(3.236.214.19) 您好!臺灣時間:2021/05/10 03:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃宣綺
研究生(外文):Hsuan-Chi Huang
論文名稱:抑制一氧化氮產生可促進再接合顏面神經內的微小管聚合
論文名稱(外文):Inhibition of nitric oxide production promotes microtubule assembly in the reconnected facial nerve
指導教授:劉培新劉培新引用關係
指導教授(外文):Pei-Hsin Liu
學位類別:碩士
校院名稱:慈濟大學
系所名稱:生理暨解剖醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:36
中文關鍵詞:顏面神經軸突截斷神經傳導檢查微小管一氧化氮
外文關鍵詞:facial nerveaxotomynerve conduction studymicrotubulenitric oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
我們最近報導,顏面神經截斷再縫合後,於腹膜腔內注射一氧化氮合成�〞漣磻蹌砲i促進受傷顏面運動神經元軸突的再生。其機制可能與神經元細胞體內的自由基環境有關,因為給予一氧化氮合成�〞漣磻蹌祕P時也抑制了細胞內一氧化氮合成�〞漯穛{大幅增加。然而,自由基對於軸突再生所產生的效應未必要間接透過影響神經元細胞體,而可直接作用在神經元軸突。最近的研究顯示,一氧化氮及peroxynitrite可對神經元的微小管蛋白及微小管相關蛋白造成氧化傷害。因此,本研究藉由in vitro及in vivo的方法探討顏面神經截斷再縫合後,一氧化氮合成�“磻蹌笆鴭鬊C面神經內細胞骨架微小管所產生的影響。電生理檢測結果顯示,將一氧化氮合成�“磻蹌烊-NAME注射到再接合的顏面神經中,為時二週,比一氧化氮生成劑GSNO更能促進軸突再生及傳導功能回復。此變化可能與軸突內的微小管有關,因為抑制一氧化氮合成同時也提高微小管蛋白的聚合活性及tau (神經元特有的微小管相關蛋白) 幫助微小管聚合的能力。相反地,無論是in vitro或in vivo給予GSNO皆抑制微小管蛋白的聚合。我們也發現顏面神經縫合處的近端神經段中,若給予GSNO會比L-NAME造成α-tubulin及tau 有較大程度的tyrosine nitration及phosphorylation,以及減低α-tubulin的acetylation。我們的研究結果顯示,抑制一氧化氮的產生可促進微小管聚合,也可能因此有助於顏面神經元軸突的再生。微小管聚合的活性可能部分藉由微小管蛋白及tau的修飾來調控。直接於再接合周邊神經給予一氧化氮合成�“磻蹌砲i能可作為周邊神經修復的輔助治療方式。
We recently reported that intraperitoneal injection of nitric oxide synthase (NOS) inhibitors promotes facial axonal regeneration following neurorrhaphy. The underlying mechanism may involve the intracellular free radical environment since treatment of NOS inhibitors prevents the intraneuronal large-scale upregulation of NOS. However, the free radical-mediated effect on axonal regeneration may not need to occur indirectly via influencing on the neuronal cell body but instead directly on the neuronal axon. Here we investigated the effect of NOS inhibitor on the microtubule cytoskeleton within the repaired facial axons via combined in vitro and in vivo approaches since neuronal tubulins, the building blocks of microtubules, and microtubule-associated proteins (MAPs) have been demonstrated as candidate targets to NO/ONOO−. Electrophysiology revealed that application of a NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME), rather than a NO donor S-nitrosoglutathione (GSNO), into reconnected facial nerves for 2 weeks facilitates axonal regeneration and functional recovery. These changes may be associated with axonal microtubules since NOS inhibition enhanced the activity of tubulin polymerization and the ability of tau, a neuron-specific MAP, to promote microtubule assembly. On the contrary, both in vitro and in vivo treatment with GSNO, prohibited tubulin polymerization. We also show that application of GSNO, rather than L-NAME, resulted in larger extent of tyrosine nitration and phosphorylation of α-tubulin and tau, as well as less extent of acetylation of α-tubulin in the proximal stump of reconnected facial nerve. Our studies suggest that inhibition of NO production promotes microtubule assembly and may thus assist in facial axonal regeneration. The activity of microtubule polymerization may be in part mediated by modifications of tubulins and tau. Application of NOS inhibitor into reconnected peripheral nerve may be an assistant therapeutic strategy to peripheral nerve repair.
