|
References [1] P. J. Angeline, Evolutionary Optimization versus Particle Swarm Optimization: Philosophy and Performance Difference. The 7th Annual Conference on Evolutionary Programming, San Diego, USA, (1998). [2] X. Hu, R. C. Eberhart, and Y. Shi, Swarm Intelligence for Permutation Optimization: A Case Study on n-Queens problem. In Proc. of IEEE Swarm Intelligence Symposium, pp. 243 – 246 (2003). [3] V. Miranda, and N. Fonseca, EPSO – Best-of-two-worlds Meta-heuristic Applied to Power System problems. In Proc. of the IEEE Congress on Evolutionary Computation, Vol. 2, pp. 1080 – 1085 (2002). [4] V. Miranda, and N. Fonseca, EPSO – Evolutionary Particle Swarm Optimization, a New Algorithm with Applications in Power Systems. In Proc. of the Asia Pacific IEEE/PES Transmission and Distribution Conference and Exhibition, Vol. 2, pp. 745 – 750 (2002). [5] T-O. Ting, M. V. C. Rao, C. K. Loo, and S-S. Ngu, A New Class of Operators to Accelerate Particle Swarm Optimization. In Proc. of the IEEE Congresson Evolutionary Computation, Vol. 4, pp. 2406 – 2410 (2003). [6] X. Yao, and Y. Liu, Fast Evolutionary Programming. In L. J. Fogel, P. J. Angeline, and T. B. Back, editors, Proceedings of the Fifth Annual Conference on Evolutionary Programming, MIT Press, pp. 451 – 460 (1996). [7] X. Yao, Y. Liu, and G. Lin, Evolutionary Programming made Faster. IEEE Transactions on Evolutionary Computation, Vol. 3(2), pp. 82 – 102 (1999). [8] P. J. Angeline, Using Selection to Improve Particle Swarm Optimization. In Proc. of the IEEE Congress on Evolutionary Computation, IEEE Press, pp. 84 – 89 (1998). [9] M. Clerc, Think Locally, Act Locally: The Way of Life of Cheap-PSO, an Adaptive PSO. Technical Report, http: // clerc.maurice.free.fr/pso/ (2001). [10] Goldberg D., Genetic Algorithms, Addison Wesley (1988). [11] C.C. Wong, H.Y. Wang, and S.A. Li, PSO-based motion fuzzy controller design for mobile robots. International Journal of Fuzzy Systems 10:1, pp. 24-32 (2008). [12] K.W. Chau, Application of a PSO-based neural network in analysis of outcomes of construction claims, Automation in Construction, Vol. 6, No. 5, pp. 642-646 (2001). [13] T.F. Shih, Particle Swarm Optimization Algorithm for Energy-Efficient Cluster-Based Sensor Networks, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E89-A , Issue 7, pp. 1950-1958 (2006). [14] J.H. Wen, S.H. Lee, Y.F. Huang, H.L. Hung, A Suboptimal PTS Algorithm Based on Particle Swarm Optimization Technique for PAPR Reduction in OFDM Systems, EURASIP Journal on Wireless Communications and Networking (2008). [15] Active suspension <http://en.wikipedia.org/wiki/Active_suspension> [16] A. Alleyne, and J.K. Hedrick, Nonlinear Control of a Quarter Car Active Suspension, Proc. of the American Control Conf., pp. 21-25 (1992). [17] A. Alleyne, and J.K. Hedrick, Nonlinear Adaptive Control of Active Suspensions, IEEE Trans. on Control Systems Technology, Vol. 3 No.1, pp. 94-101 (1995). [18] Professor Alan Mackworth, Computer Vision: System, Theory, and Applications, pp. 1-13 (1993). [19] M. Aasda, H. Kitano, The RoboCup challenge, Robot. Autonom. Syst. 29, pp. 3-12 (1999). [20] K.S. Hwang, Y.J. Chen, T.F. Lin, Q-learning with FCMAC in multi-agent cooperation, in: Proceeding Int. Symp. Neural Network, vol. 3971, pp. 599–602 (2006). [21] K.S. Hwang, Y.J. Chen, C.H. Lee, Reinforcement learning in strategy selection for a coordinated Multirobot system, IEEE Trans. Syst. Man Cyb. A 37, pp. 1151-1157 (2007). [22] J.H. Lee, Modeling and identification for nonlinear model predictive control: requirements, current status and future research needs, in: Proceedings of the International Symposium on Nonlinear Model Predictive Control: Assessment and Future Directions, Ascona, Switzerland (1998). [23] D.W. Clarke, C. Mohtadi, and P.C. Tuffs, Generalized predictive control-Part 1: the basic algorithm, Automatica 23, pp. 137-148 (1987). [24] D.W. Clarke, C. Mohtadi, P.C. Tuffs, Generalized predictive control-Part 2: the basic algorithm, Automatica 23, pp. 149-163 (1987). [25] D.W. Clarke, Advances in model-based predictive control, in: D.W. Clarke (Ed.), Advances in Model-based Predictive Control, Oxford University Press (1994). [26] J.L. Lu, G.R. Chen, and H. Ying, Predictive fuzzy PID control: theory, design and simulation, Inform. Sci. 137, pp. 157-187 (2001). [27] T.A. Johansen, W. Jackson, R. Schreiber, P. Tondel, Hardware synthesis of explicit model predictive controller, IEEE Trans. Contr. Syst. Technol. 15, pp. 191-197 (2007). [28] G. Klancˇar, B. Zupancˇicˇ, R. Karba, Modelling and simulation of a group of mobile robots, Simulat. Modell. Pract. Theory 15, pp. 647-658 (2007). [29] J. Kennedy, R. Eberhart: Particle Swarm Optimization, Proc. IEEE Int. Conf. on Neural Network, Vol. 4, pp. 1942-1948 (1995). [30] M. He, W.J. Cai, and S.Y. Li, Multiple fuzzy model-based temperature predictive control for HVAC systems, Inform. Sci. 169, pp. 155-174 (2005). [31] T.H.S. Li, C.Y. Chen, S. Lee, and Y.Z. Guo, Design and implementation of fuzzy ring univector field for robot soccer game, IEEE Int. Sym. Comput. Intel. Robot. Autom. 1, pp. 85-90 (2003). [32] S.J. Qin, T.A. Badwell, An Overview of Industrial Predictive Control Technology, Chemical Process Control-V: Assessment and New Directions for Research, Tahoe City, CA, (1996). [33] J. Kennedy, R. Eberhart: Particle Swarm Optimization, Proc. IEEE Int. Conf. on Neural Network, Vol. 4, pp. 1942-1948 (1995). [34] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, Y. Nakanishi: A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment, IEEE Trans. on Power Systems, Vol. 15, No. 4, pp. 1232-1239 (2000). [35] Z.L. Gaing: A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System, IEEE Trans. Energy Conversion, Vol. 19, No. 2, pp. 384-391 (2004). [36] J.S. Chiou, K.Y. Wang, Application of a hybrid controller to a mobile robot, Simulat. Modell. Pract. (2008).
|