跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/20 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳曉雯
研究生(外文):Hsiao -Wen Chen
論文名稱:探討Thiazolidinedione對於漢丁頓舞蹈症中脂肪與肌肉組織所扮演的功能
論文名稱(外文):Thiazolidinedione Exerts Potential Functions in Adipocyte and Muscle in Huntington’s Disease
指導教授:江明璋
指導教授(外文):Ming-Chang Chiang
學位類別:碩士
校院名稱:慈濟大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:漢丁頓氏舞蹈症脂肪肌肉粒線體C2C12細胞異常新陳代謝現象
外文關鍵詞:Huntington''s diseaseadipocytemusclemitochondriaabnormal metabolic profilesC2C12 cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
漢丁頓氏舞蹈症 (HD) 是一體染色體顯性遺傳的神經退化性疾病,導因是Huntingtin (Htt) 基因的第一表現子 (exon 1) 上,CAG三核甘酸序列重覆 (CAG trinucleotide repeats) 的數目有異常的表現。我們運用HD的轉基因老鼠模型 (R6/2),而此老鼠模型可能是因脂肪組織發生損害和肌肉體積的喪失而產生高血糖和漸進性體重減輕這兩種主要的症狀,這也有助於提供HD的病理學。在目前我們運用HD的轉基因老鼠模型 (R6/2) 上,證明在皮下及腹部的白色脂肪脂質生成的情形有顯著減少,且發現不正常新陳代謝現象如漸進性體重下降及高血糖。相較我們長期給予過氧化小體增生活化受體 (PPARγ) 的活性劑:thiazolidinedione (TZD) 後,產生包括改善漸進性體重下降和改變脂質生成的有益結果。在R6/2 老鼠模型方面,在長期給予TZD後,針對於R6/2小鼠不同組織層的白色脂肪予以以西方點墨法 (western blot) 證明TZD會增加第四型葡萄糖攜帶蛋白 (Glucose transporter type 4, GLUT4) 和蛋白激�、 (AKT/PKB) 的表現。同時我們也在細胞模型方面,運用C2C12 (肌肉細胞株) 轉殖入Htt (109Q) 經由RGZ分別處理24或48小時後,進行螢光免疫染色也觀察到RGZ能改善細胞內堆疊的形成,並且運用粒線體活化功能測定(mitochondrial function mass measurements) 和冷光蛋白活性分析 (luciferase assay) 的實驗,測定出在經由RGZ處理的C2C12細胞株,可以透過引起PPARγ活化且進而增強粒線體的表現。目前初步證明TZD會對周邊組織形成保護作用,最重要的是減少堆疊 (aggregate) 的形成,所以TZD可顯著的透過減緩異常的Htt蛋白堆疊對PPARγ的攔阻作用,並促進加強保護PPARγ的調控機制。總體而言,我們可以運用TZD治療HD所產生的新陳代謝併發症及延緩HD的發生。
Huntington's disease (HD) is an autosomal dominant hereditary neurodegenerative disease caused by a CAG trinucleotide repeats exceptional expansion of exon 1 of the Huntingtin (Htt) gene. In the present study, I used a transgenic mouse model (R6/2) of HD which exhibited high levels of blood glucose and progressive reduction in body weight. Both symptoms are two major symptoms of HD, and which might be resulted from damage of adipose tissues and loss of muscle bulk. We demonstrate herein that the alterations in lipogenesis of markedly decreased subcutaneous and abdominal white adipose tissue (WAT) and abnormal metabolic profiles such as progressive body weight lost and hyperglycemia. Chronic treatment with an agonist thiazolidinedione (TZD) of the peroxisome proliferator-activated receptor-γ (PPARγ) resulted in beneficial effects including improvements in progressive weight lost and elevated lipogenesis. Chronic treatment with TZD were further evaluated for metabolic-specific differences in the WAT of R6/2 mice. In addition, western blot analyses revealed that chronic TZD treatment increase expression of Glucose transporter type 4 (GLUT4) and protein kinases B (AKT/PKB). While in vitro that C2C12 (a muscle cell line) were transfected with Htt (109Q) and treatment with RGZ for 24, 48 hours. As shown by immunocytochemistry staining, RGZ also ameliorated intracellular aggregate formation. RGZ treatment induced PPARγ activation in C2C12 cell with mitochondrial function mass measurements. Preliminary data demonstrates that a protective role of TZD in the peripheral tissue. Most importantly, to reduce aggregate formation, TZD markedly slowed the hijacking of PPARγ by mutated Htt aggregates and further strengthened the PPARγ-mediated protective effects of drug (i.e., TZD). Collectively, we report that a TZD used for metabolic syndromes might be used to treat HD and delay the onset of HD.
