跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 05:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:方士榮
研究生(外文):Shih-Jung Fang
論文名稱:以棕櫚油泥漿製備生質柴油並降低油品含水量
論文名稱(外文):Preparation and the Water Removal of Biodiesel From Sludge Palm Oil
指導教授:蔡明雄蔡明雄引用關係
指導教授(外文):Ming-Syong Cai
學位類別:碩士
校院名稱:南台科技大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:90
中文關鍵詞:棕櫚油泥漿轉酯化反應酯化反應酸催化鹼催化奈米吸水材料
外文關鍵詞:Sludge Palm Oiltransesterificationesterificationacid catalyzidalkaline catalyzidnanoabsorbent material
相關次數:
  • 被引用被引用:10
  • 點閱點閱:708
  • 評分評分:
  • 下載下載:154
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用棕櫚油泥漿(Sludge Palm Oil, SPO)做為原料來製備生質柴油。SPO不同於天然棕櫚油(Crude Palm Oil, CPO)的特點有:(1)價格低廉,牌價僅CPO的一半;(2)25℃時呈泥漿狀,固體約佔50%;(3)高脂肪酸含量,約50 wt.%。由於其含有高脂肪酸,因此SPO須先以酸催化進行酯化反應將脂肪酸轉化成生質柴油,再接著利用鹼催化進行轉酯化反應。本研究計算出棕櫚油酸價及脂肪酸含量的關係因子為0.498;SPO經酸催化與甲醇進行酯化反應後,幾乎所有的脂肪酸都轉化成脂肪酸甲酯,且水洗方式並不適合用來幫助降低酸價;由實驗結果發現在鹼催化過程,氫氧化鈉的添加量(wt.%)越多,產品中的甲酯濃度會越高,即鹼量越多會使得轉化率越高,但當觸媒量添加量過多(1.2wt.%)會與游離脂肪酸反應生成皂化物,使得兩相無法分離。而甲醇量越多,當然產率也會越高,但當超過40%時,反而會有下降的趨勢;而與高級柴油比較下可發現其特性是相當接近的。
本研究另一部份是研究生質柴油中含水量的降低。在三種不同具奈米孔洞的奈米級吸水材料中可以發現到以Silica-gel的效果最好、其次是CaO、最後則是MgO;在比較了傳統真空蒸餾方式與奈米吸水材料的去水效果後發現,以Silica-gel的效果比傳統方式好,且還可回收再利用,因此就整體成本而言確實是有可能取代傳統方式的。
In this study, the parameters to prepare the biodiesel from sludge palm oil(SPO) was studied. The SPO different from the natural palm oil (Crude Palm Oil, CPO) has the characteristics of:(1) Low price the premium is only half of the CPO;(2) mud-like at 25℃,the solid content was about 50%;(3) High fatty acid content (about 50 wt.%). SPO has high fatty acids,therefor it has to carry out the acid catalyzed esterification to convert of the fatty acids in SPO to biodiesel first, and then used the alkaline catalyzed to further transesterification the SPO.The relationship of palm oil acid valued and the content of fatty acid was calculated 0.498 in this study.;After acid catalyzed esterification with methanol, the fatty acids in SPO was completely converted to fatty acid methyl ester.The water washed method was not suitable for the reducing of the acid value;According to the experimental results,the increase of NaOH(wt%) was induced to the high content of methyl ester(i.e. the conversion was high). However, the saponification of the free fatty acid was occurred as the amount of NaOH larger than 1.2 wt.% was added which leaded to the separation of two phase more difficult. The yield of methyl ester was also directly proportional to the amounts of methanol. However, as the methanol more than 40%, the yield of methyl ester was decrease.The properties of the product can compete with these of the advanced diesel.
Another part of this study was the water removal of the biodiesel by the nanoabsorbent materials of water. Three different kinds of the materials were chose to absorb the water in biodiesel: Silica gel, CaO and MgO. The best nanoabsorber is Silica-gel, then CaO, MgO;The silica gel can recycle, it is more cost effective than the tradition method which used the vacuum distillation method to removal the remain water in biodiesel.
