( 您好!臺灣時間:2021/05/16 21:44
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Jin-Ming Chang
論文名稱(外文):Evaluation of the Cardiovascular Effects in Conscious SHR and WKY Rats during Chronic Intermittent Hypoxia
指導教授(外文):Hsun-Hsun Lin
外文關鍵詞:Intermittent hypoxiaRVLMNMDAROS
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
在清醒的SD大鼠研究中發現,慢性間歇性低氧(Chronic intermittent hypoxia, CIH)引發的系統性高血壓和動物體交感神經活性增加有關。在細胞培養或動物模式中也發現,CIH會增加反應性氧衍生物(reactive oxygen species, ROS)之生成,而且這種ROS導引的訊息機制所造成的細胞與系統反應包含高血壓和心跳過速。此外,雖然機制尚未清楚,然已有一些文獻指出CIH會造成中樞神經細胞和周邊頸動脈體上功能性NMDA受體(N-methy-D-asparate receptors, NMDARs)表現量增加。由於正常血壓大鼠(Wistar-Kyoto, WKY)與自發性高血壓大鼠(spontaneously hypertensive rats, SHR)對反覆施於壓力時呈現不同之心血管反應;因此,我們企欲了解清醒的WKY 和SHR在CIH期間,此兩品系之動物,會產生何種心血管反應,以及是否藉由NMDA受體與反應性氧衍生物兩者而產生該心血管作用。我們利用無線遙測發報器偵測記錄清醒SHR與WKY大鼠血壓之變化;西方墨點法則用來偵測,中樞交感興奮性腦幹核區,前腹外側延腦區(rostral ventrolateral medulla, RVLM)上NMDA受體次單位與抗氧化酵素的表現量。CIH的實驗模式是利用SHR及WKY大鼠於光亮時間中的6小時,交替給予灌流30秒純氮氣後45秒空氣,連續三天、七天或十四天。我們實驗結果顯示WKY大鼠在CIH處理前四天,血壓有明顯逐漸下降趨勢且達統計上意義,但低氧處理後第五天至第七天,WKY血壓上升至與空氣組相似程度。同時,CIH七天處理後,NMDA次單元NR2A表現量明顯增加;低氧處理七天,則SOD1與SOD2蛋白質表現量明顯下降,兩者皆達統計意義。CIH處理後SHR與WKY大鼠基礎血壓值並無顯著變化。SHR大鼠在CIH七天與十四天處理後,RVLM上NMDA受體次單元NR1與NR2B有明顯上升趨勢;而低氧處理七天,SOD2與Catalase(CAT)蛋白質表現量明顯下降。我們猜測WKY大鼠在CIH處理過程中NR2A表現量增加與SOD1及SOD2蛋白質表現量降低,與其血壓恢復有相關聯。然而,改變NMDA受體次單位與抗氧化酵素,是否參與了SHR在間歇性低氧後的心血管調控,則仍然未知。SHR與WKY大鼠在CIH處理後反應上之差異,可能與不同品系動物對低氧適應能力不同有關。
Chronic intermittent hypoxia (CIH) induced systemic hypertension is associated with increased sympathetic outflow in conscious SD rats. IH also increases reactive oxygen species (ROS) generation both in cell culture and in intact animals and ROS-mediated signalling mechanisms contribute to cellular and systemic responses including hypertension and tachycardia. In addition, although the details aren,t worked out yet, there are several studies that observed an increase of expression of functional NMDA receptors in the rat central neurons or peripheral carotid body after IH. Because the cardiovascular responses of Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) to repeated stress are different, it interests us to know the responses in conscious SHR and WKY rats during IH, and whether NMDA receptor or ROS contributes the cardiovascular effects of IH in both strains of rat. In the present study, radiotelemetry was use to record the blood pressure in conscious SHR and WKY rats during IH treatment and western blot analysis was use to detect the expression of NMDA receptor subunits or antioxidant enzymes in central sympathoactivating brainstem nuclei, rostral ventrolateral medulla (RVLM). The IH was designed by applied 30 s pure nitrogen followed by 45 s air to SHR and WKY rats during the light phase (6 h) for 3, 7 or 14 consecutive days. Our results showed that the blood pressure of WKY rats was falling down gradually and significantly during IH challenge throughout the first 4-days treatment, then increasing to room air treated WKY rat level by day 5 of the 7-day regimen. Meanwhile, the NR2A subunits increased significantly after 7 day’s IH challenge and the expression of SOD1, SOD2 decreased significantly after 7 day’s IH treatment. The baseline blood pressure was not changed in both WKY and SHR after 7 day’s IH. The expression of NR1 and NR2B subunits on the RVLM were elevated significantly after 7- and 14-day IH treatment, yet the SOD2 and CAT decreased significantly after 7 day’s IH treatment in SHR. We speculated that the increase of NR2A subunit express and decreased of SOD1 and SOD2 express in RVLM is related to restoration of the blood pressure during IH challenge in WKY. However, it remains unclear whether the changes of NMDA receptor subunits and antioxidant enzymes can contribute the cardiovascular regulation of SHR after IH treatment. The differential response to IH challenge between WKY and SHR may imply the different adaptation ability of animals to hypoxia condition.

