(34.237.52.11) 您好!臺灣時間:2021/05/18 14:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳建霖
研究生(外文):Jian-lin Wu
論文名稱:泛自閉症障礙患者之染色體分析
論文名稱(外文):Chromosomal Analysis of Patients with Autism Spectrum Disorder
指導教授:陳嘉祥陳嘉祥引用關係
指導教授(外文):Chia-hsiang Chen
學位類別:碩士
校院名稱:慈濟大學
系所名稱:分子生物暨人類遺傳學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:47
中文關鍵詞:泛自閉症障礙染色體細胞遺傳學
外文關鍵詞:autism spectrum disorderchromosomecytogenetic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
泛自閉症障礙(Autism spectrum disorder, ASD) 是指患有社交能力缺損、溝通障礙和行為異常的神經發展障礙疾患的總稱。這些疾患包括了自閉症、雷特氏症、兒童期崩解性疾患、亞斯柏格症與其它未註明之廣泛性發展疾患。泛自閉症障礙的盛行率約為千分之六,它的致病原因到目前為止仍不是很清楚。而泛自閉症障礙的遺傳性高達64%以上,故推測遺傳因子的影響是造成這個疾病的主要原因之一。泛自閉症障礙是一種複雜的遺傳性疾病,已經有許多研究指出它具有高度的基因異質性,這也使得泛自閉症障礙的研究工作相對的更顯困難。目前來說,連鎖分析和遺傳相關性分析是有效的方法來找出泛自閉症障礙患者的候選基因區段,並且比較候選基因在病人與常人之間的差異。但這兩個方法皆受限於需要足夠的樣本數量才可得到具有統計意義的結果。細胞遺傳學則是另一個方法,直接針對泛自閉症患者的染色體進行分析,以找到可能的候選基因區段。在此研究中,我們利用染色體G條紋染色法(G banding) 去分析69位泛自閉症患者周邊血液細胞中的染色體,期望能發現染色體異常以找出與此疾患相關的候選基因區段。每個病例皆分析20顆細胞,最後分析的結果顯示有2個病例具有染色體異常。第一個病例是在20顆細胞中發現有11顆細胞第15號染色體長臂12的區段發生了缺失(Deletion on chromosome 15q12)。第二個病例則是在20顆細胞中發現有7顆細胞第2號染色體短臂11.2到長臂14.2區段發生染色體倒轉(Inversion on chromosome 2p11.2-q14.2)。這二個異常區段在未來可進一步利用分子遺傳學方法找出斷點位置,並更精確的定出缺失片段的大小,期望將來可以此區段做為候選基因區段,針對此區段所含的基因進行遺傳相關性分析與家族性的研究。
Autism spectrum disorder (ASD) is the general name of a group of childhood-onset neurodevelopmental disorder with impairments in social interaction and communication, as well as abnormal behavior. ASD includes autism, Rett’s disorder, Childhood disintegrative disorder, Asperger’s disorder, and pervasive developmental disorder not otherwise specified (PDD-NOS). The prevalence of ASD is estimated to be 6.0-6.5 in 1000, but the etiology is not clear yet. The heritability of ASD is more than 64%, so genetic factor plays a major role in the etiology of this disease. ASD is a complex genetic disease, and previous studies suggest ASD displays a high degree of genetic heterogeneity, which makes ASD research relatively difficult. At present time, linkage analysis and association study are useful methods to find out the candidate regions involved, but both methods are limited by the sample size. Cytogenetic method is the other choice to find candidate regions on the chromosome of ASD patients. In this study, we have performed chromosomal analysis using the G-banding technique on 69 patients with ASD. We analyzed 20 cells in each case, and we identified 2 ASD cases having chromosome structural abnormalities. One patient has 11 out 20 cells were found to have deletion of 15q12. Another one has chromosomal mosaicism: 7 out of 20 cells were found to have chromosome 2p11.2-q14.2 inversion. The authenticity of these regions need further confirmation by fluorescent in situ hybridization (FISH), and the breakpoints and the deleted size need further delineation by array-based comparative genomic hybridization.
誌謝....................................................I
英文摘要................................................II
中文摘要................................................IV
目錄....................................................VI
緒論....................................................1
實驗目的................................................11
材料與方法..............................................12
結果....................................................20
討論....................................................23
圖表....................................................29
參考文獻................................................40
[1] 孔繁鐘編譯, DSM-Ⅳ 精神疾病的診斷與統計. 合記圖書出版社 (1997) 80-90.
[2] 孔繁鐘編譯, DSM-Ⅳ-TR 精神疾病診斷準則手冊修訂版. 合記圖書出版社 (2007) 59-64.
[3] E. Bleuler, Dementia praecox oder Gruppe der Schizophrenien', In: G. Aschaffenburg (ed.). Handbuch der Psychiatrie. Spezieller Teil. 4. Abteilung, 1.H�纜fte. (1911).
