(3.238.96.184) 您好!臺灣時間:2021/05/12 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃思萍
研究生(外文):Si-Ping Huang
論文名稱:芝麻粕萃取物及其發酵物對老化促進小鼠抗氧化狀態及學習記憶之探討
論文名稱(外文):Effect of extracted and fermented sesame meal on antioxidative status and learning memory ability in senescence accelerated Mice
指導教授:王銘富王銘富引用關係
指導教授(外文):Ming-Fu Wang
學位類別:碩士
校院名稱:靜宜大學
系所名稱:食品營養研究所
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2008/09/
畢業學年度:97
語文別:中文
論文頁數:126
中文關鍵詞:老化促進小鼠芝麻粕抗氧化學習記憶
外文關鍵詞:antioxidative statussesame meallearning memory
相關次數:
  • 被引用被引用:2
  • 點閱點閱:252
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究顯示,芝麻含有獨特之lignans類化合物而具有抗氧化及抗發炎等作用。國內芝麻主要用以生產芝麻油,然而焙炒後之芝麻粕具苦焦味且蛋白質嚴重變性,少有加工方面之利用。動物實驗中顯示其可降低氧化壓力,活性成分可能來自於lignan glycosides經消化水解釋出之lignans。經去醣基之芝麻粕發酵物是否較易吸收並增強其生理效用,進而達到抗氧化及延緩衰老之效用則尚待討論。本研究目的在探討芝麻粕萃取物及其發酵物對老化促進小鼠抗氧化狀態及學習記憶能力之影響。實驗以3、6月齡雄性及雌性SAMP8 (senescence-accelerated mouse) 小鼠為對象,隨機分為對照組及實驗組,實驗組分為芝麻粕萃取物組 (0.48、2.4、12.0 mg ST/day)及芝麻粕發酵物組 (1.2、6.0 mg SA/day)。共6組,每組20隻,實驗為期12週。實驗期間記錄攝食量、體重變化及老化指數評估;在行為方面進行活動量試驗(open field activity test),並以單次被動迴避試驗(single-trial passive avoidance test)及主動迴避試驗(active shuttle avoidance test)評估學習記憶能力。動物犠牲後,採血分析血液生化值,檢測肝臟超氧歧化酶(SOD)、麩胱苷肽過氧化酶(GPx)、觸酶(catalase)活性;丙二醛(MDA)、蛋白質羰基 (protein carbonyls) 及總含硫化合物 (total thiol)之含量。另以組織切片觀察腦部類澱粉蛋白(Aβ)沉積情況。結果顯示,實驗各組之攝食量、體重變化量及活動量,並無顯著差異。在老化指數評估方面,相較於對照組,3、6月齡雄性及雌性小鼠實驗組之老化總分皆顯著較低(p<0.05);而實驗組中,芝麻粕發酵物組又低於芝麻粕萃取物組。於學習記憶方面,經主動迴避試驗實驗及單次被動迴避試驗發現,實驗組均較對照組有較佳的學習記憶能力 (p<0.05)。在抗氧化酵素方面,芝麻粕發酵物皆能顯著增加SOD、Catalase、GPx活性、Total thiol濃度 (p<0.05);並降低肝臟中MDA、protein carbonyl之含量(p<0.05)及腦部類澱粉蛋白的沉積百分比(p<0.05)。綜合上述結果顯示,芝麻粕發酵物能改善SAMP8小鼠之學習記憶能力、提升體內抗氧化防禦系統,並降低脂質、蛋白質之過氧化及腦部類澱粉蛋白(Aβ)總沉積量,且效果優於芝麻粕萃取物。至於芝麻粕發酵物所造成影響之可能機轉則有待進一步的探討。
Sesame contains abundant lignans which are well known to have antioxidative and anti-inflammation activity. In Taiwan, most of the sesame oil is produced by roasting and pressing of the sesame seeds. After roasting, the sesame meal is bitter tasted and the protein was denatured. Therefore, the sesame meal is generally used as feeds or fertilizers. In vivo studies show that dietary sesame meal decreases oxidative stress in animals, perhaps due to the antioxidative activity of lignans, which are hydrolyzed from lignan glycosides by β-glucosidase in the gastrointestinal tract. However, whether the fermented sesame meal could be easier to absorb, enhance the physiological function, then promote the antioxidant system and anti-aging are still unknown.
