(18.204.227.34) 您好!臺灣時間:2021/05/19 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周秋妏
研究生(外文):Chou-Ciou Wen
論文名稱:基於服飾特徵之資訊檢索研究
論文名稱(外文):A Study on Information Retrieval Using Clothes Characteries
指導教授:方孝華方孝華引用關係廖鴻圖廖鴻圖引用關係
學位類別:碩士
校院名稱:世新大學
系所名稱:資訊管理學研究所(含碩專班)
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:109
中文關鍵詞:資訊檢索搜尋引擎貝葉斯定理服飾分類顯性特徵隱性特徵
外文關鍵詞:Information RetrievalSearch EngineNaïve Bayes ClassifierClothing ClassificationDominant CharacteristicRecessive Characteristic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,網際網路的快速發展,以及網路購物的盛行,越來越多人選擇在網路上購買商品,使用者只需要在購物平台上,輸入商品的相關訊息,透過搜尋引擎的功能,就可以將大量的商品資訊進行篩選,同時改善在傳統購物模式中,所必需要耗費的人力與時間。網路上販售的商品種類眾多,在此,本研究僅針對服飾檢索在搜尋引擎上的效能進行探討。
目前常見的搜尋引擎是以關鍵字進行資料庫比對與查詢。但是,當使用者在面對服飾商品之品牌、款式、用途、特色都難以衡量與界定的時候,該如何判斷出正確的關鍵字呢?因此,本研究提出開發一套服飾專屬的搜尋引擎,主要利用服飾的款式、顏色、材質、製造方法等顯性特徵做為資料比對的基礎。同時,將服飾穿著的季節性、出席場合、適用年齡層等這些常被忽略的隱性特徵,一併列入服飾檢索的考量因素當中,以提升搜尋引擎在服飾檢索上的效能。
In recent years, the development of the internet and the behavior of network
purchasing have been growing up fast. They become a most common hobby for
people. For users, all they need to do is input the relevant product information at the
connective platform, numbers of data will be released in order by searching server.
The most of important thing is the better function of this searching server is different
from the traditional mold which needs to spend time and manpower for purchasing.
Thus, we here would like to look into how to extend the efficiency of searching server
and particular about clothing items.
At the present, the most common search engines adopt keywords to compare and
query with the database. However, the concern is how to judge the correct keywords
when users have difficulties to define the brand, style, purpose, and specialty?
Therefore, our research purposes an exclusive searching mold for clothing items. The
major subject is to use the points of dominant characteristics as style, color, material,
manufacturing for comparison. In the meanwhile, we second consider the recessive
characteristics as dress in seasonality, clothing for special occasions, applicable to the
age level, etc. which often neglected as well. As per above consideration, that would
boost the search engine performance of clothing retrieval.
誌謝......................................I
中文摘要......................................II
英文摘要......................................III
目錄......................................IV
圖目錄......................................VI
表目錄......................................VIII
第一章 緒論......................................1
1.1 研究背景......................................2
1.2 研究動機......................................3
1.2.1 現有網路搜尋引擎作法......................................3
1.2.2 網路搜尋引擎的潛在問題......................................3
1.3 研究目的......................................5
1.4 研究範圍......................................6
第二章 文獻探討......................................7
2.1 臺灣服飾的演進......................................7
2.2 服飾分類......................................7
2.2.1 古代服飾分類......................................8
2.2.2 現代服飾分類及定義的標準......................................11
2.2.2.1 服飾專有名詞的標準定義......................................11
2.2.2.2 現代服裝款式類別......................................13
2.2.2.3 國際服飾標準定義......................................14
2.3 特殊風格服飾探討......................................15
2.3.1 原住民服飾......................................16
2.3.2 民族風服飾......................................17
2.4 網際網路搜尋服務工具......................................18
2.5 搜尋引擎相關技術文獻探討......................................19
2.5.1 中文斷詞......................................19
