跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/02/05 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭俊明
研究生(外文):Cheng, Chun-Ming
論文名稱:時間延遲切換系統之穩定性分析與切換法則設計
論文名稱(外文):Stability Analysis and Switching Law Design of Time-delay Switched Systems
指導教授:邱俊賢邱俊賢引用關係
指導教授(外文):Chiou, Juing-Shian
學位類別:博士
校院名稱:南台科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:213
中文關鍵詞:切換系統時間延遲穩定性切換法則李亞普諾夫穩定定理
外文關鍵詞:switched systemtime-delaystabilityswitching lawLyapunov stability theorem
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:201
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討時間延遲切換系統之穩定性分析與切換法則設計。在時間延遲切換系統中有兩種切換方式,一為時間切換;另一為狀態切換。探討在兩種切換方式下,得到穩定的切換法則,進行時間延遲切換系統之穩定性分析。
在時間切換方式中,是依據狀態變數的響應,求出停留在穩定的獨立切換系統的總時間與停留在不穩定的獨立切換系統的總時間之比值,以保證其整個時間延遲切換系統是穩定的,其研究結果並導出與時間延遲有關及與時間延遲無關的穩定條件。此外,研究結果與方法可延伸應用到具未確定量的時間延遲切換系統與時間延遲大型切換系統中。
在狀態切換方式中,運用李亞普諾夫穩定定理,使得系統在所設計的切換法則下為穩定,並導出其穩定條件。時間延遲切換系統之穩定性分析中,本論文依與時間延遲有關及與時間延遲無關分別導出時間延遲切換系統之穩定條件。在研究中得到一個重要的結果,若時間延遲切換系統其每一個獨立系統皆為不穩定的系統時,在所設計的切換法則下,滿足穩定的條件時,系統的響應為漸進穩定。另外,研究結果與方法可延伸應用到時間延遲大型切換系統中。
This dissertation attempts to investigate the stability and switching law design of time-delay switched systems. Two approaches are used to construct the switching laws for the stability analysis of time-delay switched systems. One is the time-driven switching method; the other is state-driven.
The time-driven switching method is that the total activation time ratio of stable individual systems to unstable individual systems will be determined via the state solution. The sufficient stability conditions with delay-independent criteria and delay-dependent criteria have been derived. Besides, this method and results can be extended to uncertain time-delay switched systems and time-delay large-scale switched systems.
The state-driven switching method uses Lyapunov stability theorem to construct a state-driven switching strategy such that the time-delay switched system is asymptotically stable. The sufficient stability conditions with delay-independent criteria and delay-dependent criteria have been derived. In particular, the present results demonstrated that this approach can be adopted even when individual systems are all unstable. Moreover, this method and results can be extended to time-delay large-scale switched systems.
Abstract(Chinese) i
Abstract(English) ii
Acknowledgment(Chinese) iii
Contents iv
List of Figures vii
Chapter 1. Introduction 1
1.1 Motivation and background 1
1.2 Review of previous research 3
1.3 Main task and organization of this dissertation 6
Chapter 2. Time-delay switched systems 9
2.1 System description and problem statement 9
2.1.1 Time-delay switched systems 12
2.1.2 Interval time-delay switched systems 13
2.1.3 Uncertain time-delay switched systems 14
2.1.4 Time-delay large-scale switched systems 15
2.2 Problem statement 16
Chapter 3. Stability analysis and switching law design with the time-
driven switching method 18
3.1 On delay-independent analysis of time-delay switched
systems 18
3.1.1 Stability analysis and switching law design 18
3.1.2 Numeric example 23
3.1.3 Summary 24
3.2 On delay-dependent analysis of time-delay switched systems
25
3.2.1 Stability analysis and switching law design 25
3.2.2 Numeric example 31
3.2.3 Summary 34
3.3 On delay-independent analysis of interval time-delay
switched systems 34
3.3.1 Stability analysis and switching law design 35
3.3.2 Numeric example 39
3.3.3 Summary 41
3.4 On delay-dependent analysis of interval time-delay
switched systems 42
3.4.1 Stability analysis and switching law design 42
3.4.2 Numeric example 48
3.4.3 Summary 49
3.5 On delay-independent analysis of uncertain time-delay
switched systems 50