中文摘要 3
英文摘要 4
壹、背景介紹 6
1、間歇性低氧與生理反應: 6
2、間歇性低氧引發高血壓作用機制: 7
3、間歇性低氧與前腹外側延腦(rostral ventrolateral medulla, RVLM)之相關研究 8
4、間歇性低氧與反應性氧衍生物(reactive oxygen species, ROS)之相關性 10
貳、研究目的與實驗設計 13
一、理論基礎 13
二、實驗假說與目的 13
三、實驗設計 14
參、實驗方法材料與詳細步驟 17
(一) 實驗動物 17
(二) 間歇性低氧模式 17
(三) 正常氧分壓模式 17
(四) 血壓之測量 17
(五) 體內實驗(in vivo studies) 18
(六) 體外實驗(in vitro studies) 19
(七) 統計分析 21
肆、實驗結果 21
伍、討論 25
陸、結論 31
柒、參考文獻 32
附錄一 55
Allen, AM, Moeller, I, Jenkins, TA, Zhuo, J, Aldred, GP, Chai, SY, Mendelsohn, FA (1998) Angiotensin receptors in the nervous system. Brain Res Bull 47(1): 17-28.

Averill, DB, Tsuchihashi, T, Khosla, MC, Ferrario, CM (1994) Losartan, nonpeptide angiotensin II-type 1 (AT1) receptor antagonist, attenuates pressor and sympathoexcitatory responses evoked by angiotensin II and L-glutamate in rostral ventrolateral medulla. Brain Res 665(2): 245-252.

Baguet, JP, Narkiewicz, K, Mallion, JM (2006) Update on Hypertension Management: obstructive sleep apnea and hypertension. J Hypertens 24(1): 205-208.

Bao, G, Metreveli, N, Li, R, Taylor, A, Fletcher, EC (1997) Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol 83(1): 95-101.

Bisgard, GE (2000) Carotid body mechanisms in acclimatization to hypoxia. Respir Physiol 121(2-3): 237-246.

Brown, DL, Guyenet, PG (1984) Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247(6 Pt 2): R1009-1016.

Budhiraja, R, Parthasarathy, S, Quan, SF (2007) Endothelial dysfunction in obstructive sleep apnea. J Clin Sleep Med 3(4): 409-415.

Canuelo, A, Siles, E, Martinez-Romero, R, Peinado, MA, Martinez-Lara, E (2007) The nitric oxide system response to hypoxia/reoxygenation in the aged cerebral cortex. Exp Gerontol 42(12): 1137-1145.

Caples, SM, Garcia-Touchard, A, Somers, VK (2007) Sleep-disordered breathing and cardiovascular risk. Sleep 30(3): 291-303.

Carlson, JT, Hedner, J, Elam, M, Ejnell, H, Sellgren, J, Wallin, BG (1993) Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest 103(6): 1763-1768.

Chan, SH, Tai, MH, Li, CY, Chan, JY (2006) Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free Radic Biol Med 40(11): 2028-2039.

Dampney, RA (1994a) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74(2): 323-364.

Dampney, RA (1994b) The subretrofacial vasomotor nucleus: anatomical, chemical and pharmacological properties and role in cardiovascular regulation. Prog Neurobiol 42(2): 197-227.

