跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/15 07:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林哲緯
研究生(外文):Che-Wei Lin
論文名稱:應用於光伏元件之奈米多孔矽的製備與研究
論文名稱(外文):Preparation and Study of Nano-Porous-Silicon (NPS) for Applications on Photo-Voltaic Devices
指導教授:吳坤憲
指導教授(外文):Kuen-Hsien Wu
學位類別:碩士
校院名稱:南台科技大學
系所名稱:光電工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
中文關鍵詞:奈米多孔矽光伏元件孔隙率
外文關鍵詞:NPSphotovoltaic devicesporosity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:157
  • 收藏至我的研究室書目清單書目收藏:0
多孔矽材料具有可調變之光電特性,如能隙的調變、折射率的變化,應用在光電元件的研製中深具潛力。本論文中,吾人利用電化學蝕刻技術在矽基板上製備奈米多孔矽(Nano-Porous-Silicon, NPS),並將之應用在光伏元件的結構設計中,探討其作為元件的光吸收層與光反射層之光電特性。
吾人使用中摻雜(n-type;(100);1-10Ω-cm)及重摻雜(n-type;(100);0.001-0.003Ω-cm) 矽基板來進行電化學蝕刻。實驗過程中發現,使用重掺雜矽基板進行電化學蝕刻,不僅較易形成奈米多孔矽結構,對於奈米結構的控制與再現性也較穩定。
以奈米多孔矽結構作為光伏元件的表面光吸收層時,其光響應頻譜結果顯示,多孔矽層之孔隙率為70%的元件之半高寬(FWHM)比起孔隙率為55%及20%者分別擴大了約40nm與100nm;太陽能模擬器分析結果發現,其轉換效率分別提升了3.57倍及25倍。當其作為元件之內部光反射層時,由反射率量測結果得知,具有低/高孔隙率結構之奈米多孔矽,比起單層結構在近紅外線區之反射率高出了約8%。
實驗結果顯示,以奈米多孔矽結構作為光伏元件的表面光吸收層時,孔隙率較高者具有較好的光吸收效率;當其作為元件之內部光反射層時,低/高孔隙率差值越大且低/高孔隙率週期數越多的複層奈米多孔矽結構,表現出較佳的反射率。因此,吾人相信奈米多孔矽應用在光電元件的設計與製造深具潛力。
Due to the controllable optoelectronic characteristics of porous silicon such as modulation of energy gap、refractive index changes, this material has much potential in applications of optoelectronic devices. In this paper, we used electrochemical etching techniques to prepare nano-porous-silicon (NPS) structures on silicon substrates. Optoelectronic characteristics of these as-formed NPS serving as light-absorption layers and light-reflection layers of photo-voltaic devices had been measured and analyzed, respectively.
N-type, (100) silicon wafers with resistivity of 1-10Ω-cm and 0.001-0.003Ω-cm were used for starting materials. From the experimental processes, we found that to prepare NPS with controllable structures and with much higher reproducibility, heavily doped silicon wafers (0.001-0.003Ω-cm) were more preferred.
When NPS structures acted as light-absorption layers, devices with NPS layers of 70% porosity got 40nm and 100nm increases in FWHM of responsivity spectra and 3.57-time and 25-time larger conversion efficiency as compared to those with porosity of 55% and 20% respectively. While working as the internal light-reflection layers of devices, NPS layers with low/high-porosity double-layered structures showed 8% higher reflectivity in near-infrared (0.8~1um) ranges than that of single-layered NPS structures.
From the experimental results, we found that NPS structures with higher porosity can get higher light-absorption efficiency when acting as light-absorption layers. While working as the internal light-reflection layers of devices, multi-layered NPS structures with larger differences in high/low porosity and more numbers of periods of high/low porosity exhibited higher reflectivity. Therefore, we believe NPS structures has much potential in applications on photo-voltaic devices.