3.5.1 Stability analysis and switching law design 50
3.5.2 Numeric example 54
3.5.3 Summary 56
3.6 On delay-dependent analysis of uncertain time-delay
switched systems 56
3.6.1 Stability analysis and switching law design 56
3.6.2 Numeric example 60
3.6.3 Summary 62
3.7 On delay-independent analysis of time-delay large-scale
switched systems 62
3.7.1 Stability analysis and switching law design 63
3.7.2 Numeric example 68
3.7.3 Summary 72
3.8 On delay-dependent analysis of time-delay large-scale
switched systems 72
3.8.1 Stability analysis and switching law design 73
3.8.2 Numeric example 79
3.8.3 Summary 83
Chapter 4. Stability analysis and switching law design with the
state-driven switching method 84
4.1 On delay-independent analysis of time-delay switched
systems 84
4.1.1 Stability analysis and switching law design 85
4.1.2 Numeric example 99
4.1.3 Summary 106
4.2 On delay-independent analysis of time-delay switched
systems with LMIs approach 106
4.2.1 Stability analysis and switching law design 107
4.2.2 Numeric example 114
4.2.3 Summary 119
4.3 On delay-dependent analysis of time-delay switched systems 120
4.3.1 Stability analysis and switching law design 120
4.3.2 Numeric example 130
4.3.3 Summary 136
4.4 On delay-independent analysis of time-delay large-scale
switched systems 137
4.4.1 Stability analysis and switching law design 137
4.4.2 Numeric example 150
4.4.3 Summary 156
Chapter 5. Stability analysis and synthesis of switched discrete-
time systems 158
5.1 Analysis and Synthesis of switched discrete-time systems 158
5.1.1 Stability analysis and switching law design 158
5.1.2 Numeric example 168
5.1.3 Summary 176
5.2 On delay-independent analysis of time-delay switched
discrete-time systems 176
5.2.1 Stability analysis and switching law design 177
5.2.2 Numeric example 182
5.2.3 Summary 186
5.3 Analysis and Synthesis of large-scale switched discrete-
time systems 186
5.3.1 Stability analysis and switching law design 187
5.3.2 Numeric example 191
5.3.3 Summary 200
Chapter 6. Conclusions and future works 202
6.1 Conclusions 202
6.2 Future works 204
References 205
Biography 213
[1] Liberzon, D., Morse, A. S., Basic problems in stability and design of switched systems, IEEE Control Systems Magazine, 19, 59-70, 1999.
[2] Morse, A. S., Supervisory control of families of linear set-point controllers-part 1: exact matching, IEEE Transactions on Automatic Control, 41(10), 1413-1431, 1996.
[3] Tomlin, C., Pappas, G. J., Sastry, S., Conflict resolution for air traffic management: A study in multiagent hybrid systems, IEEE Transactions on Automatic Control, 43(4), 509-521, 1998.
[4] Mhaskar, P., El-Farra, N. H. and Christofides, P. D., Predictive control of switched nonlinear systems with scheduled mode transitions, IEEE Transactions on Automatic Control, 50(11), 1670-1680. 2005.
[5] Lygeros, J., Godbole, D. N., Sastry, S., Verified hybrid controllers for automated vehicles, IEEE Trans. on Automatic Control, 43(4), 522-539, 1998.
[6] Dogruel, M., Drakunov, S., Ozguner, U., Sliding mode control in discrete state systems, In Proc. of 32nd IEEE Conf. on Decision and Control, 1194-1199, 1993.
[7] Gollu, A., Varaiya, P., Hybrid dynamical systems, In Proc. of 28th IEEE Conf. on Decision and Control, 2708-2712, 1989.
[8] Lennartson, B., Tittus, M., Egardt, B., Pettersson, S., Hybrid systems in process control, Control System Magazine, 16(5), 45-55, 1996.
[9] Umarikar, A. C., Umanand, L., Modelling of switching systems in bond graphs using the concept of switched power junctions, Journal of the Franklin Institute, 342(2), 131-147, 2005.
[10] EI Naschie, M.S., Fractal black holes and information. Chaos, Solitons & Fractals, 29(1), 23-35, 2006.