[4] L. Kanner, Autistic disturbances of affective contact. Nervous Child 2 (1943) 217-250.
[5] S.L. Smalley, Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am. J. Hum. Genet 60 (1997) 1276-1282.
[6] A. Rett, Ueber ein eigenartiges hirnatrophisches Syndrom bei Hyperammoniamie in Kindesalter. Wien. Med. Wschr 116 (1966) 723-738.
[7] T. Heller, Uber Dementia infantilis: Verbl�丼ungsproze�� im Kindesalter. Zeitschrift f�卣 die Erforschung und Behandlung des Jugendlichen Schwachsinns 2 (1908) 17–28.
[8] H. Asperger, Die 'Autistischen Psychopathen' im Kindesalter. Archiv fur Psychiatrie und Nervenkrankheiten 117 (1944) 76-136.
[9] E. Fombonne, Epidemiology of pervasive developmental disorders. Pediatric research 65 (2009) 591-598.
[10] H.K.B. Blomquist, M.; Edvinsson, S. O.; Gillberg, C.; Gustavson, K.-H.; Holmgren, G.; Wahlstrom, J., Frequency of the fragile X syndrome in infantile autism: a Swedish multicenter study. Clin. Genet. 27 (1985) 113-117.
[11] R.I. Tuchman R, Epilepsy in autism. Lancet Nerrology 1 (2002) 352-358.
[12] V.F. Barton M, How commonly are known medical conditions associated with autism? J. Autism Dev. Disord 28 (1998) 273-278.
[13] K.S. Chess S, B.P., Fernandez., Psychiatric disorders of children with congenital rubella. Brunner/ Mazel, Inc. (1971).
[14] S.R. Folstein, M., Genetic influences and infantile autism. Nature 265 (1977) 726-728.
[15] R.G. Benayed, N.; Rossman, I.; Mancuso, V.; Lazar, G.; Kamdar, S.; Bruse, S. E.; Tischfield, S.; Smith, B. J.; Zimmerman, R. A.; DiCicco-Bloom, E.; Brzustowicz, L. M.; Millonig, J. H. , Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am. J. Hum. Genet. 77 (2005) 851-868.
[16] L.B.M.-B. Jorde, A.; Waldmann, R.; Ritvo, E. R.; Freeman, B. J.; Pingree, C.; McMahon, W. M.; Petersen, B.; Jenson, W. R.; Mo, A., The UCLA--University of Utah epidemiologic survey of autism: genealogical analysis of familial aggregation. Am. J. Med. Genet 36 (1990) 85-88.
[17] D.A.H. Greenberg, S. E.; Sowinski, J.; Nicoll, D., Excess of twins among affected sibling pairs with autism: implications for the etiology of autism. Am. J. Hum. Genet. 69 (2001) 1062-1067.
[18] J.M.S. Silverman, C. J.; Schmeidler, J.; Hollander, E.; Lawlor, B. A.; Fitzgerald, M.; Buxbaum, J. D.; Delaney, K.; Galvin, P.; Autism Genetic Research Exchange Consortium, Symptom domains in autism and related conditions: evidence for familiality. Am. J. Med. Genet. (Neuropsychiat. Genet.) 114 (2002) 64-73.
[19] A.L.C. Bailey, A.; Gottesman, I.; Bolton, P.; Simonoff, E.; Yuzda, E.; Rutter, M., Autism as a strongly genetic disorder: evidence from a British twin study. Psychol. Med 25 (1995) 63-77.
[20] H.F. Ronald A, Bolton P, Butcher LM, Price TS, Wheelwright S, Baron-Cohen S, Plomin R, Genetic heterogeneity between the three components of the autism spectrum: a twin study. J Am Acad Child Adolesc Psychiatry 45 (2006) 691-699.
[21] S.M. Gupta AR, Autism Genetics. Rev. Bras. Psiquiatr 28 Suppl 1 (2006) S29-38.
[22] I.M.G.S.o.A.C. (IMGSAC), A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet. 69 (2001) 570-581.
[23] S.J. Campbell DB, Ebert PJ, Militerni R, Bravaccio C, Trillo S, Elia M, Schneider C, Melmed R, Sacco R, Persico AM, Levitt P, A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A. 103 (2006) 16834-16839.
[24] D.O.R. Campbell DB, Garbett K, Ebert PJ, Mirnics K, Levitt P, Persico AM., Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neurol. 64 (2007) 243-250.
[25] C.D. Arking DE, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, Guy M, Lin S, Cook EH, Chakravarti A., A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet. 82 (2008) 160-164.
[26] A.B. Alarc�曝 M, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH., Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet. 82 (2008) 150-159.
[27] B.R. Gharani N, Mancuso V, Brzustowicz LM, Millonig JH., Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry. 9 (2004) 474-484.
[28] G.N. Benayed R, Rossman I, Mancuso V, Lazar G, Kamdar S, Bruse SE, Tischfield S, Smith BJ, Zimmerman RA, Dicicco-Bloom E, Brzustowicz LM, Millonig JH., Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am J Hum Genet. 77 (2005) 851-868.