目錄
中文摘要……………………………………………………………………………...I
英文摘要……………………………………………………………………………...II
誌謝…………………………………………………………………………………...III
目錄…………………………………………………………………………………...IV
表目錄………………………………………………………………………………..VII
圖目錄………………………………………………………………………………..VIII
第一章 緒論……………………………………………………….............................1
1.1 前言…………………………………………………………………………..1
1.2 生質柴油的緣由……………………………………………………………..3
1.3 奈米吸水材料………………………………………………………………..5
1.4 文獻回顧……………………………………………………………………..8
1.5 研究動機……………………………………………………………………..10
第二章 相關理論………………………………………………….............................11
2.1 生質柴油簡介………………………………………………………………..11
2.1.1 生質柴油特性…………………………………………………………...11
2.1.2生質柴油發展趨勢與現況……………………………………………....15
2.2 生質柴油製備方法…………………………………………………………..18
2.2.1 物理法……………………………………………………………….......19
2.2.1.1直接混合法………………………………………………………….19
2.2.1.2微乳液法………………………………………………………….....20
2.2.2 化學法……………………………………………………………..…….22
2.2.2.1酯化法………………………………………………………….......22
2.2.2.2轉酯化法…………………………………………………………......24
2.2.3 高溫裂解法…………………………………………………………...….26
2.3生質柴油催化劑……………………………………………............................27
2.3.1均相催化劑……………………………………………………………….27
2.3.1.1傳統酸催化…………………………………………………………..27
2.3.1.2傳統鹼催化…………………………………………………………..28
2.3.1.3離子液體催化………………………………………………………..29
2.3.2非均相催化劑…………………………………………………………….30
2.3.2.1固體酸催化…………………………………………………………..30
2.3.2.2固體鹼催化…………………………………………………………..31
2.3.3生物酶催化……………………………………………………………….32
2.4生質柴油的副產品及回收……………………………………………………36
2.4.1甘油的物理化學性質與用途…………………………………………….36
2.4.2粗製甘油來源…………………………………………………………….37
2.4.2.1 化學淨化法………………………………………………………….38
2.4.2.2 離子交換淨化法…………………………………………………….41
2.4.2.3 電淨化法…………………………………………………………….42
2.4.3 粗甘油的精製……………………………………………………………42
2.4.3.1 粗甘油蒸餾法……………………………………………………….42
2.4.3.2 脫色精製法………………………………………………………….43
第三章 實驗部分……………………………………………………………………..44
3.1 藥品…………………………………………………………………………...44
3.2 實驗分析儀器與方法………………………………………………………...45
3.2.1 實驗儀器…………………………………………………………………45
3.2.2 實驗分析方法……………………………………………………………46
3.2.2.1 甲酯濃度…………………………………………………………….46
3.2.2.2 密度………………………………………………………………….46
3.2.2.3 酸價………………………………………………………………….46
3.2.2.4 水份………………………………………………………………….47
3.2.2.5 冷濾點……………………………………………………………….47
3.2.2.6 灰分………………………………………………………………….47
3.2.2.7 閃火點……………………………………………………………….47
3.2.2.8 熱值………………………………………………………………….48
3.3 實驗步驟…………………………………………………………………….53
3.3.1 生質柴油製備…………………………………………………………..53
3.3.2 奈米級吸水材料………………………………………………………..54
第四章 結果與討論…………………………………………………………………..58
4.1 生質柴油製備之研究………………………………………………………...58
4.1.1 酸催化觸媒之影響……………………………………………………..58
4.1.2 酸催化甲醇量之影響…………………………………………………..60
4.1.3樣品含水量對於反應的影響…………………………………………...62
4.1.4 鹼催化中反應時間對反應的影響……………………………………..63
4.1.5 鹼催化中甲醇量對於反應的影響……………………………………..66
4.2 去水率效果比較…………………………………………………...…………69
4.2.1 奈米吸水材料去水率效果比較……………………………..…………69
4.2.2 不同添加量的Silica-gel在不同操作時間下之去水效果比較……………………………………………………………..……….…71
4.2.3 奈米吸水材料與傳統真空蒸餾方式之去水效果比較……………...…72
4.3 引擎測試…………………………………………………………..……….….73
第五章 結論………………………………………………………………..…….……76
5.1 生質柴油製備方面……………………………………………..……….….76
5.2 奈米級吸水材料去水率效果比較……………………………..……….….77
參考文獻……………………………………………………………………………….78
參考文獻
1.F. Ma and M. A. Hanna, Biores. Tech., 70(1999)1-15.
2.湯志憲,“利用花生油製備生質柴油”遠東科技大學電子材料系論文, 民國96年1月
3.吳謀成,生物柴油,化學工業出版社,2008年1月
4.李昌珠、蔣麗娟、程樹棋,生物柴油─綠色能源,化學工業出版社 2007年1月
5.朱建良,張冠杰.“國內外生質柴油研究生產現狀及發展趨勢”.化工期刊,2004,18(1)
6.台北榮總臨床毒物科,毒資訊站期刊,第六期
7.維基百科,自由的百科全書
8.M. I. Al-Widyan and A. O. Al-Shyoukh, J.Bio.Tech.,85(2003)253-256.
9.G. W. Huber, S. Iborra and A. Corma, Chem. Rve., 2006, ASAP Article.
10.Y. Zhang, M. A. Dube, D. D. McLean and M. Kates, Biores. Tech., 89(2003)1-16.
11.G. J. Suppes, M. A. Dasari, E. J. Doskocil, P. J. Mankidy and M. J. Goff, Appl. Catal. A: General,257(2004)213-223.
12.F. Ma and M. A. Hanna, Biores. Tech., 70(1999)1-15.