摘要
英文摘要
誌謝
目錄
表目錄
圖目錄
第一章 序論
1-1 前言
1.2 研究動機
第二章 文獻回顧
2-1 多孔矽之形成
2-2 電壓電流特性曲線
2-3 多孔矽之孔隙率
2-4 多孔矽的量子侷限效應
2-5 吸收波長對材料能隙的關係
2-6 孔隙率與折射率之關係
2-7 布拉格反射鏡
2-8矽基材的型態、摻雜濃度與蝕刻參數間之關係
第三章 實驗方法
3-1 實驗流程圖
3-2 實驗設備
3-3 柰米多孔矽之製備
3-4 實驗步驟
3-5 量測與分析儀器
3-5-1 高解析掃瞄電子顯微鏡
3-5-2 光響應頻譜量測系統
3-5-3 太陽能光源模擬器
第四章 結果與討論
4-1作為表面光吸收層之不同的奈米多孔矽結構
4-2作為內部光反射層之不同的微、奈米多孔矽結構
第五章 結論
參考文獻
參考文獻
1.Koshida N, Koyama H. Appl. Phys Lett., 60, p.347( 1992).
2.V. M. Bright, E. S. Kolesar, Opt. Eng., 36, p.1088(1997).
3.M. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, Appl. Phys. Lett., 73, p.622( 1985).
4.L.A. Balagurov, S.C. Bayliss, D.G. Yarkin, S.Ya. Andrushin, V.S. Kasatochkin, A.F. Orlov, E.A. Petrova, Solid-state Electronics, 47, p.65 (2003).
5.R.J. Martin-Palma, J.M. Martinez-Duart, L. Li, R.A. Levy, Materials Science and Engineering, 19, p.359( 2002).
6.R. Bilyalov, C.S. Solanki, J. Poortmans, O.Richad, H. Bender, M. Kummer, H. von Kanel, Thin Solid Films, 403, p.170(2002).
7.P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, Thin Solid Film, p.297 (1997).
8.P. Vitanov, N. Tyutyundzhiev, M. Kamenova, V. Gantcheva, Proceedings of Solar World Congress, Harare, 1995.
9.G. Sun, Y. Li, Y. Lu, B. Khan, G.S. Tompa, Mater Res. Soc. Symp. Proc., 358, p.593 (1995).
10.S. Bastide, S. Strehlke, M. Cuniot, A. Boutry-Forveille, Q.N. Le, D. Sarti, C. Levy-Clement, Proceeding of 13th EPS, p.1280.
11.A. Krotkus, K. Grigoras, V. Pacebutas, Sol. Energy Mater. Sol. Cells 45, p.267(1997).
12.A. Rohatgy, P. Rai-Choudhury, IEEE ED, 31, p.596 (1984).
13.R. Bilyalov, C.S. Solanki, J. Poortmans, O.Richad, H. Bender, M. Kummer, H. von Kanel, Thin Solid Films, 403, p.170 (2002).
14.Uhir, Bell System Tech. J., 35, p. 333, (1956).
15.R.L.Smith and S.D.Gollins, J. Appl. Phys., 71 (8) 15 April (1992).
16.國立海洋大學電機工程學系 陳來全碩士論文, 1995 年.
17.Pickering, M.J.J.Beale, D.J.Robbins, P.J.Pearson and R.Greef, J. Phys. C: Solid State Phys., 17, p. 6535 (1984).
18.K. Imai and S. Nakajima, IEEE, p.376 (1981).
19.J. D. Benjamin, J. M. Keen, A. G. Cullis, B. Innes, and N. G. Chew, Appl. Phys. Lett., 49, 716 (1986).
20.L. T. Canham, Appl. Phys. Lett., 57, 1046(1990).
21.K. Ait-Hamouda, N. Gabouze*, T. Hadjersi, N. Benrekaa, R. Outemzabet, H. Cheraga, K. Beldjilali, Solar Energy Materials & Solar Cells, 76, p.535 (2003).
22.L.A. Balagurov, S.C. Bayliss, S.Ya. Andrushin, A.F. Orlov, B. Unal, D.G. Yarkin, E.A. Petrova, Solid-State Electronic, 45, p.1607 (2001).
23.國立中山大學電機系教授 李明逵, (1995).