The purpose of this study was to examine the effect of extracted and fermented sesame meal on learning memory ability and antioxidative status in senescence-accelerated mice. 3 and 6-month-old senescence-accelerated male and female mice were divided into six groups (n=20 per group) : control group, extracted sesame meal (0.48、2.4、12.0 mg ST/day) and fermented sesame meal (1.2、6.0 mg SA/day). During experimental period, body weight, food intake, aging score and open flied activity were recorded for each group of mice. Single-trail passive avoidance test and active shuttle avoidance test were performed in the experiment. The biochemical parameters of serum were analyzed after sacrificed. Examine the antioxidative ability of liver. The β-amyloid protein (Aβ) deposition of brain. The results showed that there were no significant differences in the food intake, body weight and locomotion among six groups. The aging score of experimental groups were significantly lower than the control group in the 3 and 6-month-old mice (p&lt;0.05). The SA groups better than the ST groups in aging score. The experimental groups showed significantly better learning memory ability in Single-trail passive avoidance test and active shuttle avoidance test (p&lt;0.05). The SA group showed higher SOD, catalase, GPX, and total thiol concentration than the control group(p&lt;0.05). The MDA and protein carbonyl concentration in the SA groups were significantly lower than the control group (p&lt;0.05). The β-amyloid protein (Aβ) deposition of brain in SA groups were significantly better than control (p&lt;0.05).In summary, the supplement of fermented sesame meal (SA) could improve the learning and memory ability, promote the antioxidative defense system and reduce the lipid peroxidation, protein peroxidation and brain pathological changes. Moreover, the effects were better than the extracted sesame meal (ST). However, the mechanisms of the effects of fermented sesame meal (SA) in still unknown and need further study.
目錄
頁次
中文摘要………………………………………………………………………..I
英文摘要……………………………………………………………………...III
目錄 …………………………………………………………….…………….V
表目錄………………………………………………………...……………VIII
圖目錄……………………………………………………………….…..IX

第一章 前言………………………………………………………………….1
第二章 文獻回顧…………………………………………………………….4
   第一節 芝麻………………………………………………………….4
     壹、芝麻簡介……………………………………………………..4
     貳、芝麻成分……………………………………………………..4
   第二節 芝麻粕之lignans及其生理功能…………………………….7
壹、芝麻粕之lignans……………………………………………..7
貳、sesaminol glycosides之吸收代謝……………………..…….9
參、sesaminol glycosides及其代謝物sesaminol之生理功能….9
一、抗氧化…………………………………………………...9
      二、脂質代謝……………………………………………….10
     三、癌症…………………….………………………………10
       四、對腦神經之影響…….…………………………….11