2.5.2 文件分群(Document Clustering).......................................................21
2.5.3 文件分類(Document Classification) .................................................22
2.5.4 搜尋引擎數學模式............................................................................24
2.5.4.1 貝葉斯定理(Na��ve Bayes Classifier) .....................................24
2.5.4.2 向量空間模式.........................................................................26
2.5.4.3 布林模式(Boolean Model) .....................................................27
2.5.4.4 檢索系統績效評估.................................................................27
2.5.5 特徵詞彙擷取....................................................................................28

2.5.6 特徵詞彙刪減(Feature Reduction) ...................................................28
2.5.7 搜尋引擎原理架構............................................................................30
2.5.8 文字全文檢索....................................................................................32
2.5.8.1 文字全文檢索引擎的架構.....................................................32
2.5.8.2 文字全文檢索引擎的發展趨勢及困難點.............................34
2.5.9 以內容為導向的影像檢索引擎........................................................34
2.5.9.1 影像的顏色分佈特徵.............................................................36
2.5.9.2 影像的外型特徵.....................................................................37
2.5.9.3 影像的材質特徵.....................................................................38
2.5.9.4 整合的架構.............................................................................39
2.5.10 3D模型檢索技術.............................................................................39
第三章 相關理論與技術介紹....................................................................................41
3.1 服飾顯性特徵與隱性特徵...........................................................................41
3.2 服飾特徵集合的創造...................................................................................42
3.3 服飾分類.......................................................................................................43
3.3.1 服飾顯性特徵分類............................................................................44
3.3.2 服飾隱性特徵分類..........................................................................55
3.3.3 服飾特徵分析..................................................................................56
3.4 斷詞系統之應用............................................................................................59
第四章 本文機制........................................................................................................63
4.1 研究方法.....................................................................................................63
4.2 系統架構.....................................................................................................64
4.3 系統模組.....................................................................................................65
4.3.1 服飾聚集模組..................................................................................65
4.3.2 服飾檢索模組..................................................................................66
4.3.3 服飾排序模組....................................................................................69
4.3.4 服飾資訊輸出模組..........................................................................74
4.4 服飾檢索績效評估.......................................................................................82
4.5 系統工作流程圖...........................................................................................84
第五章 分析與討論....................................................................................................86
5.1 系統效能比較...............................................................................................86