24.D.J. Lockwoodm, G.C. Aers, L.B. Allard, B. Bryskiewicz, S. Charbonneau, D.C. Houghton, J.P. McCaffrey, and A. Wang, Can.J.Phys., 70 , p.1184 (1992).
25.國立成功大學電機工程學系 鍾朝鈞碩士論文, (1998).
26.G. Willeke, H. Nussbanumer, H. Bender, and E. Bucher, Solar Energy Materials and Solar Cells., 26, Iss.4, p.345~346 (1992).
27.L. T. Canham, Applied Physics Letters, 57, Iss.10, p.1046~1048 (1991).
28.A. Uhir, The Bell System Tech. J., 35, p.333-347 (1956).
29.Pickering, M.J.J.Beale, D.J.Robbins, P.J.Pearson and R.Greef, J.Phys. C, Solid State Phys., 17, 6535 (1984).
30.L. T. Canham, Applied Physics Letters, 57, Iss.10, p.1046-1048 (1990).
31.V. Lehmann and U. Gosele, Applied Physics Letter, 58, Iss8, p856~858 (1991).
32.V. Lehmann and U. Gosele, US. Patent, No.751, 800, 29th, Dec. (1991).
33.V.M.Aroutiounian, K.R.Maroutyan, A.L.Zatikyan, K.J.Touryan, Elsevier Science, (2002).
34.Axel Richter, IEEE electron device letter, 12, Iss.12 p.691~692 (1991).
35.Cullis, A.G. and Canham, L.T., Nature, 353, Iss.6342, p.335~338 (1991).
36.Bsiesy, A., vial, J.C. Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Wasiela, A., Halimaoui, A. and Bomchil, G., Surface Science, 254, Iss.1-3, p.195~200 (1991).
37.Sangnes, I., Halinmaoui, A., Vincent, G. and Badoz, P. A., Applied Physic Letter (inpress).
38.Tsai, C., Li, K-H., Sarathy, J., Shih, S., Campbell, J. C., Hance, B. K. and White, J.M., Applied physics Letter, 59, Iss.12, p.2814~2816 (1911).
39.Tsai, C., Li, K-H., Kinosky, D. S. Qian, R.-Z.,Hsu, T.-C., Irby, J.T. Banerjeee, S.K. Tasch, A.F., Campgell, J.C., Hance, B.K. and White, J.M., Applied Physics Letter, 60, Iss.14, p.1700~1702 (1992).
40.Perez, J.M., Villalobons, J., Mcneill, Prasad, J., Cheek, R., Kelber, J., Estrera, J.P., Stevens, P.D. and Glosser, R., Applied Physics Letter, 61, Iss.5, p.563~565 (1992).
41.Axel Richter, IEEE electron device letter, 12, Iss.12 p.691~692 (1991).
42.G. Smestad and H. Ries, Solar Energy Materials and Solar Cells, 26, Iss.4, p.563~565 (1992).
43.S. E. Letant, S. Content, Tze Tsung Tan, F. Zenhausern, M. J. Sailor, Sensors and Actuators B, 69, p.193-198 (2000).
44.D.J. Lockwoodm G.C. Aers, L.B. Allard, B. Bryskiewicz, S. Charbonneau, D.C. Houghton, J.P. McCaffrey, and A. Wang, Can. J. Phys., 70, p.1184 (1992).
45.A. J.R. Proot, C.Delerue, and G. Allen, Applied Physic Letter, 61, p.1948 (1992).
46.A. Foucaran, B. Sorli, M. Garcia, F. Pascal-Delannoy, A. Boyer, Sensors and Actuators, 79, p.189-193 (2000).
47.S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, phys. stat., sol. (a)182, p.541-546 (2000).
48.S. M Vernon, N. M Kalkhoran, H. P Maruska, and W. D. Halverson, IEEE, 1994.
49.P. Vitanov, M. Kamenova, N. Tyutyundzhiev, M. Delibasheva, E. Goranova, M. Peneva, Thin Solid Film, 297, p.299-303 (1997).