目錄……………………………………………………………………I
圖、表目錄……………………………………………………………III
Abstract………………………………………………………………IV
中文摘要………………………………………………………………VI
第一章 緒論 …………………………………………………………1
(一) 漢丁頓氏舞蹈症 (Huntington’s disease, HD) 與CAG
三核�˙觸妤`重複序列導致的神經退化疾病 ……………1
(二) HD導致神經細胞死亡的機制 ………………………………2
(三) HD所誘發的代謝障礙 ………………………………………4
(四) Thiazolidinedione (TZD) 對脂肪及肌肉組織新陳代謝
的影響 ………………………………………………………7
第二章 實驗研究目的 ………………………………………………8
第三章 實驗材料與方法 ……………………………………………9
第一節 實驗動物 …………………………………………………9
第二節 蛋白質定量 ………………………………………………10
第三節 SDS-PAGE及西方點墨法 (Western Blot)………………11
第四節 組織染色法 (Histochemistry Stain)…………………13
第五節 載體 (Constructs)………………………………………14
第六節 質體DNA (Plasmid DNA) 之萃取 ………………………14
第七節 細胞培養 …………………………………………………16
第八節 細胞免疫染色法 (Immunocytochemistry) ……………16
第九節 粒腺體功能測定 (Mitochondrial Function Mass
Measurements)……………………………………………18
第十節 冷光蛋白活性分析 (Luciferase Assay)………………19
第十一節 本論文實驗耗材與試劑來源 …………………………21
第四章 實驗結果 ……………………………………………………22
第一節 在長期給予TZD處理後對R6/2體重與脂肪組織重量的
改變 ………………………………………………………22
第二節 在長期給予TZD處理後對R6/2血液中葡萄糖表現的變
化 …………………………………………………………23
第三節 TZD處理後對R6/2白色脂肪內調控葡萄糖吸收相關因
子的影響 …………………………………………………23
第四節 在長期給予TZD處理後對R6/2肌肉組織型態的影響……24
第五節 觀察給予RGZ處理後,對於表現Htt基因的C2C12細胞
所產生的影響 ……………………………………………25
第五章 討論 …………………………………………………………27
第一節 在長期給予TZD處理後對R6/2體重與脂肪組織重量的
改變 ………………………………………………………27
第二節 在長期給予TZD處理後對R6/2血液中葡萄糖表現的變
化 …………………………………………………………28
第三節 TZD處理後對R6/2白色脂肪內調控葡萄糖吸收相關因
子的影響 …………………………………………………28
第四節 在長期給予TZD處理後對R6/2肌肉組織型態的影響……30
第五節 觀察給予RGZ處理後,對於表現Htt基因的C2C12細
胞所產生的影響 …………………………………………31
第六章 未來展望 ……………………………………………………34
第七章 圖、表及說明 ………………………………………………35

表目錄
表1. 在長期給予TZD處理後對於皮下白色脂肪重量的影響……36
表2. 在長期給予TZD處理後對於腹部白色脂肪重量的影響……37
表3. 在長期給予TZD處理後對於棕色脂肪重量的影響…………38

圖目錄
圖1. 在長期給予TZD處理後脂肪組織型態的表現………………39
圖2. 在長期給予TZD處理後對皮下與腹部白色脂肪組織中
GLUT4蛋白質含量的影響……………………………………41
圖3. 在長期給予TZD處理後對皮下白色脂肪組織中AKT蛋白
質含量的影響 ………………………………………………43
圖4. 在長期給予TZD處理後肌肉組織細胞型態的表現…………44
圖5. C2C12細胞在轉殖Htt基因後給予RGZ處理24小時,觀察
細胞內產生異常Htt蛋白堆疊的情況………………………47
圖6. C2C12細胞在轉殖Htt基因後給予RGZ處理24小時,觀察
細胞內異常的Htt蛋白堆疊對於PPARγ蛋白質的表現影
響 ……………………………………………………………49
圖7. 在C2C12細胞株在轉殖Htt基因,給予RGZ、GW9662處理
24小時後,觀察粒線體的活化功能 ………………………51
圖8. 在C2C12細胞株在轉殖Htt基因,給予RGZ、GW9662處理
48小時後,觀察粒線體的活化功能 ………………………54
圖9. 在C2C12細胞株在轉殖Htt基因,給予RGZ處理24小時後
,觀察PPARγ promoter的活化表現 ………………………57
第八章 參考資料 ……………………………………………………58
附錄……………………………………………………………………70
補充資料………………………………………………………………75
附圖 1. 在長期給予TZD處理後對R6/2 mice體重的影響………76
附圖 2..在長期給予TZD處理後對R6/2 mice血糖的影響………77
(1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72:971-983.