5.2 系統設計討論...............................................................................................90
第六章 結論與未來研究............................................................................................92
6.1 結論...............................................................................................................92
6.2 未來研究.......................................................................................................93
參考文獻......................................................................................................................94
[1]王建棠、石昭玲,「具有相關性回饋演算法之智慧型3D模型搜尋引擎」,Chung Hua Journal of Science and Engineering,vol. 2,no. 1,pp. 53-61, 2004年。
[2]古鎬華,「智慧型概念導向式影像內容搜尋擷取技術」,成功大學資訊工程學系碩士論文,2006年。
[3]田馥銘,「使用碎形迭代函數進行影像搜尋」,中山大學資訊工程學系碩士論文,2001年。
[4]李昭鈺,「邵族服裝之形制溯源研究」,成功大學藝術學系碩士論文,2005年。
[5]周佰瑜,「網際網路影像搜尋引擎之設計與建構」,元智大學資訊管理學系碩士論文,2003年。
[6]林俊佑、李菁松、曾廣華,「基於文件分類技術之資訊追蹤系統」,電腦與通訊,vol. 99,pp. 112-114, 2002年。
[7]林嘉翔,「以貝氏定理為基礎於垃圾郵件過濾之研究」,雲林科技大學資訊管理學系碩士論文,2004年。
[8]施博議,「資訊管理系統建模式之探討」,南華大學資訊管理學系碩士論文,2004年。
[9]夏士敏,「近代婦女日常服飾演變之研究」,文化大學家政學系碩士論文,1993年。
[10]張永霖,「使用基因演算法與相關回饋於協助網頁搜尋」,中央大學資訊管理學系
碩士論文,2002年。
[11]張金蘭,「《金瓶梅》女性服飾的類型分析」政治大學中國文學系碩士論文,2000年。
[12]郭子鼎、林志豪,「應用自然語言處理於線上教學問答系統」,Chinese Society for Management of Technology (CSMOT) ,Taichung, Taiwan,p. 220, 2007年。
[13]陳志榮,「Metasearch engine中資料庫分類之關鍵詞維護機制」,元智大學資訊管理學系碩士論文,2002年。
[14]陳俊達、王台平,「中文文件分類器中特徵詞彙之研究-使用資料探勘技術」,中華民國科技管理研討會,pp. 309-317, 2004年。
[15]陳述巧,「布農族織品服飾與認同關系之研究-以卓社群卡度部落為例」,成功大學藝術研究所碩士論文,2004年。
[16]楊長慎、陳弘裕、石昭玲,「以MPEG-7之色彩特徵為基礎之網際網路圖片搜尋系統」,Chung Hua Journal of Science and Engineering,vol. 3,no. 1,pp. 65-72, 2005年。
[17]楊詔龍,「AHP方法應用於智慧型內容導向之影像資料庫檢索系統」,高雄第一科技大學電腦與通訊工程學系碩士論文,2005年。
[18]蔡黎明,「簡明紡織品詞典」,上海辭書出版社,1989年。
[19]鄭伯川,「基於內容的3D模型檢索技術研究」,浙江大學碩士學位論文,2004年。
[20]鄭為倫,「單分類器在文件多類別分類上之研究」,銘傳大學資訊管理學系碩士論文,2005年。
[21]鄭滄祥,「以群集技術支援文件類別整合之研究」,中山大學資訊管理學系博士論文,2003年。
[22]謝佳倫,「遺傳演算法應用於中文斷詞之研究」,中央大學資訊管理學系碩士論文,2005年。
[23]藍妙齡,「台灣特有民族風服飾之研究」,佛光人文社會學院藝術學研究所碩士論文,2003年。
[24]顏志平、徐熊健,「專用搜尋引擎之研發、管理與績效評估—以網路上犯罪情報自動蒐集系統為例」,第五屆資訊管理學術暨警政資訊實務研討會,2001年。
[25]C. I. Augustine and F. Fotouhi, “An Adaptive Real-Time Web Search Engine”, Proceedings of the Second International Workshop on Web Information and Data Management, pp. 12-16, 1999.
[26]H. J. Bae and S. H. Jung, “Image Retrieval Using Texture Based on DCT”, International Conference on Information, Communications and Signal Processing,ICICS., vol. 2, pp.1065-1068, 1977.
[27]R. Bekkerman, E. Y. Ran, N. Tishby, and Y. Winter, “On Feature Distributional Clustering for Text Categorization”, the 24th Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, pp. 146-153, 2001.
[28]S. Brin and L. Page, “The Anatomy of a Large Scale Hypertextual Web Search Engine,” Computer Science Department, Stanford University, Stanford, CA 94305, 1998.
[29]S. F. Chang and R. K. Rajendran, ”Image Retrieval with Sketches and Compositions”, Proceedings of IEEE International Conference on Mulitimedia, Los Alamitos, CA: IEEE Society Press, vol. 2, pp. 717-721, 2000.
[30]D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung, “On Visual Similarity Based 3D Model Retrieval,” Computer Graphics Forum, vol. 22, no. 3, pp. 223-232, 2003.
[31]D. Y. Chen and M. Ouhyoung, “A 3D Object Retrieval System Based on Multi-Resolution Reeb Graph”, Proc. of Computer Graphics Workshop Tainan, p. 16, 2002.
[32]J. Dilley,“ The Effect of Consistency on Cache Response Time”, IEEE Network, vol. 14, no. 3, pp. 24-28, 2000.
[33]D. Dreilinger and A. E. Howe, “Experiences with Selecting Search Engines Using Metasearch”, ACM Transactions on Information Systems, vol. 15, no. 3, pp. 195-222, 1997.