[29] S.I. Coutinho AM, Martins M, Correia C, Morgadinho T, Bento C, Marques C, Ata�櫃e A, Miguel TS, Moore JH, Oliveira G, Vicente AM., Evidence for epistasis between SLC6A4 and ITGB3 in autism etiology and in the determination of platelet serotonin levels. Hum Genet. 121 (2007) 243-256.
[30] A.G.P. Consortium, Mapping autism risk loci using genetic linkage and chromosomal rearrangements. . Nature Genet. 39 (2007) 319-328.
[31] J.L. Sebat, B.; Malhotra, D.; Troge, J.; Lese-Martin, C.; Walsh, T.; Yamrom, B.; Yoon, S.; Krasnitz, A.; Kendall, J.; Leotta, A.; Pai, D.; and 20 others Strong association of de novo copy number mutations with autism. Science 316 (2007) 445-449.
[32] E.C.J. J Veenstra-VanderWeele, Molecular genetics of autism spectrum disorder. Molecular Psychiatry 9 (2004) 819-832.
[33] C.R.N. Marshall, A.; Vincent, J. B.; Lionel, A. C.; Feuk, L.; Skaug, J.; Shago, M.; Moessner, R.; Pinto, D.; Ren, Y.; Thiruvahindrapduram, B.; Fiebig, A.; and 23 others Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet 82 (2008) 477-488.
[34] S.Y. Weiss LA, Korn JM, Arking DE, Miller DT, Fossdal R, Saemundsen E, Stefansson H, Ferreira MA, Green T, Platt OS, Ruderfer DM, Walsh CA, Altshuler D, Chakravarti A, Tanzi RE, Stefansson K, Santangelo SL, Gusella JF, Sklar P, Wu BL, Daly MJ; Autism Consortium., Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 358 (2008) 667-675.
[35] K.S. Kumar RA, Sudi J, Conrad DF, Brune C, Badner JA, Gilliam TC, Nowak NJ, Cook EH Jr, Dobyns WB, Christian SL., Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet. 17 (2008) 628-638.
[36] C.S. Manning MA, Clericuzio C, Cherry AM, Schwartz S, Hudgins L, Enns GM, Hoyme HE., Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics. 114 (2004) 451-457.
[37] G.D. Abrahams BS, Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9 (2008) 341-355.
[38] G.R. Bonaglia MC, Mani E, Aceti G, Anderlid BM, Baroncini A, Pramparo T, Zuffardi O., Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J Med Genet. 43 (2005) 822-828.
[39] B.C. Durand CM, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckars�鱸er H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rog�� B, H�臆on D, Burglen L, Gillberg C, Leboyer M, Bourgeron T., Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 39 (2007) 25-27.
[40] M.C. Moessner R, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW., Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet. 81 (2007) 1289-1297.
[41] C.S. Veenstra-Vanderweele J, Cook EH Jr., Autism as a paradigmatic complex genetic disorder. Annu Rev Genomics Hum Genet. 5 (2004) 379-405.
[42] O.M. Kakinuma H, Sato H, Takahashi H., Variation in GABA-A subunit gene copy number in an autistic patient with mosaic 4 p duplication (p12p16). Am J Med Genet B Neuropsychiatr Genet. 147B (2008) 973-975.
[43] A.D. Utine GE, Mosaicism for terminal deletion of 4q. 17 205-109 (2006).
[44] T.B. Castermans D, Volders K, Crepel A, Vermeesch JR, Schrander-Stumpel CT, Van de Ven WJ, Steyaert JG, Creemers JW, Devriendt K., Position effect leading to haploinsufficiency in a mosaic ring chromosome 14 in a boy with autism. Eur J Hum Genet. 16 (2008) 1187-1192.
[45] N.D. Havlovicova M, Kocarek E, Novotna K, Bendova S, Petrak B, Hrdlicka M, Sedlacek Z., A girl with neurofibromatosis type 1, atypical autism and mosaic ring chromosome 17. Am J Med Genet A. 143 (2007) 76-81.
[46] Y.-C.J.C. Shuan-Yow Li, Te-Jen Lai, Chuan-Yu Hsu, Yi-Chun Wang, Molecular snd cytogenetic analyses of autism in Taiwan. Hum. Genet. 92 (1993) 441-445.
[47] S.J. Matsuura T, Fang P, Galjaard RJ, Jiang YH, Benton CS, Rommens JM, Beaudet AL., De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet. 15 (1997) 74-77.
[48] B.A. Peters SU, Madduri N, Bacino CA., Autism in Angelman syndrome: implications for autism research. Clin Genet. 66 (2004) 530-536.
[49] L.V. Cook EH Jr, Leventhal BL, Courchesne R, Lincoln A, Shulman C, Lord C, Courchesne E., Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet. 60 (1997) 928-934.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top