|
[1] Liberzon, D., Morse, A. S., Basic problems in stability and design of switched systems, IEEE Control Systems Magazine, 19, 59-70, 1999. [2] Morse, A. S., Supervisory control of families of linear set-point controllers-part 1: exact matching, IEEE Transactions on Automatic Control, 41(10), 1413-1431, 1996. [3] Tomlin, C., Pappas, G. J., Sastry, S., Conflict resolution for air traffic management: A study in multiagent hybrid systems, IEEE Transactions on Automatic Control, 43(4), 509-521, 1998. [4] Mhaskar, P., El-Farra, N. H. and Christofides, P. D., Predictive control of switched nonlinear systems with scheduled mode transitions, IEEE Transactions on Automatic Control, 50(11), 1670-1680. 2005. [5] Lygeros, J., Godbole, D. N., Sastry, S., Verified hybrid controllers for automated vehicles, IEEE Trans. on Automatic Control, 43(4), 522-539, 1998. [6] Dogruel, M., Drakunov, S., Ozguner, U., Sliding mode control in discrete state systems, In Proc. of 32nd IEEE Conf. on Decision and Control, 1194-1199, 1993. [7] Gollu, A., Varaiya, P., Hybrid dynamical systems, In Proc. of 28th IEEE Conf. on Decision and Control, 2708-2712, 1989. [8] Lennartson, B., Tittus, M., Egardt, B., Pettersson, S., Hybrid systems in process control, Control System Magazine, 16(5), 45-55, 1996. [9] Umarikar, A. C., Umanand, L., Modelling of switching systems in bond graphs using the concept of switched power junctions, Journal of the Franklin Institute, 342(2), 131-147, 2005. [10] EI Naschie, M.S., Fractal black holes and information. Chaos, Solitons & Fractals, 29(1), 23-35, 2006. [11] Hofbaur, M.W., Williams, B.C., Hybrid estimation of complex systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics 34, 2178-2191, 2004. [12] Cervantes, I., Femat, R., Leyva-Ramos, J., Study of a class of hybrid-time systems. Chaos, Solitons & Fractals, 32, 1081-1095, 2007. [13]. Dayawansa, W.P., Martin, C.F., A converse Lyapunov theorem for a class of dynamical systems which undergo switching, IEEE Transactions on Automatic Control, 44(4), 751-760, 1999. [14]. Li, Z.G., Wen, C.Y., Soh, Y.C., Stabilization of a class of switched systems via designing switching laws, IEEE Transactions on Automatic Control, 46(4), 665-670, 2001. [15]. Sun, Z., Ge, S.S., Analysis and synthesis of switched linear control systems, Automatica, 41, 181-195, 2005 [16]. Chiou, J.S., Cheng, C.M., Stabilization analysis for a class of switched discrete-time systems, IEEE Conf. Systems, Man and Cybernetics, 4535-4540, 2006. [17]. Li, Z.G., Soh, Y.C., Wen, C.Y., Switched and Impulsive Systems: Analysis, Design and Application. Springer-Verlag, April, 2005. [18]. Hespanha, J.P., Morse, A.S., Stability of switched systems with average dwell-time, in Proc. IEEE Conf. Decision and Control, 2655-2660, 1999. [19]. Zhai, G., Hu, B., Yasuda, K., Michel, A.N., Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach, Int. J. Systems Science, 32, 1055-1061, 2001. [20]. Lu, B., Wu, F., Switching LPV control design using multiple parameter-dependent Lyapunov functions, Automatica, 40, 1973-1980, 2004. [21]. Lee, S.H., Kim, T.H., Lim, J.T., A new stability analysis of switched systems, Automatica, 36, 917-922, 2000. [22]. Zhai, G., Lin, H., Antsaklis, P.J., Quadratic Stabilizability of Switched Linear Systems with Polytopic Uncertainties, International Journal of Control,76(7), 747-753, 2003. [23].Guo, J., Xie, G., Wang, L., Chaotic attractor generation and critical value analysis via switching approach, Chaos, Solitons & Fractals, 2007. [24]Li, P., Zhong, S.M., Cui, J.Z., Stability analysis of linear switching systems with time delays. Chaos, Solitons & Fractals, 2007. [25]. Zhai, G., Lin, H., Michel, A. N., Yasuda, K., Stability analysis for switched systems with continuous-time and discrete-time subsystems, in Proc. American Control Conf., 4555-4560, 2004. [26]. Xie, D., Wang, L., Hao, F., Xie, G., LMI approach to L2 gain analysis and control synthesis of uncertain switched systems, IEE Proc. -Control Theory Apply. 