第二節 自由基與活性氧…………………………………………...12
  壹、自由基的來源…………………………………………….12
貳、氧化壓力與人類疾病之關係................................................13
一、氧化壓力與老化……………………….………………13
二、氧化壓力對腦部之影響……………………………….14
  參、體內抗氧化防禦系統…………………...……………….17
    一、酵素性抗氧化劑……………………………………….17
二、非酵素性抗氧化劑…………………………………….19
第三節 學習與記憶………………………………………………...22
壹、學習與記憶的形成………………………………….…….…22
貳、類澱粉蛋白與學習記憶…………………………….….……22
一、類澱粉蛋白之探討………………………………….….23
第四節 老化促進小鼠……………………………………………...24
  壹、老化促進小鼠來源及特徵……………………………….…24
  貳、老化與阿茲海默症……………………………………….…24
  參、老化指數…………………………………………………….25
第三章 材料與方法………………………………………………………...30
   第一節 實驗動物…………………………………………………...30
   第二節 實驗材料…………………………………………………...31
   第三節 實驗方法與步驟…………………………………………...35
     壹、實驗流程…………………………………………………….35
     貳、活動量測試………………………………………………….37
     參、老化指數評估……………………………………………….38
     肆、學習記憶測試……………………………………………….38
       一、單次被動迴避試驗………………….…………………38
       二、主動迴避試驗………………………………………….39
     伍、血液生化學分析……………………………………….……42
     陸、肝臟抗氧化能力分析………………………………….……42
       一、超氧歧化酶……………………………………….……44
       二、觸酶…………………………………………………….45
       三、麩胱苷肽過氧化酶…………………………………….47
       四、總含硫化合物………………………………………….48
       五、丙二醛………………………………………………….49
       六、蛋白質羰基……………………………….……………51
     柒、腦部病理切片觀察……………………………………….53
   第四節 統計分析…………………………………………………...62
第四章 結果與討論………………………………………………………...63
   第一節 體重及攝食量……………………………………………...63
   第二節 活動量……………………………………………...............63
   第三節 老化指數……………………………………………...........68
   第四節 學習與記憶能力…………………………...………………73
     壹、單次被動迴避試驗……………………….…………………73
     貳、主動迴避試驗……………………………………………….76
   第五節 器官重量…………………………………………………...79
   第六節 血液生化學分析…………………………………………...79
   第七節 肝臟抗氧化能力分析……………………………………...85
     壹、超氧歧化酶………………………………………………….85
     貳、觸酶………………………………………………………….89
     參、麩胱苷肽過氧化酶………………………………………….92
     肆、總含硫化合物………..……………………………………...95
     伍、丙二醛…………………………………………………..…...99
     陸、蛋白質羰基………………………………………………...104
   第八節 腦部β-類澱粉蛋白之沉積……………...………………..109
第五章 結論…………………………………………….………...……..114
第六章 參考文獻……………………………………….…………………115

表目錄
                         頁次
表一、芝麻之營養成分………………………………………………………...6
表二、氧所衍生之自由基對人體可能的傷害…………………….…………15
表三、老化指數判定標準………………………………………….…………27
表四、SAM之病理生物學表型…………………………………….………...29
表五、實驗材料之成分分析.…………………………………………...…….32
表六、實驗飼料組成………………………………………………….………34
表七、3、6月齡雄性SAMP8小鼠餵食不同飼料12週後體重及攝食量
之變化………………………………………………………………………...64
表八、3、6月齡雌性SAMP8小鼠餵食不同飼料12週體重及攝食量
之變化…………………………………………………………………….…..65
表九、3、6月齡雄性SAMP8系小鼠餵食不同飼料11週後之活動量………66
表十、3、6月齡雌性SAMP8系小鼠餵食不同飼料11週後之活動量………67
表十一、3月齡雄性SAMP8系小鼠餵食不同飼料11週後之老化指數……69
表十二、3月齡雌性SAMP8系小鼠餵食不同飼料11週後之老化指數……70
表十三、6月齡雄性SAMP8系小鼠餵食不同飼料11週後之老化指數……71
表十四、6月齡雌性SAMP8系小鼠餵食不同飼料11週後之老化指數……72
表十五、3、6月齡雄性SAMP8小鼠餵食不同飼料12週後器官重量..……..81
表十六、3、6月齡雌性SAMP8小鼠餵食不同飼料12週後器官相對重量....82