英文摘要 …………………………… 1
中文摘要 …………………………… 2
引言 ………………………………… 3
材料與方法 ………………………… 7
結果 ………………………………… 11
討論 ………………………………… 16
結論 ………………………………… 22
參考文獻 …………………………… 23
圖表與圖片說明 …………………… 29
Baas PW, Yu W (1996) A composite model for establishing the microtubule arrays of the neuron. Molecular neurobiology 12:145-161.
Barouki R (2006) Ageing free radicals and cellular stress. Med Sci (Paris) 22:266-272.
Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. The American journal of physiology 271:C1424-1437.
Bellomo G, Mirabelli F (1992) Oxidative stress and cytoskeletal alterations. Ann N Y Acad Sci 663:97-109.
Bogdan C (2001) Nitric oxide and the regulation of gene expression. Trends in cell biology 11:66-75.
Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences of the United States of America 87:682-685.
Cappelletti G, Tedeschi G, Maggioni MG, Negri A, Nonnis S, Maci R (2004) The nitration of tau protein in neurone-like PC12 cells. FEBS letters 562:35-39.
Choi HB, Ryu JK, Kim SU, McLarnon JG (2007) Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci 27:4957-4968.
Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6:204.
Deng Y, Thompson BM, Gao X, Hall ED (2007) Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Experimental neurology 205:154-165.
Eiserich JP, Estevez AG, Bamberg TV, Ye YZ, Chumley PH, Beckman JS, Freeman BA (1999) Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proceedings of the National Academy of Sciences of the United States of America 96:6365-6370.
Fu SY, Gordon T (1997) The cellular and molecular basis of peripheral nerve regeneration. Molecular neurobiology 14:67-116.
Garthwaite G, Goodwin DA, Batchelor AM, Leeming K, Garthwaite J (2002) Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience 109:145-155.
Hall ED, Detloff MR, Johnson K, Kupina NC (2004) Peroxynitrite-mediated protein nitration and lipid peroxidation in a mouse model of traumatic brain injury. Journal of neurotrauma 21:9-20.
He Y, Yu W, Baas PW (2002) Microtubule reconfiguration during axonal retraction induced by nitric oxide. J Neurosci 22:5982-5991.
Heidemann SR, Landers JM, Hamborg MA (1981) Polarity orientation of axonal microtubules. J Cell Biol 91:661-665.
Johnson GV, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117:5721-5729.
Kalisz HM, Erck C, Plessmann U, Wehland J (2000) Incorporation of nitrotyrosine into alpha-tubulin by recombinant mammalian tubulin-tyrosine ligase. Biochimica et biophysica acta 1481:131-138.
Kapoor R, Davies M, Blaker PA, Hall SM, Smith KJ (2003) Blockers of sodium and calcium entry protect axons from nitric oxide-mediated degeneration. Annals of neurology 53:174-180.
Landino LM, Skreslet TE, Alston JA (2004) Cysteine oxidation of tau and microtubule-associated protein-2 by peroxynitrite: modulation of microtubule assembly kinetics by the thioredoxin reductase system. The Journal of biological chemistry 279:35101-35105.
Landino LM, Koumas MT, Mason CE, Alston JA (2007) Modification of tubulin cysteines by nitric oxide and nitroxyl donors alters tubulin polymerization activity. Chem Res Toxicol 20:1693-1700.
Lipton SA, Choi YB, Pan ZH, Lei SZ, Chen HS, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626-632.
Liu PH, Tsai HY, Chung YW, Wang YJ, Tseng GF (2004) The proximity of the lesion to cell bodies determines the free radical risk induced in rat rubrospinal neurons subjected to axonal injury. Anatomy and embryology 207:439-451.
Martin LJ, Chen K, Liu Z (2005) Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J Neurosci 25:6449-6459.
Moran LB, Graeber MB (2004) The facial nerve axotomy model. Brain research 44:154-178.
Obal I, Engelhardt JI, Siklos L (2006) Axotomy induces contrasting changes in calcium and calcium-binding proteins in oculomotor and hypoglossal nuclei of Balb/c mice. The Journal of comparative neurology 499:17-32.