151(1), 21-28, 2004. [27]. Xie, D., Wang, L., Hao, F., Xie, G., Robust stability analysis and control synthesis for discrete-time uncertain switched systems, in Proc. IEEE Conf. Decision and Control, 4812-4817, 2003. [28]. Sun, Z., Sampling and control of switched linear systems, Journal of the Franklin Institute, 341, 657-674, 2004. [29]. Ji, Z., Wang, L., Quadratic stabilization of uncertain discrete-time switched linear system, in Proc. IEEE Conf. on Systems, Man and Cybernetics, 1492-1497, 2004. [30]. Xie, G., Wang, L., Stabilization of a class of hybrid discrete-time systems, in Proc. IEEE Conf. on Control Applications, 1404-1409, 2003. [31]. Daafouz, J., Riedinger, P., Iung, C., Stability analysis and control synthesis for switched systems: A switched Lyapunov function approach, IEEE Transactions on Automatic Control, 47(11), 1883-1887, 1999. [32] Li, R., Teo, K.L., Wong, K.H., Duan, G.R., Control parameterization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43, 1393–1403, 2006. [33] Marks II, R. J., Gravagne, I. A., Davis, J. M., DaCunha, J. J., Nonregressivity in switched linear circuits and mechanical systems, Mathematical and Computer Modelling, 43, 1383–1392, 2006. [34] Li, R., Feng, Z.G., Teo, K.L., Duan, G.R., Optimal piecewise state feedback control for impulsive switched systems, Mathematical and Computer Modelling, 48, 468–479, 2008. [35]. Kim, S., Campbell, S. A., Liu, X., Stability of a class of linear switching systems with time delay, IEEE Transactions on Circuits and Systems I, 53, 384-393, 2006. [36]. Zhang, L., Shi, P., Boukas, E.-K., Wang, C., Robust filtering for switched linear discrete time-delay systems with polytopic uncertainties, IET Control Theory Appl., 1(3), 722–730, 2007. [37]. Sun, Y. G., Wang, L., Xie, G., Delay-dependent robust stability and control for uncertain discrete-time switched systems with mode-dependent time delays, Applied Mathematics and Computation, 187, 1228–1237, 2007. [38]. Zhang, L., Shi, P., Basin, M., Robust stability and stabilisation of uncertain switched linear discrete time-delay systems, IET Control Theory Appl., 2(7), 606–614, 2008. [39]. Sun, X.-M., Zhao, J., Wang, W., State feedback control for discrete delay systems with controller failures based on average dwell-time method, IET Control Theory Appl., 2(2), 126–132, 2008. [40]. Montagner, V.F., Leite, V.J.S., Tarbouriech, S.P., Peres, L.D., Stability and stabilizability of discrete-time switched linear systems with state delay, American Control Conference, 3806-3811, 2005. [41] Xu, S., Lam, J., Yang, C., Quadratic stability and stabilization of uncertain linear discrete-time systems with state delay, Systems & Control Letters, 43(2), 77–84, 2001. [42]. Phat, V. N., Robust stability and stabilizability of uncertain linear hybrid systems with state delays, IEEE Transactions on Circuits and Systems II, 52, 94-98, 2005. [43]. Chiou, J.S., Stability analysis for a class of switched large-scale time-delay systems via time-switched method, IEE Proc. -Control Theory Apply., 153, 684-688, 2006. [44]. Kolmanovskii, V.B., Niculescu, S.I.,Richard, J.P., On the Lyapunov-Krasovskii functionals for stability analysis of linear delay systems. Int. J. Control, 72(4), 374-384, 1999. [45].Hmamed, A., Further results on the robust stability of uncertain time-delay systems. Int. J. Systems Sci., 22, 605-614, 1991. [46] Alwan, M. S., Liu, X., On stability of linear and weakly nonlinear switched systems with time delay, Mathematical and Computer Modelling, 48, 1150–1157, 2008. [47] Xu, H., Liu, X., Teo, K. L., Delay independent stability criteria of impulsive switched systems with time-invariant delays, Mathematical and Computer Modelling, 47, 372–379, 2008. [48]. Zhao, Y.Y., Xu, J., Performance Analysis of Passive Dynamic Vibration Absorber and Semi-active Dynamic Vibration Absorber with Delayed Feedback, International Journal of Nonlinear Sciences and Numerical Simulation 8(4), 607-614, 2007. [49]. Hou, Y.Y., Liao, T.L., Yan, J.J., Lien, C.H., Non-fragile Control for Singular Systems with State and Input Time-varying Delays, International Journal of Nonlinear Sciences and Numerical Simulation, 8(1), 31-40, 2007. [50]. Ge, Z.M., Hsiao, C.L., Chen, Y.S., Nonlinear Dynamics and Chaos Control for a Time Delay Duffing System, International Journal of Nonlinear Sciences and Numerical Simulation, 6(2), 187-200, 2005. [51]. Ucar, A., Bishop, S.R., Chaotic Behaviour in a Nonlinear Delay System, International Journal of Nonlinear Sciences and Numerical Simulation, 2(3), 289-298, 