.
Veeriah S, Hofmann T, Glei M, Dietrich H, Will F, Schreier P, Knaup B, Pool-Zobel BL. Apple polyphenols and products formed in the gut differently inhibit survival of human cell lines derived from colon adenoma (LT97) and carcinoma (HT29). J Agric Food Chem 2007;18;55:2892-900.
Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer''s and Parkinson''s diseases. J Nutr Biochem 2004;15:506-16.
Wüllner U, Löschmann P-A, Schulz JB, Schmid A, Dringen R, Eblen F, Turski L, Klockgether T. Glutathione depletion potentiates MPP+-toxicity in nigral dopaminergic neurons. Neuroreport 1996;7:921-3.
Yagi K, Yoshino K, Komura S. Lipid peroxide level in the senescence- accelerated mouse. J Clin Biochem Nutr 1988;5: 21-7.
Yang CS, Janelle ML. Effect of tea consumption on nutrition and health. J Nutr 2000;130: 2409-12.
Yang CS. Tea and health. Nutrition 1999;15: 946- 48.
Yatin SM, Yatin M, Varadarajan S, Ain KB, Butterfield DA. Role of spermine in amyloid beta-peptide-associated free radical-induced neurotoxicity. J Neurosci Res 2001;63:395-401.
Yen GC, Chen HY. Relationship between antimutagenic activity and major components of various teas. Mutagenesis 1996;11:37-41.
Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GI, Nishioka I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2 picrylhydrazyl radical. Biochem Pharmacol 1998;56:213-22.
Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001;54:176-86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top