Peris L, Thery M, Faure J, Saoudi Y, Lafanechere L, Chilton JK, Gordon-Weeks P, Galjart N, Bornens M, Wordeman L, Wehland J, Andrieux A, Job D (2006) Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J Cell Biol 174:839-849.
Pollock JS, Forstermann U, Mitchell JA, Warner TD, Schmidt HH, Nakane M, Murad F (1991) Purification and characterization of particulate endothelium-derived relaxing factor synthase from cultured and native bovine aortic endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 88:10480-10484.
Prast H, Philippu A (2001) Nitric oxide as modulator of neuronal function. Progress in neurobiology 64:51-68.
Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A (2001) Unraveling peroxynitrite formation in biological systems. Free radical biology & medicine 30:463-488.
Raivich G, Jones LL, Kloss CU, Werner A, Neumann H, Kreutzberg GW (1998) Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci 18:5804-5816.
Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain 120 ( Pt 12):2149-2157.
Rothe F, Possel H, Wolf G (2002) Nitric oxide affects the phosphorylation state of microtubule-associated protein 2 (MAP-2) and neurofilament: an immunocytochemical study in the brain of rats and neuronal nitric oxide synthase (nNOS)-knockouts. Nitric Oxide 6:9-17.
Ruan RS, Leong SK, Yeoh KH (1995) The role of nitric oxide in facial motoneuronal death. Brain Res 698:163-168.
Shrager P, Custer AW, Kazarinova K, Rasband MN, Mattson D (1998) Nerve conduction block by nitric oxide that is mediated by the axonal environment. Journal of neurophysiology 79:529-536.
Stoll G, Muller HW (1999) Nerve injury, axonal degeneration and neural regeneration: basic insights. Brain pathology (Zurich, Switzerland) 9:313-325.
Stuehr DJ, Cho HJ, Kwon NS, Weise MF, Nathan CF (1991) Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proceedings of the National Academy of Sciences of the United States of America 88:7773-7777.
Sunico CR, Portillo F, Gonzalez-Forero D, Moreno-Lopez B (2005) Nitric-oxide-directed synaptic remodeling in the adult mammal CNS. J Neurosci 25:1448-1458.
Varathan V, Shigenaga Y, Takemura M (2001) Nitric oxide synthase/nicotinamide adenine dinucleotide phosphate-diaphorase in the brainstem trigeminal nuclei after transection of the masseteric nerve in rats. Journal of neuroscience research 66:428-438.
Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6:2152-2160.
Wang SM, Tsai HP, Huang JJ, Huang HC, Lin JL, Liu PH (2009) Inhibition of nitric oxide synthase promotes facial axonal regeneration following neurorrhaphy. Experimental neurology 216:499-510.
Webster DR, Gundersen GG, Bulinski JC, Borisy GG (1987) Assembly and turnover of detyrosinated tubulin in vivo. J Cell Biol 105:265-276.
Webster DR, Wehland J, Weber K, Borisy GG (1990) Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J Cell Biol 111:113-122.
Wehland J, Weber K (1987) Turnover of the carboxy-terminal tyrosine of alpha-tubulin and means of reaching elevated levels of detyrosination in living cells. J Cell Sci 88 ( Pt 2):185-203.
Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938-947.
Wilkins A, Compston A (2005) Trophic factors attenuate nitric oxide mediated neuronal and axonal injury in vitro: roles and interactions of mitogen-activated protein kinase signalling pathways. Journal of neurochemistry 92:1487-1496.
Wu W, Li L (1993) Inhibition of nitric oxide synthase reduces motoneuron death due to spinal root avulsion. Neuroscience letters 153:121-124.
Wu W, Chai H, Zhang J, Gu H, Xie Y, Zhou L (2004) Delayed implantation of a peripheral nerve graft reduces motoneuron survival but does not affect regeneration following spinal root avulsion in adult rats. Journal of neurotrauma 21:1050-1058.
Wu W, Li L, Yick LW, Chai H, Xie Y, Yang Y, Prevette DM, Oppenheim RW (2003) GDNF and BDNF alter the expression of neuronal NOS, c-Jun, and p75 and prevent motoneuron death following spinal root avulsion in adult rats. Journal of neurotrauma 20:603-612.
Xiong Y, Rabchevsky AG, Hall ED (2007) Role of peroxynitrite in secondary oxidative damage after spinal cord injury. Journal of neurochemistry 100:639-649.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