50.S. Strehlke, D. Sarti, A. Krothus, K. Grigoras, C.Lévy-Clément, Thin Solid Film ,297, p.291-295 (1997).
51.L. Schirone, G. Sotgiu, F.P. Califano, Thin Solid Film, 297, p.296-298 (1997).
52.R.J. Martin-Palma, J.M. Martinez, L. Li, R.A. Levey, Material Science Engineering, C19, p.359-362 (2002).
53.P. Vitanov, M. Delibasheva, E. Goranova, M. Peneva, Solar Energy Materials & Solar Cells, 61, p.213-221 (2000).
54.M. Kruger, M. Marso, M.G. Berger, M. Thonssen, S. Billat, R. Loo, W. Reetz, H. Luth, S. Hilbrich, R. Arens-Fischer, P. Grosse, Thin Solid Films, 297, p. 241-244, (1997).
55.M. Takahashi, Y. Toriumi, N. Koshida, T. Matsumoto, Appl. Phys.,76, p. 1990 (2000).
56.ROLFE C.ANDERSON,RICHARD S.MULLER and CHARLES, Sensors and Actuators., A21-A23, p.835 (1990)
57.國立成功大學微電子工程研究所 林輝宏碩士論文, 2000年.
58.G. T. Reed and A. K. Kewell, “Erbium-doped silicon and porous silicon for optoelectronics,” Materials Science and Engineering, vol.B40, p.207-215(1996).
59.T. Unagami and K. Kato, Trans. IEE Jap.,vol.98-A, No.10,15(1978).
60.V.Lemamn, U.Gosele, “Porous Silicon Formation-A Quantum Wire Effect”, Applied Physic Letter, vol.58, p.856(1991).
61.A. Halimaoui, “Porous silicon: material processing, properties and applications”, in Porous silicon science and technology, J~C. Vial, and J. Derrien, 34(1994).
62.Valery Yu Yerokhov, Ihor I. Melnyk,” Renewable and Sustainable Energy Reviews., 3, p.291-322 (1999).
63.V. Lehmann and U. Gosele, “Evidence for Quantum confinement in Photoluminescence of Porous Si,” US. Patent., No. 751, 800, 29th Dec. (1991).
64.Axel Richter “Current-induced Light-Emission From a Porous SiliconDevice,” IEEE electron device letter., vol. 12, Iss. 12 pp. 691-692 (1991).
65.G. Smestad and H. Ries, “Photovoltaic Response In ElectrochemicallyPrepared Photoluminescent Porous Silicon,” Solar Energy Materials and Solar Cells., vol. 26, Iss. 4, pp 563~565 (1992).
66.”半導體元件物理與製作技術”第2版,施敏 (2006).
67.K. Kinoshita and M. Nishibori: J. Vac. Sci. Technol., 6 (1969) 730.
68.MacDougal. M, Hanmin Zhao, Uppal. K, Dapkus. P.D., Ziari. M., Steier, W.H. (1994). ‘‘Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers” Electronics Letters, Vol 30, Issue, 14.
69.Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi,J. “Formation and properties of porous silicon and its application,” J. Electrochem., Soc.,Vol. 122, pp.1351, (1975).
70.Pickering, M.J.J.Beale, D.J.Robbins, P.J.Pearson and R.Greef, “Optical studies of the structure of porous films formed in p-type degenerate and non-degenerate silicon,” J. Phys. C: Solid State Phys., vol. 17, pp. 6535 (1984).
71.L. T. Canham. “Silicon Quantum Wire Array Fabrication by Electrochemical Dissolution of Wafers,” Applied Physics Letters., vol 57. Iss. 10. pp. 1046~1048 (1990).
72.V. Lehmann and U. Gosele, “Porous Silicon Formation: A Qutantum Wire Effect,” Applied Physics Letter., vol. 58 Iss. 8 pp. 856-858, (1991).
73.John H. Mathews, Numerical Methods for Computer Science, Engineering, and Mathmatics, Prentice-Hall publishing inc., pp124-133 , 1987
74.Ian Jacques and Colin Judd , Numerical Analysis, Chapman and Hall publishing inc., pp134-140 , 1987
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top