[11] Hofbaur, M.W., Williams, B.C., Hybrid estimation of complex systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics 34, 2178-2191, 2004.
[12] Cervantes, I., Femat, R., Leyva-Ramos, J., Study of a class of hybrid-time systems. Chaos, Solitons & Fractals, 32, 1081-1095, 2007.
[13]. Dayawansa, W.P., Martin, C.F., A converse Lyapunov theorem for a class of dynamical systems which undergo switching, IEEE Transactions on Automatic Control, 44(4), 751-760, 1999.
[14]. Li, Z.G., Wen, C.Y., Soh, Y.C., Stabilization of a class of switched systems via designing switching laws, IEEE Transactions on Automatic Control, 46(4), 665-670, 2001.
[15]. Sun, Z., Ge, S.S., Analysis and synthesis of switched linear control systems, Automatica, 41, 181-195, 2005
[16]. Chiou, J.S., Cheng, C.M., Stabilization analysis for a class of switched discrete-time systems, IEEE Conf. Systems, Man and Cybernetics, 4535-4540, 2006.
[17]. Li, Z.G., Soh, Y.C., Wen, C.Y., Switched and Impulsive Systems: Analysis, Design and Application. Springer-Verlag, April, 2005.
[18]. Hespanha, J.P., Morse, A.S., Stability of switched systems with average dwell-time, in Proc. IEEE Conf. Decision and Control, 2655-2660, 1999.
[19]. Zhai, G., Hu, B., Yasuda, K., Michel, A.N., Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach, Int. J. Systems Science, 32, 1055-1061, 2001.
[20]. Lu, B., Wu, F., Switching LPV control design using multiple parameter-dependent Lyapunov functions, Automatica, 40, 1973-1980, 2004.
[21]. Lee, S.H., Kim, T.H., Lim, J.T., A new stability analysis of switched systems, Automatica, 36, 917-922, 2000.
[22]. Zhai, G., Lin, H., Antsaklis, P.J., Quadratic Stabilizability of Switched Linear Systems with Polytopic Uncertainties, International Journal of Control,76(7), 747-753, 2003.
[23].Guo, J., Xie, G., Wang, L., Chaotic attractor generation and critical value analysis via switching approach, Chaos, Solitons & Fractals, 2007.
[24]Li, P., Zhong, S.M., Cui, J.Z., Stability analysis of linear switching systems with time delays. Chaos, Solitons & Fractals, 2007.
[25]. Zhai, G., Lin, H., Michel, A. N., Yasuda, K., Stability analysis for switched systems with continuous-time and discrete-time subsystems, in Proc. American Control Conf., 4555-4560, 2004.
[26]. Xie, D., Wang, L., Hao, F., Xie, G., LMI approach to L2 gain analysis and control synthesis of uncertain switched systems, IEE Proc. -Control Theory Apply. 151(1), 21-28, 2004.
[27]. Xie, D., Wang, L., Hao, F., Xie, G., Robust stability analysis and control synthesis for discrete-time uncertain switched systems, in Proc. IEEE Conf. Decision and Control, 4812-4817, 2003.
[28]. Sun, Z., Sampling and control of switched linear systems, Journal of the Franklin Institute, 341, 657-674, 2004.
[29]. Ji, Z., Wang, L., Quadratic stabilization of uncertain discrete-time switched linear system, in Proc. IEEE Conf. on Systems, Man and Cybernetics, 1492-1497, 2004.
[30]. Xie, G., Wang, L., Stabilization of a class of hybrid discrete-time systems, in Proc. IEEE Conf. on Control Applications, 1404-1409, 2003.
[31]. Daafouz, J., Riedinger, P., Iung, C., Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Transactions on Automatic Control, 47(11), 1883-1887, 1999.
[32] Li, R., Teo, K.L., Wong, K.H., Duan, G.R., Control parameterization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43, 1393–1403, 2006.
[33] Marks II, R. J., Gravagne, I. A., Davis, J. M., DaCunha, J. J., Nonregressivity in switched linear circuits and mechanical systems, Mathematical and Computer Modelling, 43, 1383–1392, 2006.