表十七、3、6月齡雄性SAMP8小鼠餵食不同飼料12週後對其血液生化值之影響………………………………………………………………...……83
表十八、3、6月齡雌性SAMP8小鼠餵食不同飼料12週後其對血液生化值之影響……………………………………………………………………...84
表十九、3、6月齡雄性SAMP8小鼠餵食不同飼料12週後其腦部β-類澱粉蛋白沉積之比較………………………………….………………….……111
表二十、3、6月齡雌性SAMP8小鼠餵食不同飼料12週後其腦部β-類澱粉蛋白沉積之比較……………………………………….…………………112

圖目錄
                           頁次
圖一、芝麻lignans 及lignan glycosides 結構圖..…………………………….8
圖二、ROS和氧化壓力造成老化之機制………………….…………….……16
圖三、動物體內抗氧化物質之防禦系統………………………….…………21
圖四、SAMP8小鼠記憶缺損之病理特徵……………………………………26
圖五、實驗流程圖…………………………………………………………….36
圖六、活動量裝置圖………………………………………………………….37
圖七、單次被動迴避試驗裝置圖…………………….………………………41
圖八、主動迴避試驗裝置圖…………………………….……………………41
圖九、病理組織切片流程圖……………………………..…………………..60
圖十、腦部Brain III切面圖及其含括部位…………………………………...61
圖十一、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後經單次被動迴避試驗之滯留時間………………………………………………………...74
圖十二、3、6月齡雌性SAMP8系小鼠餵食不同飼料12週後經單次被動迴避試驗之滯留時間………………………………………………………...75
圖十三、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後經主動迴避試驗之逃脫反應次數………………………………………………………...77
圖十四、3、6月齡雌性SAMP8系小鼠餵食不同飼料12週後經主動迴避試驗之逃脫反應次數………………………………………………………...78
圖十五、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟超氧歧化酶活性…………………………………………………………………...87
圖十六、3、6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟超氧歧化酶活性…………………………………………………………………...88
圖十七、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟觸酶活性…………………………………………………………………...………90
圖十八、3、6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟觸酶活性…………………………………………………...………………………91
圖十九、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟麩胱苷肽過氧化酶活性……………………….…….…….………………………93
圖二十、3、6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟麩胱苷肽過氧化酶活性………………………………….…………..……………94
圖二十一、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟總含硫化合物濃度…………….…………………………………..……………96
圖二十二、3、6月齡雌性SAMP8系小鼠餵食不同劑量12週後之肝臟總含硫化合物濃度…………….………………………………………………97
圖二十三、比較3、6月齡雄性與雌性SAMP8系小鼠餵食不同劑量12週後之肝臟總含硫化合物濃度……….………………………………………98
圖二十四、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟丙二醛濃度………………….…………………………………………………101
圖二十五、3、6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟丙二醛濃度………………….…………………………………………………102
圖二十六、比較3、6月齡雄性與雌性SAMP8系小鼠餵食不同飼料12週後之肝臟丙二醛濃度…….…………………………………………………103
圖二十七、3、6月齡雄性SAMP8系小鼠餵食不同飼料12週後之肝臟蛋白質羰基濃度…………………………………..………...…………………105
圖二十八、3、6月齡雌性SAMP8系小鼠餵食不同飼料12週後之肝臟蛋白質羰基濃度…………………………………………………….…………106
圖二十九、比較3、6月齡雄性與雌性SAMP8系小鼠餵食不同飼料12週後之肝臟蛋白質羰基濃度……………………………………….…………107
圖三十、SAMP8小鼠腦部β-類澱粉蛋白沉積情形(100X, 200X)……….113
石倩如:芝麻中sesaminol triglucoside萃出物在大鼠吸收代謝及抗氧化活性之探討。台灣大學食品科技研究所碩士論文(2007)。
台灣省政府農林廳。台灣雜糧作物品種圖說。第三輯,台灣省政府農林廳編印(1997)。
竹田俊男: SAMモデル。醫學のあゆみ 188(1):68-74 (1999)。
並木滿夫:芝麻對於加速老化模式老鼠(SAM)之抑制老化效果。日本營養、食糧43,445-449(1990)。
洪秋雅:攝取芝麻對倉鼠脂質代謝之影響。輔仁大學食品營養所碩士論文(2000)。