2001. [52]. Hale, J., Theory of function differential equations, Springer, New York, 1977. [53]Zhai, G., Sun, Y., Chen, X., Michel, A.N., Stability and L2 gain analysis for switched symmetric systems with time delay, Proceedings. of the American Control Conference, Denver, Colorado, June, 2682-2687, 2003. [54] Shi, J., Wu, T., Du, S., Delay-dependent robust control for switched systems with parameter uncertainties and time delay, Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, P. R. China, June 15-19, 951-955, 2004. [55]. Jafarov, E. M., Comparative analysis of simple improved delay-dependent stability criterions for linear time-delay systems: an augmented functional approach, Proceedings. of the American Control Conference, Arlington, VA, June, 3389-3394, 2001. [56] Tissir, E., Hmamed, A., “Stability tests of interval time delay systems”, Systems Control Lett, 23, 263-270, 1994. [57]. Mahmoud, M.S., Hassan, M.F., Darwish, M.G., Large-Scale Control Systems, New York: Marcel Dekker, 1985. [58]. Wang, W.J., Mau, L.G., Stabilization and estimation for perturbed discrete time-delay large-scale systems, IEEE T. Automat. Contr., 42, 1277–1282, 1997. [59]. Xie, S., Xie, L., Decentralized stabilization of a class of interconnected stochastic nonlinear systems, IEEE T. Automat. Contr., 45, 132-137, 2000. [60]. Wu, H., Decentralized adaptive robust control for a class of large-scale systems including delayed state perturbations in the Interconnections, IEEE T. Automat. Contr., 47, 1745-1751, 2002. [61] Labibi, B., Decentralized control via disturbance attenuation and eigenstructure assignment, IEEE Trans. Circuits Syst. II, 53(6), 468-472, 2006. [62]. Wang, W. J., Luoh, L., Stability and Stabilization of Fuzzy Large-Scale Systems, IEEE Transactions on Fuzzy Systems, 12(3), 309-315, 2004. [63] Persis, C. D., Santis, R. D., Morse, A.S., Switched nonlinear systems with state-dependent swell-time. Systems & Control Letters, 50, 291-302, 2003. [64] Zhai, G., Ho, B., Yasuda, K. Michel, A. N., Disturbance attenuation properties of time-controlled switched systems. Journal of the Franklin Institute, 338, 765-779, 2001. [65] Lancaster, P., Theory of Matrices, Academic Press, New York, 1969. [66] Branicky, M. S., Analysis of continuous switching systems: Theory and examples, in Proc. Amer. Control Conf., Baltimore, MD, June 29–July 1, 3110–3114, 1994. [67] Brockett, R.W., Hybrid models for motion control systems, in Essays on Control: Perspectives in the Theory and its Applications, H. L. Trentelman and J. C. Willems, Eds. Boston, MA: Birkhauser, 29–53, 1993. [68] Decarlo, R. A., Branicky, M. S., Pettersson, S., Lennartson, B., Perspectives and results on the stability and stabilizability of hybrid systems, Proceedings of the IEEE, 88, 1069-1082, 2000. [69] Sira-Ramirez, H., A Geometric Approach to Pulse-Width Modulated Control in Nonlinear Dynamical Systems., IEEE Trans. Aut. Control, 34(2), 184-187, 1989. [70] Julius, A.A., A.J. van der Schaft, The Maximal Controlled Invariant Set of Switched Linear Systems, Proceedings of the 41st IEEE, Conference on Decision and Control, Las Vegas, Nevada USA, December, 3174-3179, 2002. [71] Kolmanovskii, V. B., Nosov, V. R., Stability of Function Differential Equation, Academic Press, London. 1986. [72] Chen, C.-T., Linear System Theory and Design. New York: Rinehart and Winston, 1984. [73] Hale, J., Theory of Functional Differential Equations, Springer, New York, 1977 [74] Gahinet, P., Nemirovski, V., Laub, A.J., Chilali, M., LMI Control Toolbox for Use with Matlab, The Math Works, Natick, MA, 1995. [75].Sheng, W., Swift, S., Zhang, L., Liu, X., A weight sum validity function for clustering with a hybrid niching genetic algorithm. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 35, 1156-1167, 2005. [76].Wu, M.S., Teng, W,C., Jeng, J.H., Hsieh, J.G., Spatial correlation genetic algorithm for fractal image compression. Chaos, Solitons & Fractals, 28, 497-510, 2006. [77].Wu, Y.T., Shih, F.Y., Genetic algorithm based methodology for breaking the steganalytic systems. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 36, 24-31, 2006. [78]. Zhou, K., Khargonekar, P.P., Robust stabilization of linear systems with norm-bounded time-varying uncertainty, Syst. Control Lett., 10, 17-20, 1988.
|