[34] Li, R., Feng, Z.G., Teo, K.L., Duan, G.R., Optimal piecewise state feedback control for impulsive switched systems, Mathematical and Computer Modelling, 48, 468–479, 2008.
[35]. Kim, S., Campbell, S. A., Liu, X., Stability of a class of linear switching systems with time delay, IEEE Transactions on Circuits and Systems I, 53, 384-393, 2006.
[36]. Zhang, L., Shi, P., Boukas, E.-K., Wang, C., Robust filtering for switched linear discrete time-delay systems with polytopic uncertainties, IET Control Theory Appl., 1(3), 722–730, 2007.
[37]. Sun, Y. G., Wang, L., Xie, G., Delay-dependent robust stability and control for uncertain discrete-time switched systems with mode-dependent time delays, Applied Mathematics and Computation, 187, 1228–1237, 2007.
[38]. Zhang, L., Shi, P., Basin, M., Robust stability and stabilisation of uncertain switched linear discrete time-delay systems, IET Control Theory Appl., 2(7), 606–614, 2008.
[39]. Sun, X.-M., Zhao, J., Wang, W., State feedback control for discrete delay systems with controller failures based on average dwell-time method, IET Control Theory Appl., 2(2), 126–132, 2008.
[40]. Montagner, V.F., Leite, V.J.S., Tarbouriech, S.P., Peres, L.D., Stability and stabilizability of discrete-time switched linear systems with state delay, American Control Conference, 3806-3811, 2005.
[41] Xu, S., Lam, J., Yang, C., Quadratic stability and stabilization of uncertain linear discrete-time systems with state delay, Systems & Control Letters, 43(2), 77–84, 2001.
[42]. Phat, V. N., Robust stability and stabilizability of uncertain linear hybrid systems with state delays, IEEE Transactions on Circuits and Systems II, 52, 94-98, 2005.
[43]. Chiou, J.S., Stability analysis for a class of switched large-scale time-delay systems via time-switched method, IEE Proc. -Control Theory Apply., 153, 684-688, 2006.
[44]. Kolmanovskii, V.B., Niculescu, S.I.,Richard, J.P., On the Lyapunov-Krasovskii functionals for stability analysis of linear delay systems. Int. J. Control, 72(4), 374-384, 1999.
[45].Hmamed, A., Further results on the robust stability of uncertain time-delay systems. Int. J. Systems Sci., 22, 605-614, 1991.
[46] Alwan, M. S., Liu, X., On stability of linear and weakly nonlinear switched systems with time delay, Mathematical and Computer Modelling, 48, 1150–1157, 2008.
[47] Xu, H., Liu, X., Teo, K. L., Delay independent stability criteria of impulsive switched systems with time-invariant delays, Mathematical and Computer Modelling, 47, 372–379, 2008.
[48]. Zhao, Y.Y., Xu, J., Performance Analysis of Passive Dynamic Vibration Absorber and Semi-active Dynamic Vibration Absorber with Delayed Feedback, International Journal of Nonlinear Sciences and Numerical Simulation 8(4), 607-614, 2007.
[49]. Hou, Y.Y., Liao, T.L., Yan, J.J., Lien, C.H., Non-fragile Control for Singular Systems with State and Input Time-varying Delays, International Journal of Nonlinear Sciences and Numerical Simulation, 8(1), 31-40, 2007.
[50]. Ge, Z.M., Hsiao, C.L., Chen, Y.S., Nonlinear Dynamics and Chaos Control for a Time Delay Duffing System, International Journal of Nonlinear Sciences and Numerical Simulation, 6(2), 187-200, 2005.
[51]. Ucar, A., Bishop, S.R., Chaotic Behaviour in a Nonlinear Delay System, International Journal of Nonlinear Sciences and Numerical Simulation, 2(3), 289-298, 2001.
[52]. Hale, J., Theory of function differential equations, Springer, New York, 1977.
[53]Zhai, G., Sun, Y., Chen, X., Michel, A.N., Stability and L2 gain analysis for switched symmetric systems with time delay, Proceedings. of the American Control Conference, Denver, Colorado, June, 2682-2687, 2003.
[54] Shi, J., Wu, T., Du, S., Delay-dependent robust control for switched systems with parameter uncertainties and time delay, Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, P. R. China, June 15-19, 951-955, 2004.