Dampney, RA, Kumada, M, Reis, DJ (1979) Central neural mechanisms of the cerebral ischemic response. Characterization, effect of brainstem and cranial nerve transections, and simulation by electrical stimulation of restricted regions of medulla oblongata in rabbit. Circ Res 45(1): 48-62.

de Paula, PM, Tolstykh, G, Mifflin, S (2007) Chronic intermittent hypoxia alters NMDA and AMPA-evoked currents in NTS neurons receiving carotid body chemoreceptor inputs. Am J Physiol Regul Integr Comp Physiol 292(6): R2259-2265.

Delivoria-Papadopoulos, M, Mishra, OP (1998) Mechanisms of cerebral injury in perinatal asphyxia and strategies for prevention. J Pediatr 132(3 Pt 2): S30-34.

Dobrian, AD, Davies, MJ, Schriver, SD, Lauterio, TJ, Prewitt, RL (2001) Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 37(2 Part 2): 554-560.

Ferguson, AV, Latchford, KJ (2000) Local circuitry regulates the excitability of rat neurohypophysial neurones. Exp Physiol 85 Spec No: 153S-161S.

Fletcher, EC, Lesske, J, Behm, R, Miller, CC, 3rd, Stauss, H, Unger, T (1992) Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Physiol 72(5): 1978-1984.

Fridovich, I (1997) Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272(30): 18515-18517.

Gao, L, Wang, W, Li, YL, Schultz, HD, Liu, D, Cornish, KG, Zucker, IH (2004) Superoxide mediates sympathoexcitation in heart failure: roles of angiotensin II and NAD(P)H oxidase. Circ Res 95(9): 937-944.

Gao, L, Wang, W, Li, YL, Schultz, HD, Liu, D, Cornish, KG, Zucker, IH (2005) Sympathoexcitation by central ANG II: roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM. Am J Physiol Heart Circ Physiol 288(5): H2271-2279.

Gieroba, ZJ, Blessing, WW (1993) Blockade of excitatory amino acid receptors in the ventrolateral medulla does not abolish the cardiovascular actions of L-glutamate. Naunyn Schmiedebergs Arch Pharmacol 347(1): 66-72.

Griendling, KK, Sorescu, D, Ushio-Fukai, M (2000a) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5): 494-501.

Griendling, KK, Ushio-Fukai, M (2000b) Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept 91(1-3): 21-27.

Guertzenstein, PG, Silver, A (1974) Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol 242(2): 489-503.

Guyenet, PG (2000) Neural structures that mediate sympathoexcitation during hypoxia. Respir Physiol 121(2-3): 147-162.

Hirooka, Y, Potts, PD, Dampney, RA (1997) Role of angiotensin II receptor subtypes in mediating the sympathoexcitatory effects of exogenous and endogenous angiotensin peptides in the rostral ventrolateral medulla of the rabbit. Brain Res 772(1-2): 107-114.

Hla, KM, Young, TB, Bidwell, T, Palta, M, Skatrud, JB, Dempsey, J (1994) Sleep apnea and hypertension. A population-based study. Ann Intern Med 120(5): 382-388.

Jordan, W, Cohrs, S, Degner, D, Meier, A, Rodenbeck, A, Mayer, G, Pilz, J, Ruther, E, Kornhuber, J, Bleich, S (2006) Evaluation of oxidative stress measurements in obstructive sleep apnea syndrome. J Neural Transm 113(2): 239-254.

Kerr, S, Brosnan, MJ, McIntyre, M, Reid, JL, Dominiczak, AF, Hamilton, CA (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33(6): 1353-1358.

Kimura, Y, Hirooka, Y, Sagara, Y, Ito, K, Kishi, T, Shimokawa, H, Takeshita, A, Sunagawa, K (2005) Overexpression of inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Circ Res 96(2): 252-260.

Kishi, T, Hirooka, Y, Ito, K, Sakai, K, Shimokawa, H, Takeshita, A (2002) Cardiovascular effects of overexpression of endothelial nitric oxide synthase in the rostral ventrolateral medulla in stroke-prone spontaneously hypertensive rats. Hypertension 39(2): 264-268.

Kishi, T, Hirooka, Y, Kimura, Y, Ito, K, Shimokawa, H, Takeshita, A (2004) Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation 109(19): 2357-2362.