Abbasi F, Chang SA, Chu JW, Ciaraldi TP, Lamendola C, McLaughlin T, Reaven GM, Reaven PD (2006) Improvements in insulin resistance with weight loss, in contrast to rosiglitazone, are not associated with changes in plasma adiponectin or adiponectin multimeric complexes. Am J Physiol Regul Integr Comp Physiol 290:R139-144.
Al-Khalili L, Forsgren M, Kannisto K, Zierath JR, Lonnqvist F, Krook A (2005) Enhanced insulin-stimulated glycogen synthesis in response to insulin, metformin or rosiglitazone is associated with increased mRNA expression of GLUT4 and peroxisomal proliferator activator receptor gamma co-activator 1. Diabetologia 48:1173-1179.
Andreassen OA, Dedeoglu A, Stanojevic V, Hughes DB, Browne SE, Leech CA, Ferrante RJ, Habener JF, Beal MF, Thomas MK (2002) Huntington's disease of the endocrine pancreas: insulin deficiency and diabetes mellitus due to impaired insulin gene expression. Neurobiol Dis 11:410-424.
Arenas J, Campos Y, Ribacoba R, Martin MA, Rubio JC, Ablanedo P, Cabello A (1998) Complex I defect in muscle from patients with Huntington's disease. Ann Neurol 43:397-400.
Aziz NA, van der Burg JM, Landwehrmeyer GB, Brundin P, Stijnen T, Roos RA (2008) Weight loss in Huntington disease increases with higher CAG repeat number. Neurology 71:1506-1513.
Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552-1555.
Berger J, Bailey P, Biswas C, Cullinan CA, Doebber TW, Hayes NS, Saperstein R, Smith RG, Leibowitz MD (1996) Thiazolidinediones produce a conformational change in peroxisomal proliferator-activated receptor-gamma: binding and activation correlate with antidiabetic actions in db/db mice. Endocrinology 137:4189-4195.
Bjorkqvist M, Fex M, Renstrom E, Wierup N, Petersen A, Gil J, Bacos K, Popovic N, Li JY, Sundler F, Brundin P, Mulder H (2005) The R6/2 transgenic mouse model of Huntington's disease develops diabetes due to deficient beta-cell mass and exocytosis. Hum Mol Genet 14:565-574.
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
Busch A, Engemann S, Lurz R, Okazawa H, Lehrach H, Wanker EE (2003) Mutant huntingtin promotes the fibrillogenesis of wild-type huntingtin: a potential mechanism for loss of huntingtin function in Huntington's disease. J Biol Chem 278:41452-41461.
Busse ME, Hughes G, Wiles CM, Rosser AE (2008) Use of hand-held dynamometry in the evaluation of lower limb muscle strength in people with Huntington's disease. J Neurol 255:1534-1540.
Carmona MC, Louche K, Nibbelink M, Prunet B, Bross A, Desbazeille M, Dacquet C, Renard P, Casteilla L, Penicaud L (2005) Fenofibrate prevents Rosiglitazone-induced body weight gain in ob/ob mice. Int J Obes (Lond) 29:864-871.
Chan EYW, Luthi-Carter R, Strand A, Solano SM, Hanson SA, DeJohn MM, Kooperberg C, Chase KO, DiFiglia M, Young AB, Leavitt BR, Cha J-HJ, Aronin N, Hayden MR, Olson JM (2002) Increased huntingtin protein length reduces the number of polyglutamine-induced gene expression changes in mouse models of Huntington's disease. Hum Mol Genet 11:1939-1951.