徐永鑫:芝麻粕中lignans 及lignan glycosides 之分析及抗氧化性探討。台灣大學食品科技研究所博士論文( 2001 )。
康碩芬:芝麻粕lignan glycosides粗萃物對高果糖餵飼大白鼠胰島素阻抗的影響。台灣大學食品科技研究所碩士論文(2001)。
曾志正:芝麻種子在生物技術上的應用。科會發展月刊,29:653-657(2001)。
農業委員會台灣農家要覽增修訂三版策劃委員會。台灣農家要覽-農作篇(一)。行政院農業委員會(2005)。
賴怡君、張肇麟、梁佳玟、朱燕華:芝麻木酚素萃取物之抗氧化性與降低血清脂質之作用。台灣農業化學與食品科學,41: 10-15 (2003)。
賴 怡 君、梁 佳 玟、范 少 怡、朱 燕 華:芝麻木酚素對倉鼠活體內氧化狀態及脂質代謝之影響。台灣農業化學與食品科學,43: 133-135(2004)。
謝衣鵑、梁佳玟、周于嵐、林福文、朱燕華:芝麻木酚素醣基水解菌株的篩選及其芝麻粕發酵物之乙醇粗萃物之生理活性效應。台灣農業化學與食品科學,44: 167-172(2006)。
Adams DO, Hamilton TA. Macrophages as destructive cells in host defense. In: Gallin, J. I., Goldstein, I. M., Synderman, R., eds. Inflammation: basic principles and clinical correlates. New York: Raven 1992;637-62.
Akiguchi I, Yagi H, Ueno M, Takemura M, Kitabayashi T, Seriu N, Kawamata T, Nakamura S, Shimada A, Takeda T. Age related morphological changes in the brain of senescence-accelerated mouse (SAMP8). In The SAM Model of Senescence, Proceeding of the First International Conference on Senescence. 1994;67-72.
Ashakumary L, Rouyer I, Takahashi Y, Ide T, Fukuda N, Aoyama T, Hashimoto T, Mizugaki M, Sugano M. Sesamin, a sesame lignan, is a potent inducer of hepatic fatty acid oxidation in the rat. Metab Clin Exp 1999;48:1303-13.
Behl C, Davis J, Lesley R, Schbert D. Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem Biophys Res Commun 1992;186:944-50.
Bonorden WR, Pariza MW. Antioxidant nutrients and protection from free radicals, In: Nutr. Toxicol, Kostsonis FN, Mackey M and Hjelle J ed. Raven press. New York. 1994; 19- 48.
Braak H, Braak E. Neuropathological staging of Alzheimer’s-related changes. Acta Neruopathol 1991;82:239-59.
Braak E, Bohl J, Bratzke H. Evolution of Alzheimer’s disease related cortical lesions. J Neural Transm 1998;54:97-106.
Chow CK. Vitamin E and oxidative stress. Free Rad Biol Med 1991;11:215-32.
Cui K, Luo X, Xu K, Murth MRV. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:771- 99.
Elaine R, Peskind MD. Neurobiology of Alzheimer’s disease. J Clin Psychiatry 1996;57: 5-8.
Farr SA, Flood JF, Moley JE. The effect of cholinergic, GABAergic, serotonergic, and glutamatergic receptor modulation on posittrial memory processing in the hippocampus. Neurobiol Learn Mem 2000; 83: 173-7.
Farr SA, Poon HF, Dogrukol-AK D, Drake J, Banks WA, Euerman E, Butterfie DA, Morley JE. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 2003;84: 1173-83.
Finazzi-Agro A, Menichelli A, Persiani M, Biancini G, Delprincipe D. Hydrogen peroxide release from human blood platelets. Biochim Biophys Acta 1982;718: 21-5.
Flood JF, Harris FJ, Morley JE. Age-related changes in hippocampal drug facilitation of memory processing in SAMP8 mice. Neurobiol Aging 1996;17: 15-24.