Kishi, T, Hirooka, Y, Kimura, Y, Sakai, K, Ito, K, Shimokawa, H, Takeshita, A (2003) Overexpression of eNOS in RVLM improves impaired baroreflex control of heart rate in SHRSP. Rostral ventrolateral medulla. Stroke-prone spontaneously hypertensive rats. Hypertension 41(2): 255-260.

Kishi, T, Hirooka, Y, Sakai, K, Shigematsu, H, Shimokawa, H, Takeshita, A (2001) Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 38(4): 896-901.

Koshiya, N, Huangfu, D, Guyenet, PG (1993) Ventrolateral medulla and sympathetic chemoreflex in the rat. Brain Res 609(1-2): 174-184.

Kubo, T, Amano, M, Asari, T (1993) N-methyl-D-aspartate receptors but not non-N-methyl-D-aspartate receptors mediate hypertension induced by carotid body chemoreceptor stimulation in the rostral ventrolateral medulla of the rat. Neurosci Lett 164(1-2): 113-116.

Lahiri, S, Rozanov, C, Cherniack, NS (2000) Altered structure and function of the carotid body at high altitude and associated chemoreflexes. High Alt Med Biol 1(1): 63-74.

Lai, CJ, Yang, CC, Hsu, YY, Lin, YN, Kuo, TB (2006) Enhanced sympathetic outflow and decreased baroreflex sensitivity are associated with intermittent hypoxia-induced systemic hypertension in conscious rats. J Appl Physiol 100(6): 1974-1982.

Lavie, L, Vishnevsky, A, Lavie, P (2004) Evidence for lipid peroxidation in obstructive sleep apnea. Sleep 27(1): 123-128.

Li, N, Ragheb, K, Lawler, G, Sturgis, J, Rajwa, B, Melendez, JA, Robinson, JP (2003) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278(10): 8516-8525.

Li, YW, Guyenet, PG, Bayliss, DA (1998) Voltage-dependent calcium currents in bulbospinal neurons of neonatal rat rostral ventrolateral medulla: modulation by alpha2-adrenergic receptors. J Neurophysiol 79(2): 583-594.

Lindley, TE, Doobay, MF, Sharma, RV, Davisson, RL (2004) Superoxide is involved in the central nervous system activation and sympathoexcitation of myocardial infarction-induced heart failure. Circ Res 94(3): 402-409.

Liu, Y, Ji, ES, Xiang, S, Tamisier, R, Tong, J, Huang, J, Weiss, JW (2009) Exposure to cyclic intermittent hypoxia increases expression of functional NMDA receptors in the rat carotid body. J Appl Physiol 106(1): 259-267.

Machaalani, R, Waters, KA (2002) Distribution and quantification of NMDA R1 mRNA and protein in the piglet brainstem and effects of intermittent hypercapnic hypoxia (IHH). Brain Res 951(2): 293-300.

Martin, LJ, Al-Abdulla, NA, Brambrink, AM, Kirsch, JR, Sieber, FE, Portera-Cailliau, C (1998) Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull 46(4): 281-309.

Mayorov, DN, Head, GA, De Matteo, R (2004) Tempol attenuates excitatory actions of angiotensin II in the rostral ventrolateral medulla during emotional stress. Hypertension 44(1): 101-106.

McCord, JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108(8): 652-659.

McDonald, JW, Johnston, MV (1990) Pharmacology of N-methyl-D-aspartate-induced brain injury in an in vivo perinatal rat model. Synapse 6(2): 179-188.

McGuire, M, Zhang, Y, White, DP, Ling, L (2003) Chronic intermittent hypoxia enhances ventilatory long-term facilitation in awake rats. J Appl Physiol 95(4): 1499-1508.

McIntyre, M, Bohr, DF, Dominiczak, AF (1999) Endothelial function in hypertension: the role of superoxide anion. Hypertension 34(4 Pt 1): 539-545.

Meng, S, Roberts, LJ, 2nd, Cason, GW, Curry, TS, Manning, RD, Jr. (2002) Superoxide dismutase and oxidative stress in Dahl salt-sensitive and -resistant rats. Am J Physiol Regul Integr Comp Physiol 283(3): R732-738.