Chaturvedi RK, Adhihetty P, Shukla S, Hennessy T, Calingasan N, Yang L, Starkov A, Kiaei M, Cannella M, Sassone J, Ciammola A, Squitieri F, Beal MF (2009) Impaired PGC-1{alpha} function in muscle in Huntington's disease. Hum Mol Genet.
Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA (1994) Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology 135:798-800.
Chiang MC, Lee YC, Huang CL, Chern Y (2005) cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues. J Biol Chem 280:14331-14340.
Chiang MC, Juo CG, Chang HH, Chen HM, Yi EC, Chern Y (2007a) Systematic uncovering of multiple pathways underlying the pathology of Huntington disease by an acid-cleavable isotope-coded affinity tag approach. Mol Cell Proteomics 6:781-797.
Chiang MC, Chen HM, Lai HL, Chen HW, Chou SY, Chen CM, Tsai FJ, Chern Y (2009) The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system. Hum Mol Genet.
Chiang MC, Chen HM, Lee YH, Chang HH, Wu YC, Soong BW, Chen CM, Wu YR, Liu CS, Niu DM, Wu JY, Chen YT, Chern Y (2007b) Dysregulation of C/EBPalpha by mutant Huntingtin causes the urea cycle deficiency in Huntington's disease. Hum Mol Genet 16:483-498.
Chou SY, Lee YC, Chen HM, Chiang MC, Lai HL, Chang HH, Wu YC, Sun CN, Chien CL, Lin YS, Wang SC, Tung YY, Chang C, Chern Y (2005) CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model. J Neurochem 93:310-320.
Ciammola A, Sassone J, Alberti L, Meola G, Mancinelli E, Russo MA, Squitieri F, Silani V (2006) Increased apoptosis, Huntingtin inclusions and altered differentiation in muscle cell cultures from Huntington's disease subjects. Cell Death Differ 13:2068-2078.
De Marchi N, Mennella R (2000) Huntington's disease and its association with psychopathology. Harv Rev Psychiatry 7:278-289.
DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990-1993.
Djousse L, Knowlton B, Cupples LA, Marder K, Shoulson I, Myers RH (2002) Weight loss in early stage of Huntington's disease. Neurology 59:1325-1330.
Duan W, Guo Z, Jiang H, Ware M, Mattson MP (2003) Reversal of behavioral and metabolic abnormalities, and insulin resistance syndrome, by dietary restriction in mice deficient in brain-derived neurotrophic factor. Endocrinology 144:2446-2453.
Dunah AW, Jeong H, Griffin A, Kim YM, Standaert DG, Hersch SM, Mouradian MM, Young AB, Tanese N, Krainc D (2002) Sp1 and TAFII130 transcriptional activity disrupted in early Huntington's disease. Science 296:2238-2243.
Farrer LA (1985) Diabetes mellitus in Huntington disease. Clin Genet 27:62-67.
Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 23:9418-9427.
Festuccia WT, Oztezcan S, Laplante M, Berthiaume M, Michel C, Dohgu S, Denis RG, Brito MN, Brito NA, Miller DS, Banks WA, Bartness TJ, Richard D, Deshaies Y (2008) Peroxisome Proliferator-Activated Receptor-{gamma}-Mediated Positive Energy Balance in the Rat Is Associated with Reduced Sympathetic Drive to Adipose Tissues and Thyroid Status. Endocrinology 149:2121-2130.
Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118:127-138.
Gizatullina ZZ, Lindenberg KS, Harjes P, Chen Y, Kosinski CM, Landwehrmeyer BG, Ludolph AC, Striggow F, Zierz S, Gellerich FN (2006) Low stability of Huntington muscle mitochondria against Ca2+ in R6/2 mice. Ann Neurol 59:407-411.
Group THsDCR (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72:971-983.
Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367-377.
Hamilton JM, Wolfson T, Peavy GM, Jacobson MW, Corey-Bloom J (2004) Rate and correlates of weight change in Huntington's disease. J Neurol Neurosurg Psychiatry 75:209-212.
Hunt MJ, Morton AJ (2005) Atypical diabetes associated with inclusion formation in the R6/2 mouse model of Huntington's disease is not improved by treatment with hypoglycaemic agents. Exp Brain Res 166:220-229.
Hurlbert MS, Zhou W, Wasmeier C, Kaddis FG, Hutton JC, Freed CR (1999) Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes. Diabetes 48:649-651.