Flood JF, Morley JE. Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev 1998;22:1-20.
Floyd FA , Carney, JM. Free radical damage to protein and DNA: mechanism involved and relevant observation on brain undergoing oxidative stress. Ann Neurol 1992;32:22-7.
Frei B. Reactive oxygen species and oxidant vitamin:mechenisms of action. Am J Chem Soc 1994;90: 6233-5.
Freir DB, Holscher C, Herron CE. Blockade of long-term potentiation by beta-amyloid peptides in the CA1 region of the rat hippocampus in vivo. J Neurophysiol. 2001;85:708-13.
Fukuda Y, Namiki M. Recent studies on sesame seed and oil. Nippon Shokuhin Kogyo Gakkaishi 1988;35:552-62.
Fukuda Y. Food chemical studies on the antioxidants in sesame seed. Nippon Shokuhin Kogyo Gakkaishi 1990;37:484-92.
Fukuda N, Miyagi C, Zhang L, Jayasooriya AP, Sakono M, Yamamoto K, Ide T, Sugano M. Reciprocal effects of dietary sesamin on ketogenesis and triacylglycerol secretion by the rat liver. J Nutr Sci Vitaminol 1998;44:715-22.
Fukuda N, Zhang L, Kodama M, Sakono M, Ide T, Yamamoto K, Sugano M. Effect of dietary sesamin on metabolic fate of an exogenous linolelaidic acid in perfused rat liver. J Nutr Sci Vitaminol 1999;45:437-8.
Ghiso J, Frangione B. Amyloidosis and Alzheimer’s disease. Adv Drug Deliv Rev 2002;54:1539-51.
Gu JY, Wakizono Y, Taujita A, Lim BO, Nonaka M, Yamada K, Sugano M. Effects of sesamin and α-tocopherol, individually or in combination, on the polyunsaturated fatty acid metabolism, chemical mediator production, and immunoglobulin levels in Sprague-Dawley rats. Biosci Biotech Biochem 1995; 59:2198-202.
Guan ZZ, Miao H, Tian JY, Unger C, Nordberg A, Zhang X. Suppressed expression of nicotinic acetylcholine receptors by nanomolor beta-amyloid peptides in PC12 cells. J Neural transm Gen Sect 2001;108: 1417-33.
Halliwell B, Gutteride JMC. Role of free radicals and catalytic metal ions in human diaease: an overview. Methods Enzymol 1990;186: 1-85.
Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev 1994;52: 253-65.
Halliwell B. Antioxidants in human health and disease. Annu Rev Nutr 1996;16:33-50.
Hirose N, Inoue T, Nishihara K, Sugano M, Akimoto K, Shimizu S, Yamada H. Inhibition of cholesterol absorption and synthesis in rats by sesamin. J Lipid Res 1991;32:629-38
Hosokawa M. A high oxidative status accelerates senescence and aggravates age-dependent disorders in SAMP8 strains of mice. Mech Ageing Dev 2002;123:1533-61.
Hu CC, Hsiao CH, Huang SY, Fu S., Lai CC, Homg TM, Chen HH, Lu FJ. Antioxidant activity of fermented soybean extract. J Agric Food Chem 2004;52: 5735-9.
Jocob RA. Nutrition, health and antioxidants. INFORM. 1994;5: 1271-5.
Jacob RA, Burri B. Oxidative damage and defense. Am J Clin Nutr 1996;63: 985s-90s.
Ju TC, Chen SD, Liu CC, Yang DI. Protective effects of S-nitrosoglutathione against amyloid beta-peptide neurotoxicity. Free radic Biol Med 2005;38:938-49.
Kamal-Eldin A, Pettersson D, Appelqvist L. Sesamin (a compound from sesame oil) increases tocopherol levels in rats fed ad libitum. Lipids 1995;30:499-505.
Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Müller-Hill B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987;325:733-6.
