1.http://www.sony.net/SonyInfo/News/Press_Archive/200312/03-060E/
2.http://world.honda.com/ASIMO/
3.Bulanon, D.M. , Kataoka, T., Ukamoto, H. , Hata, S. “Development of a Real-time Machine Vision System for the Apple Harvesting Robot,” SICE Annual Conference in Sapporo, August 4-6,2004 Hokkaido Institute of Technology, Japan.
4.R. Bolle. “Veggie Vision: A Produce Recognition System,” IBM TJ Watson Research Center, 1996.
5.T. Ojala, M. Pietikäinen and T. Mäenpää, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, pp. 971-987, 2002.
6.Nello Cristianini and John Shawe-Taylor. ”An Introduction to Support Vector Machines and other kernel-based learning methods,” Cambridge University Press, 2000.
7.C.-C. Chang and C.-J. Lin. “LIBSVM: a library for support vector machines,” 2001.
8.Jean Serra “Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances, “ 1998.
9.L.G. Roberts, “Machine perception of 3-D solids. In: Optical and Electro-optical Information Processing,” MIT Press (1965), pp. 159–197.
10.Y. Deng and B. S. “Manjunath. Unsupervised segmentation of color-texture regions in images and video,” IEEE Trans. Pattern Anal. Mach. Intell., 23(8):800–810, 2001.
11.J. Shi, and J. Malik, “Normalized Cuts and Image Segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, Issue 8, pp. 888-905, August 2000.
12.C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Color- and Texture-based Image Segmentation Using the Expectation-Maximization Algorithm and Its Application to Content-Based Image Retrieval,” Int. Conference Computer Vision, Bombay, India, Jan 1998.
13.C. Carson, S. Belongie, H. Greenspan, and J. Malik, “Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying,” IEEE Transaction on Pattern Analysis and Machine Intelligence, 24(8), 1026-1038, August 2002.
14.洪智毅 “交疊錢幣辨識之研究,” 南台科技大學資訊工程系碩士論文,2007.15.Georges Matheron and Jean Serra “History of Mathematical Morphology, “ 1968.
16.T. Uchiyama, M. A. Arbib, “Color Image Segmentation Using Competitive Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 12, pp. 1197-1206, Dec. 1994.
17.R. C. Gonzalez and R. E. Woods, “Digital Image Processing, 2nd Ed.,” Prentice Hall, New Jersey, 2002.
18.Charles Poynton, “Digital Video and HDTV,” Chapter 24, pp. 291-292, Morgan Kaufman, 2003.
19.M. Varma and A. Zisserman. “A Statistical Approach to Texture Classification from Single Images,” International Journal of Computer Vision, 62(1):61–81, 2005.
20.Ojala, T., Pietikäinen, M., Harwood, D.: “A Comparative Study of Texture Measures with Classification Based on Feature Distributions,” Pattern Recognition 29 51-59. 1996.
21.Pietikäinen, M., Ojala, T., Xu Z.: “Rotation-Invariant Texture Classification Using Feature Distributions,” Pattern Recognition 33 43-52. 2000.
22.Ojala, T., Pietikäinen, M., Harwood, D.: “Performance evaluation of texture measures with classification based on Kullback discrimination of distributions,” Proc. 12th international Conference on Pattern Recognition (ICPR 1994), Jerusalem, Israel vol. I, 582-585, 1994.
23.Martin A. Hunt, et al., ”Paradigm for selecting the optimum classifier in semiconductor automatic defect classification applications,” Proceedings of SPIE vol. 3998, 2000.
24.Bayes, Thomas “An Essay towards solving a Problem in the Doctrine of Chances.” Philosophical Transactions of the Royal Society of London 53: 370–418. 1763.
25.Domingos, Pedro & Michael Pazzani “On the optimality of the simple Bayesian classifier under zero-one loss”. Machine Learning, 29:103–¬137. 1997.
26.陳耀俊,呂炎州 “自動瑕疵分類在LCD瑕疵檢測的應用,” 機械工業雜誌第277期 pp.90-98,2006.27.Ma Jian-bin, Li Ying, Teng Gui-fa, Wang Fang, Zhao Yang, “The comparison studies on the algorithm of KNN and SVM for Chinese text classification,” Journal of Agricultural University of HeBei, vol.31(3), 2008
28.Vapnik, V. and Lerner, A., “Pattern Recognition using Generalized Portrait Method,” Automation and Remote Control , vol.24, 1963.
29.Vapnik, V., “The Nature of Statistical Learning Theory,” Springer, N.Y, 1995.
30.Vapnik, V., “Statistical Learning Theory,” Wiley , 1998.
31.Pontil, M. and Verri, A., “Object recognition with support vector machines,” IEEE Trans. On PAMI , 20 , pp.637-646, 1998.
32.Brown, M. , Grundy, W. , Lin, D. , Cristianini, N. , Sugnet, C. , Furey, T. , Ares, M. , and Haussler, D. “Knowledge-base analysis of microarray gene expression data using support vector machines,” Technical report, University of California in Santa Cruz , 1999.
33.Joachims, T. , “Text categorization with support vector machines,” In Proceedings of European Conference on Machine Learning (ECML) ,1998.
34.B.Scholkopt and A.J.Smola, “Learning with Kernels,” Cambridge, Mass. MIT Press, 2002.
35.U. KreBel. “Pairwise Classification and Support Vector Machines. Advances in Kernel Methods-Support Vector Learning,” pp.254-268, Cambridge, MA, 1999, MIT Press.
36.Z. Aghbari and A. Makinouchi, “Semantic Approach to Image Database Classification and Retrieval,” NII Journal, no. 7, September, 2003.
37.C.J.C.Burges, ”A Tutorial on Support Vector Machines for Pattern Recognition,” Knowledge Discovery and Data Mining, vol.2, no.2, pp,121-167, 1998.N.Cristianini and J.Shawe-Taylor, “An Introduction to Support Vector Machines,” Cambridge, U.K.Cambridge Univ.Press, 2000.
38.http://www.csie.ntu.edu.tw/~cjlin/libsvm/
39.Hsu, Chih-Wei, Chang, Chih-Chung, and Lin, Chih-Jen , “A Practical Guide to Support Vector Classification,” 2003.