Mifflin, SW (1992) Arterial chemoreceptor input to nucleus tractus solitarius. Am J Physiol 263(2 Pt 2): R368-375.

Miyawaki, T, Minson, J, Arnolda, L, Llewellyn-Smith, I, Chalmers, J, Pilowsky, P (1996) AMPA/kainate receptors mediate sympathetic chemoreceptor reflex in the rostral ventrolateral medulla. Brain Res 726(1-2): 64-68.

Mizusawa, A, Ogawa, H, Kikuchi, Y, Hida, W, Kurosawa, H, Okabe, S, Takishima, T, Shirato, K (1994) In vivo release of glutamate in nucleus tractus solitarii of the rat during hypoxia. J Physiol 478 ( Pt 1): 55-66.

Narkiewicz, K, Pesek, CA, van de Borne, PJ, Kato, M, Somers, VK (1999) Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failure. Circulation 100(3): 262-267.

Narkiewicz, K, van de Borne, PJ, Montano, N, Dyken, ME, Phillips, BG, Somers, VK (1998) Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation 97(10): 943-945.

Otoya, RE, Seltzer, AM, Donoso, AO (1997) Acute and long-lasting effects of neonatal hypoxia on (+)-3-[125I]MK-801 binding to NMDA brain receptors. Exp Neurol 148(1): 92-99.

Palomaki, H, Partinen, M, Erkinjuntti, T, Kaste, M (1992) Snoring, sleep apnea syndrome, and stroke. Neurology 42(7 Suppl 6): 75-81; discussion 82.

Parati, G, Di Rienzo, M, Bonsignore, MR, Insalaco, G, Marrone, O, Castiglioni, P, Bonsignore, G, Mancia, G (1997) Autonomic cardiac regulation in obstructive sleep apnea syndrome: evidence from spontaneous baroreflex analysis during sleep. J Hypertens 15(12 Pt 2): 1621-1626.

Paton, JF, Boscan, P, Murphy, D, Kasparov, S (2001) Unravelling mechanisms of action of angiotensin II on cardiorespiratory function using in vivo gene transfer. Acta Physiol Scand 173(1): 127-137.

Peng, YJ, Overholt, JL, Kline, D, Kumar, GK, Prabhakar, NR (2003) Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A 100(17): 10073-10078.

Pilowsky, PM, Goodchild, AK (2002) Baroreceptor reflex pathways and neurotransmitters: 10 years on. J Hypertens 20(9): 1675-1688.

Prabhakar, NR, Fields, RD, Baker, T, Fletcher, EC (2001) Intermittent hypoxia: cell to system. Am J Physiol Lung Cell Mol Physiol 281(3): L524-528.

Reeves, SR, Gozal, E, Guo, SZ, Sachleben, LR, Jr., Brittian, KR, Lipton, AJ, Gozal, D (2003) Effect of long-term intermittent and sustained hypoxia on hypoxic ventilatory and metabolic responses in the adult rat. J Appl Physiol 95(5): 1767-1774.

Reis, DJ, Golanov, EV, Ruggiero, DA, Sun, MK (1994) Sympatho-excitatory neurons of the rostral ventrolateral medulla are oxygen sensors and essential elements in the tonic and reflex control of the systemic and cerebral circulations. J Hypertens Suppl 12(10): S159-180.

Rey, S, Del Rio, R, Alcayaga, J, Iturriaga, R (2004) Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J Physiol 560(Pt 2): 577-586.

Richardson, BS, Carmichael, L, Homan, J, Patrick, JE (1993) Cerebral oxidative metabolism in fetal sheep with prolonged and graded hypoxemia. J Dev Physiol 19(2): 77-83.

Ross, CA, Ruggiero, DA, Park, DH, Joh, TH, Sved, AF, Fernandez-Pardal, J, Saavedra, JM, Reis, DJ (1984) Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4(2): 474-494.

Row, BW, Liu, R, Xu, W, Kheirandish, L, Gozal, D (2003) Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat. Am J Respir Crit Care Med 167(11): 1548-1553.

Schnackenberg, CG, Welch, WJ, Wilcox, CS (1998) Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 32(1): 59-64.