[34]R. C. Dubes and A. K. Jain,“ Algorithms for Clustering Data”, Prentice Hall, 1988.
[35]R. O. Duda, P. E. Hart, and D. G. Stork,“ Pattern Classification”, Wiley, 2nd Edition, p. 464, 2000.
[36]D. Fasulo, “An Analysis of Recent Work on Clustering Algorithms”, Technical Report from University of Washington, 1999.
[37]R. E. Filman and S. Pant, “Search the internet,” IEEE Internet Computing, vol. 2, pp. 21-23, 1998.
[38]V. N. Gudivada, V. V. Raghavan, W. I. Grosky, and R. Kasanagottu, “Information Retrieval on the World Wide Web”, IEEE Internet Computing, vol. 1, pp. 58-68, 1997.
[39]R.M. Haralick, K. Shanmugam, and I.Dinstein, “Textural Features for Image Classification”, IEEE Transactions on Systems, Man, and Cybertinetics, vol. 3, pp. 610-621, 1973.
[40]M. R. Herzinger,“ Hyperlink Analysis for the Web”, IEEE Internet Computing, pp. 45-55, 2001.
[41]T. Igarashi, S. Matsuoka, and H. Tanaka,“ Teddy: A Sketching Interface for 3D Freeform Design”, Procedings of ACM SIGGRAPH, Los Angeles, USA, pp. 409-416, 1999.
[42]L. Introna and H. Nissenbaum,“ Defining the Web: the politics of search engines”, Computer, vol. 33, no. 1, pp. 54-62, 2000.
[43]K. S. Jones and P. Willett,“ Readings in Information Retrieval”, Morgan Kaufmann Publishers, Inc., San Francisco, California, pp. 167-190, 1996.
[44]L. Kaufman and P. J. Rousseeuw,“ Finding Groups in Data: an Introduction to Cluster Analysis”, John Wiley & Sons, New Jersey, USA, 1990.
[45]A. Khotanzad and R. L. Kayshap,“ Feature Selection for Texture Recognition Based on Image Synthesis”, IEEE Trans. on System, Man and Cybernetics, vol. 17, no. 6, pp. 1-19, 2003.
[46]A. Kingoff, “Comparing Internet Search Engines”, Computer, vol. 30, no. 4, pp. 117-118, 1997.
[48]B. Larsen and C. Aone,“ Fast and Effective Text Mining Using Linear-time Document Clustering”, KDD-99, San Diego, California, 1999.
[49]B. S. Manjunath and M. Y. Ma.,“ Texture Feature for Browsing and Retrieval of Image Data”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18, no. 8, pp. 837-842, 1996.
[50]M. I. Mauldin,“ Lycos: Design Choices in an Internet Search Service”, IEEE Expert, vol. 12, no. 1, pp. 8-11, 1997.
[51]P. Min, J.Chen, and T. Funkhouser, “A 2D Sketch Interface for a 3D Model Search Engine”, Siggraph 2002 Technical Sketches, p. 138, 2002.
[52]J. Nantel,“ Case Study My Virtual Model: Virtual Reality Comes into Fashion”, Journal of Interactive Marketing, vol. 18, no. 3, pp. 73-86, 2004.
[53]Z. Z. Nick and P. Themis,“ Web Search Using a Genetic Algorithm”, IEEE Internet Computing, vol. 5, no. 2, pp. 18-26, 2001.
[54]I. Nonaka and H. Takeuchi, “The Knowledge-Creating Company”, Oxford University Press,1995.
[55]R. Osada, T. Funkhouser, and B. Chazelle, “Shape Distributions”, ACE Transactions on Graphics, vol. 21, no. 4, pp. 807-832, 2002.
[56]L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking: Bring Order to the Web”, Stanford Digital Library Technologies Project, 1998.
[57]B. Y. Ricardo and R. N. Berthier,“ Moder Information Retrieval”, Addison-Wesley, 1999.