Jana NR, Tanaka M, Wang G, Nukina N (2000) Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum Mol Genet 9:2009-2018.
Kelly IE, Han TS, Walsh K, Lean ME (1999) Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 22:288-293.
Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF (1997) Energy metabolism defects in Huntington's disease and effects of coenzyme Q10. Ann Neurol 41:160-165.
Kosinski CM, Schlangen C, Gellerich FN, Gizatullina Z, Deschauer M, Schiefer J, Young AB, Landwehrmeyer GB, Toyka KV, Sellhaus B, Lindenberg KS (2007) Myopathy as a first symptom of Huntington's disease in a Marathon runner. Mov Disord 22:1637-1640.
Leeflang EP, Tavare S, Marjoram P, Neal CO, Srinidhi J, MacFarlane H, MacDonald ME, Gusella JF, de Young M, Wexler NS, Arnheim N (1999) Analysis of germline mutation spectra at the Huntington's disease locus supports a mitotic mutation mechanism. Hum Mol Genet 8:173-183.
Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 270:12953-12956.
Leung CM, Chan YW, Chang CM, Yu YL, Chen CN (1992) Huntington's disease in Chinese: a hypothesis of its origin. J Neurol Neurosurg Psychiatry 55:681-684.
Li SH, Li XJ (1998) Aggregation of N-terminal huntingtin is dependent on the length of its glutamine repeats. Hum Mol Genet 7:777-782.
Li SH, Li XJ (2004a) Huntingtin and its role in neuronal degeneration. Neuroscientist 10:467-475.
Li SH, Li XJ (2004b) Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends Genet 20:146-154.
Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, Knowler WC, Krakoff J (2002) Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet 360:57-58.
Luthi-Carter R, Strand AD, Hanson SA, Kooperberg C, Schilling G, La Spada AR, Merry DE, Young AB, Ross CA, Borchelt DR, Olson JM (2002) Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects. Hum Mol Genet 11:1927-1937.
MacMillan JC, Morrison PJ, Nevin NC, Shaw DJ, Harper PS, Quarrell OW, Snell RG (1993) Identification of an expanded CAG repeat in the Huntington's disease gene (IT15) in a family reported to have benign hereditary chorea. J Med Genet 30:1012-1013.
Mangiarini L, Sathasivam K, Seller M, Cozens B, Harper A, Hetherington C, Lawton M, Trottier Y, Lehrach H, Davies SW, Bates GP (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493-506.
Morfini G, Pigino G, Brady ST (2005) Polyglutamine expansion diseases: failing to deliver. Trends Mol Med 11:64-70.
Mori Y, Murakawa Y, Okada K, Horikoshi H, Yokoyama J, Tajima N, Ikeda Y (1999) Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 22:908-912.
Orth M, Cooper JM, Bates GP, Schapira AH (2003) Inclusion formation in Huntington's disease R6/2 mouse muscle cultures. J Neurochem 87:1-6.
Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci 5:731-736.
Podolsky S, Leopold NA (1977) Abnormal glucose tolerance and arginine tolerance tests in Huntington's disease. Gerontology 23:55-63.
Podolsky S, Leopold NA, Sax DS (1972) Increased frequency of diabetes mellitus in patients with Huntington's chorea. Lancet 1:1356-1358.
Poirier MA, Jiang H, Ross CA (2005) A structure-based analysis of huntingtin mutant polyglutamine aggregation and toxicity: evidence for a compact beta-sheet structure. Hum Mol Genet 14:765-774.
Popovic V, Svetel M, Djurovic M, Petrovic S, Doknic M, Pekic S, Miljic D, Milic N, Glodic J, Dieguez C, Casanueva FF, Kostic V (2004) Circulating and cerebrospinal fluid ghrelin and leptin: potential role in altered body weight in Huntington's disease. Eur J Endocrinol 151:451-455.
Quintanilla RA, Jin YN, Fuenzalida K, Bronfman M, Johnson GV (2008) Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease. J Biol Chem 283:25628-25637.
Ravikumar B, Stewart A, Kita H, Kato K, Duden R, Rubinsztein DC (2003) Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum Mol Genet 12:985-994.
Reddy TR, Xu W, Mau JK, Goodwin CD, Suhasini M, Tang H, Frimpong K, Rose DW, Wong-Staal F (1999) Inhibition of HIV replication by dominant negative mutants of Sam68, a functional homolog of HIV-1 Rev. Nat Med 5:635-642.