Sheriff, MJ, Fontes, MA, Killinger, S, Horiuchi, J, Dampney, RA (2006) Blockade of AT1 receptors in the rostral ventrolateral medulla increases sympathetic activity under hypoxic conditions. Am J Physiol Regul Integr Comp Physiol 290(3): R733-740.

Sun, MK, Jeske, IT, Reis, DJ (1992) Cyanide excites medullary sympathoexcitatory neurons in rats. Am J Physiol 262(2 Pt 2): R182-189.

Sun, MK, Reis, DJ (1994) Hypoxia-activated Ca2+ currents in pacemaker neurones of rat rostral ventrolateral medulla in vitro. J Physiol 476(1): 101-116.

Sun, MK, Reis, DJ (1995) NMDA receptor-mediated sympathetic chemoreflex excitation of RVL-spinal vasomotor neurones in rats. J Physiol 482 ( Pt 1): 53-68.

Suzuki, M, Nishina, M, Nakamura, S, Maruyama, K (2003) Endogenous GABA in the commissural subnucleus of the NTS inhibits the carotid chemoreceptor reflex via GABA A receptors in rats. J Neural Transm 110(3): 211-218.

Tai, MH, Wang, LL, Wu, KL, Chan, JY (2005) Increased superoxide anion in rostral ventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide. Free Radic Biol Med 38(4): 450-462.

Taniyama, Y, Griendling, KK (2003) Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42(6): 1075-1081.

Tishler, PV, Larkin, EK, Schluchter, MD, Redline, S (2003) Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing. JAMA 289(17): 2230-2237.

Toffoli, S, Michiels, C (2008) Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J 275(12): 2991-3002.

Touyz, RM (2004) Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension 44(3): 248-252.

Vardhan, A, Kachroo, A, Sapru, HN (1993) Excitatory amino acid receptors in commissural nucleus of the NTS mediate carotid chemoreceptor responses. Am J Physiol 264(1 Pt 2): R41-50.

Vecchione, C, Aretini, A, Marino, G, Bettarini, U, Poulet, R, Maffei, A, Sbroggio, M, Pastore, L, Gentile, MT, Notte, A, Iorio, L, Hirsch, E, Tarone, G, Lembo, G (2006) Selective Rac-1 inhibition protects from diabetes-induced vascular injury. Circ Res 98(2): 218-225.

Verberne, AJ, Owens, NC (1998) Cortical modulation of the cardiovascular system. Prog Neurobiol 54(2): 149-168.

Wang, Y, Patel, KP, Cornish, KG, Channon, KM, Zucker, IH (2003) nNOS gene transfer to RVLM improves baroreflex function in rats with chronic heart failure. Am J Physiol Heart Circ Physiol 285(4): H1660-1667.

Xu, W, Chi, L, Row, BW, Xu, R, Ke, Y, Xu, B, Luo, C, Kheirandish, L, Gozal, D, Liu, R (2004) Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 126(2): 313-323.

Young, T, Palta, M, Dempsey, J, Skatrud, J, Weber, S, Badr, S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328(17): 1230-1235.

Young, T, Peppard, PE, Gottlieb, DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165(9): 1217-1239.

Youngson, C, Nurse, C, Yeger, H, Cutz, E (1993) Oxygen sensing in airway chemoreceptors. Nature 365(6442): 153-155.

Yuan, G, Adhikary, G, McCormick, AA, Holcroft, JJ, Kumar, GK, Prabhakar, NR (2004) Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol 557(Pt 3): 773-783.

Zanzinger, J, Czachurski, J (2000) Chronic oxidative stress in the RVLM modulates sympathetic control of circulation in pigs. Pflugers Arch 439(4): 489-494.

Zhang, W, Mifflin, SW (1995) Excitatory amino-acid receptors contribute to carotid sinus and vagus nerve evoked excitation of neurons in the nucleus of the tractus solitarius. J Auton Nerv Syst 55(1-2): 50-56.

Zhang, W, Mifflin, SW (1993) Excitatory amino acid receptors within NTS mediate arterial chemoreceptor reflexes in rats. Am J Physiol 265(2 Pt 2): H770-773.

Zimmerman, MC, Davisson, RL (2004) Redox signaling in central neural regulation of cardiovascular function. Prog Biophys Mol Biol 84(2-3): 125-149.
第一頁 上一頁 下一頁 最後一頁 top