[58]S. E. Robertson and K. S. Jones, “Relevance Weighting of Search Terms”, Journal of the American Society for Information Science, vol. 27, no. 3, pp. 129-146, 1976.
[59]G. Salton and M. J. McGill,“ Introduction to Modern Information Retrieval”, McGraw Hill Book Co., New York, 1983.
[60]G. Salton, E. A. Fox and H. Wu,“ Extended Boolean Information Retrieval”, Communications of the ACM, vol. 26, no. 11, pp. 1022-1036, 1983.
[61]E. Selberg and O. Etzioni,“ The MetaCrawler Architecture for Resource Aggregation on the Web”, IEEE Expert, vol. 12, no. 1, pp. 11-14, 1997.
[62]B. Shu and S. Kak, “A Neural Network-based Intelligent Metasearch Engine”, Information Sciences, vol. 120, pp. 1-11, 1999.
[63]J. R. Smith and C.S. Li,“ Decoding Image Semantics Using Composite Region Templates,” IEEE Workshop on Content-Based Access of Image and Video Libraries(CBAIVL-98), pp. 9-11, 1998.
[64]C. Sullivan,“ Web Developer.com Guide to Search Engines”, John Wiley &Sons, pp. 17-52, 1998.
[65]M. T. Suzuki, T. Kato, and N. Otsu,“ A Similarity Retrieval of 3D Polygonal Models Using Rotation Invariant Shape Descriptors”, IEEE International Conference on Systems, Man, and Cybernetics (SMC2000), Nashville Tennessee, pp. 2946-2952, 2003.
[66]B. O. Szuprowicz,“ Search Engine Technologies for the World Wide Web and Internet”, USA, Computer Technology Research Corp., 1997.
[67]J. W. Tangelder and R. C. Veltkamp,“ Polyhedral Model Retrieval Using Weighted Point Sets”, International Journal of Image and Graphics, vol. 3, no. 1, pp. 209-229, 2003.
[68]B. Thomas, “Studies in the History of Probability and Statistics: IX. Thomas Bayes's Essay Towards Solving a Problem in the Doctrine of Chances”, Biometrika, vol. 45, pp. 296–315, 1763.
[69]B. Thomas, “URL Diving”, IEEE Internet Computing, vol. 2 , no. 3, pp. 92-93, 1998.
[70]Y. Yang and J. O. Pedersen,“ A Comparative Study on Feature Selection in Text Categorization”, Proceedings of the International Conference on Machine Learning (ICML’97), pp. 412-420, 1997.
[71]C. T. Zahn and R. Z. Roskies,“ Fourier descriptors for plane closed curves”, IEEE Trans. on Computer, vol. 21, no. 3, pp. 269-281, 1972.
[72]D. Zhang and G. Lu, “Review of Shape Representation and Description Techniques”, Pattern Recognition, vol. 37, pp.1-19, 2003.
[73]全球紡織網ISO服裝標準,http://61.129.77.202:82/gate/big5/www.tnc.com.cn/resources/detailts.php?cate=026,2008。
[74]全球紡織網 JIS服裝標準, http://61.129.77.202:82/gate/big5/www.tnc.com.cn/resources/detailts.php?cate=031,2008。
[75]全球紡織網 KS紡織類標準,http://61.129.77.202:82/gate/big5/www.tnc.com.cn/resources/detailts.php?cate=033,2008。
[76]國家標準檢索系統,http://www.cnsonline.com.tw/,2008。
[77]Altavista, http://www.altavista.com/, 2008.
[78]Excite, http://www.excite.com/, 2008.
[79]Google, http://www.google.com.tw/, 2008.
[80]Howstuffworks, http://www.howstuffworks.com/search-engine1.htm, 2008.
[81]Openfind, http://www.openfind.com.tw/, 2008.
[82]Pchome, http://www.pchome.com.tw/, 2008.
[83]Receiver Operating Characteristic, http://en.wikipedia.org/wiki/Receiver_operating_characteristic, 2008.
[84]Yahoo, http://tw.yahoo.com, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top