Kang MH, Naito M, Tsujihara N, Osawa T. Sesamolin inhibits lipid peroxidation in rat liver and kidney. J Nutr 1998;128:1018-22.
Kang MH, Kawai Y, Naito M, Osawa T. Dietary defatted sesame flour decreases susceptibility to oxidative stress in hypercholesterolemic rabbits. J Nutr 1999;129:1885-90.
Kato MJ, Laurence AC, Davin B, Lewis NG. Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochemistry 1998;47:583-91.
Kevin CK, Hannah JZ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007;292: R18–36.
Kim JW, No JK, Ikeno Y, Yu BP, Choi JS, Yokozawa T, Chung HY. Age-related changes in redox status of rat serum. Arch Gerontol Geriatr 2002;34:9-17
Klebanoff SJ. Phagocytic cells: products of oxygen metabolism. In: Gallin, J. I., Goldstein, I. M., Synderman, R. eds. Inflammation: Basic principles and clinical correlates. New York Raven 1988;319-444.
Kumar VB, Farr SA, Flood JF, Kamlesh V, Franko M, Banks WA, Morley JE. Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein an reverses deficits in learning and memory in aged SAMP8 mice. Peptides 2000; 21:1769-75.
Kuriyama K, Murai T. Inhibition effects of lignan glucosides on lipid peroxidation. Nippon Nõgeikagaku Kaishi 1996;70:161-7.
Lee SY, Ha TY, Son DJ, Kim SR, Hong JT. Effect of sesaminol glucosides on β-amyloid-induced PC12 cell death through antioxidant mechanisms. Neurosci Rese 2005;52:330–41.
Lee SY, Son DJ, Lee YK, Lee JW, Lee HJ, Yun YW, Ha TY, Hong JT. Inhibitory effect of sesaminol glucosides on lipopolysaccharide-induced NF-kappaB activation and target gene expression in cultured rat astrocytes. Neurosci Res. 2006;56:204-12. Epub 2006 Jul 13.
Liu J, Mori A. Age-associated changes in superoxide dismutase activity, thiobarbituric acid reactivity and reduced glutathione level in the rain and liver in senescence accelerated mice (SAM): a comparison with ddY mice. Mech Ageing Dev 1993;71: 23-30.
Mark RJ, Hensley K, Butterfield DA, Mattson MP. Amyloid beta-peptide impairs ion-motive ATPase activities:evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J Neurosci 1995;15: 6239-49.
Marx F, Blasko I, Pavelka M, Grubeck-Loebenstein B. The possible role of the immune system in Alzheimer’s disease. Exp Gerontol 1998;33: 871-81.
Masaomi M, Yoshihiro K, Naoki Y, Akinobu N, Takao M, Yuji N, Toshio T. Age-releated changes in learning and memory in the senescence-accelerated mice (SAM). Physiol Behav 1986;38:399-406.
Mehlhorn RJ, Cole G. The free radical theory of aging: a critical review. Adv Free Radic Biol Med 1985;1: 1-65.
Morley JE, Kumar VB, Bernardo AF, Farr SA, Uezu K, Tumosa N, Flood JF. β-Amyloid precursor polypeptide in SAMP8 mice affects learning and memory. Peptides 2000;21:1761-7.
Morley JE. The SAMP8 mouse: a model of Alzheimer disease? Biogerontology 2002;3: 57-60.
Morley JE, Banks WA, Kumar VB, Farr SA. The SAMP8 mouse as a model for Alzheimer disease: studies from Saint Louis University. Int Congr Ser 2004;1260: 23-8.
Namiki M. The chemistry and physiological functions of sesame. Food Rev Int 1995;11: 281-329.
Neuzil J, Gebicki JM, Stocker R. Radical-induced chain oxidation of protein and its inhibition by chain-breaking antioxidants. Biochem J 1993;293: 601-6.
Newton RK, Ducore JM, Sohal RS. Relationship between life expectancy and endogenous DNA single-strand breakage, strand break induction and repair in the adult housefly. Mech Ageing Dev 1989;49: 259-70.