[55]. Jafarov, E. M., Comparative analysis of simple improved delay-dependent stability criterions for linear time-delay systems: an augmented functional approach, Proceedings. of the American Control Conference, Arlington, VA, June, 3389-3394, 2001.
[56] Tissir, E., Hmamed, A., “Stability tests of interval time delay systems”, Systems Control Lett, 23, 263-270, 1994.
[57]. Mahmoud, M.S., Hassan, M.F., Darwish, M.G., Large-Scale Control Systems, New York: Marcel Dekker, 1985.
[58]. Wang, W.J., Mau, L.G., Stabilization and estimation for perturbed discrete time-delay large-scale systems, IEEE T. Automat. Contr., 42, 1277–1282, 1997.
[59]. Xie, S., Xie, L., Decentralized stabilization of a class of interconnected stochastic nonlinear systems, IEEE T. Automat. Contr., 45, 132-137, 2000.
[60]. Wu, H., Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the Interconnections, IEEE T. Automat. Contr., 47, 1745-1751, 2002.
[61] Labibi, B., Decentralized control via disturbance attenuation and eigenstructure assignment, IEEE Trans. Circuits Syst. II, 53(6), 468-472, 2006.
[62]. Wang, W. J., Luoh, L., Stability and Stabilization of Fuzzy Large-Scale Systems, IEEE Transactions on Fuzzy Systems, 12(3), 309-315, 2004.
[63] Persis, C. D., Santis, R. D., Morse, A.S., Switched nonlinear systems with state-dependent swell-time. Systems & Control Letters, 50, 291-302, 2003.
[64] Zhai, G., Ho, B., Yasuda, K. Michel, A. N., Disturbance attenuation properties of time-controlled switched systems. Journal of the Franklin Institute, 338, 765-779, 2001.
[65] Lancaster, P., Theory of Matrices, Academic Press, New York, 1969.
[66] Branicky, M. S., Analysis of continuous switching systems: Theory and examples, in Proc. Amer. Control Conf., Baltimore, MD, June 29–July 1, 3110–3114, 1994.
[67] Brockett, R.W., Hybrid models for motion control systems, in Essays on Control: Perspectives in the Theory and its Applications, H. L. Trentelman and J. C. Willems, Eds. Boston, MA: Birkhauser, 29–53, 1993.
[68] Decarlo, R. A., Branicky, M. S., Pettersson, S., Lennartson, B., Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88, 1069-1082, 2000.
[69] Sira-Ramirez, H., A Geometric Approach to Pulse-Width Modulated Control in Nonlinear Dynamical Systems., IEEE Trans. Aut. Control, 34(2), 184-187, 1989.
[70] Julius, A.A., A.J. van der Schaft, The Maximal Controlled Invariant Set of Switched Linear Systems, Proceedings of the 41st IEEE, Conference on Decision and Control, Las Vegas, Nevada USA, December, 3174-3179, 2002.
[71] Kolmanovskii, V. B., Nosov, V. R., Stability of Function Differential Equation, Academic Press, London. 1986.
[72] Chen, C.-T., Linear System Theory and Design. New York: Rinehart and Winston, 1984.
[73] Hale, J., Theory of Functional Differential Equations, Springer, New York, 1977
[74] Gahinet, P., Nemirovski, V., Laub, A.J., Chilali, M., LMI Control Toolbox for Use with Matlab, The Math Works, Natick, MA, 1995.
[75].Sheng, W., Swift, S., Zhang, L., Liu, X., A weight sum validity function for clustering with a hybrid niching genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 35, 1156-1167, 2005.
[76].Wu, M.S., Teng, W,C., Jeng, J.H., Hsieh, J.G., Spatial correlation genetic algorithm for fractal image compression. Chaos, Solitons & Fractals, 28, 497-510, 2006.
[77].Wu, Y.T., Shih, F.Y., Genetic algorithm based methodology for breaking the steganalytic systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 36, 24-31, 2006.
[78]. Zhou, K., Khargonekar, P.P., Robust stabilization of linear systems with norm-bounded time-varying uncertainty, Syst. Control Lett., 10, 17-20, 1988.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