13.M. Cetinkaya and F. Karaosmanoglu,Energy&Fuels,19(2005)645-652.
14.J. R. Sohn, S. H. Lee and J. S.Lim,Catalysis Today,116(2006)143-150.
15.T. Lei, J. S. Xu, Y. Tang, W. M. Hua and Z. Gao,Appl.Catal.A:General, 192(2000)181-188.
16.H. J. Berchmans , S. Hirata , Bioresource Technology 99 (2008) 1716–1721
17.Y. Wang, S. Ou, P. Liu, Z. Zhang. preparation of biodiesel from waste cooking oil via two-step catalyzed process,Energy cinversion and management 48(2007)184-188
18.A.K. Tiwari, A. Kumar, H. Raheman.biodiesel production from jatropha oil(Jatropha curcas)with high free fatty acids: An optimized process.biomass and bioenergy 31(2007)569-575
19.G. M. Tashtoush, M. I. Al-Widyan and M. M. Al-Jarrah, Energy Conv. Manag., 45(2004)2697-2711.
20.G. Vicente, M Martinez and J. Aracil, Biores.Tech.,92(2004)297-305.
21.M. I. Al-Widyan, G. Tashtoush and M. Abu-Qudais, Fuel Process. Tech., 76(2002)91-103.
22.M. G. Kulkarni and A. K. Dalai, Ind. Eng. Chem. Res., 45(2006)2901-2913.R. Alcantara, J. Amores, L. Canoira, E. Fidalgo, M.J. Franco and A. Navarro, Biomass and Bioenergy,18(2000)515-527.
23.H. Fukuda, A. Kondo and H. Noda, J Biosci. Bioeng., 92(2001)405-416.
24.S. Kalligeros, F. Zannikos, S. Stournas, E. Lois and G. Anastopoulos, Biomass and Bieoenergy, 24(2003)141-149.
25.E. Lotero, Y. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce and J.G. Goodwin, Ind. Eng. Chem. Res.,44(2005)5353-5363.
26.B. M. Reddy, P. M. Steekanth, Y. Yamadu and T. Kobayashi, J. Mole. Catalysis A: Chemical,227(2005)81-89.
27.E. Crabbe. Biodiesel Production from Crude Palm Oil and Evaluation of Butanol Extraction and Fuel Properties[J]. Process Biochemistry, 2001, 37 (1) :65~71
28.Z. Y. Biodiesel Production from Waste Cooking Oil: I Process Design and Technological Assessment Review[J]. Bioresource Technology, 2003 , 89(1):1~16.
29.M. P. Dorado ,E Ballesteros , F J Lopez, et al. Kinetic Parameters Affecting the Alkali-catalyzed Transesterification Process of Used Olive Oil[J]. Energy and Fuels , 2004, 18(1): 77~83.
30.黃慶德, 黃鳳洪, 郭萍梅. 生物柴油生產技術及其開發意義. 糧食與油脂, 2003, 9: 8~10.
31.鄔國英, 巫淼鑫. 植物油製備生質柴油[J]. 江蘇石油化工學院學報, 2002, 14(3): 8~11.
32.M. Cardone, Marco Mazzoncinl, Brassica Carinata as an Alternative Oil Crop for the Production of Biodiesel in Lataly: Agronomic Evaluation, Fuel Production by Transesterification and Characterization[J]. Biomass Bioenergy, 2003, 25:623~636.
33.A. Optimisafion of Biodiesel Production by Sunflower Oil Transesterification [J]. Bioresource Technology, 2002 83,(2) : 111~114.
34.R. Alcantara, J. Amores. Catalytic Production of Biodiesel from Soy0bean Oil, Used Frying Oil and Tallow[J] . Biomass and Bioenergy, 2000, 18:515~527.
35.F S uruta, H Matsuhashi, K Arata. Biodiesel Fuel Production with Solid Superacid Catalysis in Fixed Bed Reactor inder Atmospheric Pressure[J]. Catalysis Communication, 2004, 5(12): 721~721.
36.E Dora, Lopez, G James , Jr Goodwin, David A Brace, Transesterification of Triacetin with Methanol on Solid Acid and Base Catalysts[J]. Applied Catalysis A:General, 2005, 295(2): 97~105.
37.Y Watanabe, Y Shimada, A Sugihara, et al. Enzymatic Conversion of Waste Edible Oil to Biodiesel Fuel in a Fized-bed Bioreactor[J]. J. Am. Oil Chem. Soc. ,2001, 70(7): 703~707.
38.M. I. Al-Widyan, A.O. A..Shyoukh. Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresource Technology 85(2002)253-256
39.V.B. Veljkovic, S.H. Lakicevic, O.S. Stamenkovic, Z.B. Todorovic, M.L. Lazic, Fuel 85(2006)2671-2675.
40.A.S. Ramadhas, S. Jayaraj, C.Muraleedharan, Fuel 84 (2005)335-340.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