Olariu A, Tran MH, Yamada K, Mizun M, Hefco V, Nabeshima T. Memory deficits and increased emotionality induced by beta-amyloid(25-35) are correlated with the reduced acetylcholine release and altered phorbol dibutyrate binding in the hippocampus. J Neural Transm 2001;108: 1065-79.
Okatani Y, Wakatsuki A, Reiter RJ, Miyahara Y. Melationin reduces oxidative damage of neural lipids and proteins in senescence-accelerated mouse. Neurobiol Aging 2002;23: 639-44.
Osawa T, Yoshida A, Kawakishi S, Yamashita K, Ochi H. Protective role of dietary antioxidants in oxidative stress. In: Oxidative Stress and Aging (Cutler, R. G. and Packer L., eds.). Molecular and Cell Biology Updates, Basel, Switzerland 1995;367-77
Park SY, Bok SH, Jeon SM, Park YB, Lee SJ, Jeong TS, Choi MS. Effect of tutin and tannic acid supplements on cholesterol metabolism in rats. Nutr Res 2002;22: 283-95.
Poon HF, Joshi G, Sultana R, Farr SA, Banks WA, Morley JE, Calabrese V, Butterfield DA. Antisense directed at the Abeta region of APP decreases brain oxidative markers in aged senescence accelerated mice. Brain Res. 2004;1018:86-96.
Rosenzweig MR, Bennett EL. Basic processes and modulatory influences in the stages of memory formation, In: Lynch G, McGaugh JL, Weinberger NM (Eds.), Neurobiology of learning and memory, The Guilford Press, New York 1984;263-88.
Selkoe DJ. Amyloid protein and Alzheimer’s disease. Sci Am 1991;265: 68-71.
Selkoe DJ. The molecular pathology of Alzheimer''s disease. Neuron 1991;6: 487-98.
Sheng HQ, Hirose Y, Hata K, Zheng Q, Kuno T, Asano N, Yamada Y, Hara A, Osawa T, Mori H. Modifying effect of dietary sesaminol glucosides on the formation of azoxymethane-induced premalignant lesions of rat colon. Cancer Letters 2007;246:63–8.
Sies H, Stahl W. Vitamin E and C, β-carotene, and other carotenoids as antioxidante. Am J Clin Nutr 1995;62:1315S–21S.
Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL, Tabaton M, Perry G. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998;70:2212-5.
Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T. A new murine model of accelerated senescence. Mech Ageing Dev 1981;17: 183-94.
Takeda T, Hosokawa M, Higuchi K. Senescence accelerated mouse(SAM): A novel murine model of accelerated senescence. J Am Geriatr Soc 1991;39: 911-9.
Takeda T. Senescence-accelerated mouse (SAM): a biogerontological resource in aging research. Neurobiol Aging. 1999;20:105-10.
Tanzi RE, McClatchey AI, Lamperti ED, Lydia VK, Gusella JF, Neve RL. Proteinase inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer’s disease. Nature 1988; 331: 528-30.
Varadarajan S, Yatin S, Aksenova M, Butterfield A. Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000;130:184-208.
Vaucher E, Aumont N, Pearson D, Rowe W, Poirier J, Kar S. Amyloid beta peptide levels and its effects on hippocampal acetylcholine release in aged, cognitively-impaired and -unimpaired rats. J Chem Neuroanat 2001; 21: 323-7.
Wei X, Zhang Y, Zhou J. Alzheimer''s disease-related gene expression in the brain of senescence accelerated mouse.Neurosci Lett. 1999; 268:139-42.
Yamashita K, Yamada Y, Kitou S, Ikeda S, Abe C, Saarinen NM, Santti R. Hydroxymatairesinol and sesaminol act differently on tocopherol concentrations in rats. J Nutr Sci Vitaminol. 2007;53:393-9.
Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001;54: 176-86.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