Ribchester RR, Thomson D, Wood NI, Hinks T, Gillingwater TH, Wishart TM, Court FA, Morton AJ (2004) Progressive abnormalities in skeletal muscle and neuromuscular junctions of transgenic mice expressing the Huntington's disease mutation. Eur J Neurosci 20:3092-3114.
Ross CA (2002) Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35:819-822.
Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45:1661-1669.
Sanberg PR, Fibiger HC, Mark RF (1981) Body weight and dietary factors in Huntington's disease patients compared with matched controls. Med J Aust 1:407-409.
Sanchez I, Xu CJ, Juo P, Kakizaka A, Blenis J, Yuan J (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22:623-633.
Sassone J, Colciago C, Cislaghi G, Silani V, Ciammola A (2009) Huntington's disease: The current state of research with peripheral tissues. Exp Neurol.
Sathasivam K, Hobbs C, Turmaine M, Mangiarini L, Mahal A, Bertaux F, Wanker EE, Doherty P, Davies SW, Bates GP (1999) Formation of polyglutamine inclusions in non-CNS tissue. Hum Mol Genet 8:813-822.
Saudou F, Finkbeiner S, Devys D, Greenberg ME (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95:55-66.
Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell 15:95-105.
Schoonjans K, Auwerx J (2000) Thiazolidinediones: an update. Lancet 355:1008-1010.
Schubotz R, Hausmann L, Kaffarnik H, Zehner J, Oepen H (1976) [Fatty acid patterns and glucose tolerance in Huntington's chorea (author's transl)]. Res Exp Med (Berl) 167:203-215.
Shakespeare J, Anderson J (1993) Huntington's disease--falling through the net. Health Trends 25:19-23.
Shim WS, Do MY, Kim SK, Kim HJ, Hur KY, Kang ES, Ahn CW, Lim SK, Lee HC, Cha BS (2006) The long-term effects of rosiglitazone on serum lipid concentrations and body weight. Clin Endocrinol (Oxf) 65:453-459.
Sipione S, Rigamonti D, Valenza M, Zuccato C, Conti L, Pritchard J, Kooperberg C, Olson JM, Cattaneo E (2002) Early transcriptional profiles in huntingtin-inducible striatal cells by microarray analyses. Hum Mol Genet 11:1953-1965.
Stump CS, Hamilton MT, Sowers JR (2006) Effect of antihypertensive agents on the development of type 2 diabetes mellitus. Mayo Clin Proc 81:796-806.
Suhr ST, Senut MC, Whitelegge JP, Faull KF, Cuizon DB, Gage FH (2001) Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol 153:283-294.
Trayhurn P, Wood IS (2005) Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans 33:1078-1081.
Tsai YS, Kim HJ, Takahashi N, Kim HS, Hagaman JR, Kim JK, Maeda N (2004) Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARgamma. J Clin Invest 114:240-249.
Turner C, Cooper JM, Schapira AH (2007) Clinical correlates of mitochondrial function in Huntington's disease muscle. Mov Disord 22:1715-1721.
Walker GE, Marzullo P, Verti B, Guzzaloni G, Maestrini S, Zurleni F, Liuzzi A, Di Blasio AM (2008) Subcutaneous Abdominal Adipose Tissue Subcompartments: Potential Role in Rosiglitazone Effects. Obesity (Silver Spring).
Wyttenbach A, Sauvageot O, Carmichael J, Diaz-Latoud C, Arrigo AP, Rubinsztein DC (2002) Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 11:1137-1151.
Wyttenbach A, Carmichael J, Swartz J, Furlong RA, Narain Y, Rankin J, Rubinsztein DC (2000) Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc Natl Acad Sci U S A 97:2898-2903.
Zhang XJ, Xiong ZB, Tang AL, Ma H, Ma YD, Wu JG, Dong YG (2009) Rosiglitazone -induced myocardial protection against ischaemia/reperfusion injury is mediated through a PI3K/Akt-dependent pathway. Clin Exp Pharmacol Physiol.
Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217-247.
Zuccato C, Tartari M, Crotti A, Goffredo D, Valenza M, Conti L, Cataudella T, Leavitt BR, Hayden MR, Timmusk T, Rigamonti D, Cattaneo E (2003) Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat Genet 35:76-83.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top