(18.207.253.100) 您好!臺灣時間:2021/05/06 07:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王筱婷
研究生(外文):Hsiao-ting Wang
論文名稱:活性氧生成在促癌劑TPA所引導之訊號傳遞中所扮演的角色
論文名稱(外文):The role of reactive oxygen species generation in the signal transduction induced by tumor promoter TPA
指導教授:吳文陞
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:51
中文關鍵詞:活性氧TPA訊號傳遞
外文關鍵詞:reactive oxygen speciesTPAsignal transduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:383
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
活性氧(Reactive oxygen species;ROS)複雜的參與在腫瘤的轉移過程中,特別是在腫瘤細胞的移動、侵犯的階段。已知有一些生長因子(TGF、HGF)、Integrin engagement會誘導ROS的生成啟動腫瘤細胞的轉移。
在過去我們實驗室的研究中指出腫瘤促進劑TPA會促進ROS的生成,ROS與PKC共同作用引發ERK的活化,而ERK的活化則造成肝癌細胞HepG2移動的重要關鍵,由此可見ROS和HepG2移動的相關性。所以本論文主要著重於TPA誘發ROS之生成是否透過integrin所的訊號傳遞,以及TPA所造成之ERK活化是否須ROS及integrin訊號傳遞。首先在不同時間點的實驗中發現TPA誘導HepG2細胞比在懸浮HepG2細胞ROS生成量高,尤其是在1小時有較高量的表現。另外我們也發現穩定表達的PKC的HepG2細胞來觀察其生成的強度都比HepG2細胞高。接著也發現PKC以及integrin訊息傳訊相關的抑制劑都可以減少TPA誘導肝癌細胞株HepG2的ROS生成。根據前面的實驗我們比較貼附細胞與懸浮細胞經過TPA處理後誘導ERK磷酸化的表現,發現貼附細胞ERK磷酸化具有持續的表現但懸浮的細胞沒有這樣的表現,另外我們發現TPA的確會使HepG2細胞產生ROS而促進ERK磷酸化的表現。綜合以上的結果,TPA可能誘導ROS生成是透過 integrin 訊息傳遞途徑以及TPA所造成之ERK活化是須ROS及integrin訊號的傳遞。
Reactive oxygen species (ROS) were involved in tumor metastasis especially at the migration and invasion stage. ROS generation may be induced by growth factors (such as TGFβ and HGF), or integrin engagement, which are capable of triggering tumor progression.
Previous study in our lab indicated that ROS may be generated during migration of hepatoma cell HepG2 induced by tumor promoter TPA in a protein kinase C(PKC) dependent manner. In this study, we further investigated whether integrin-related signal transduction is involved in TPA-induced ROS generation. The flow cytometry was used to analyze ROS generation using DCF-DA as a ROS probe. In the time course study, ROS were found to be generated in HepG2 after treatment of TPA for 0.5 to 6 hr with maximal induction at 1 h. The TPA-induced ROS generation was not observed in cell suspension of HepG2 indicating that integrin triggered signal was requied. Furthermore, we found the PKC inhibitor Bis (bisindolylmaleimides), and inhibitor for the integrin-related signal cascade such as RGD peptide, Src kinase inhibitor, Rac inhibitor (NSC23766) may prevent TPA-induced ROS generation at 1 h. On the other hand, we also found that ROS generation was also required for TPA-induced (ERK) MAPK phosphorylation in attached HepG2 but not HepG2 in cell suspension. Taken together, we suggest that TPA may induce ROS generation via the integrin pathway, which is required for TPA-induced sustained ERK activation and cell migration of HepG2. More detailed mechanisms are still needed to be explored.
目 錄
壹、ABSTRACT 4
貳、中文摘要 5
參、研究背景 6
一.腫瘤的轉移 7
二. 活性氧在腫瘤的轉移中扮演之角色 8
【1】何謂活性氧 (Reactive oxygen species;ROS) 8
【2】活性氧的產生 8
【4】活性氧與訊息傳導的關係 9
【5】活性氧與癌症的關係 10
三. integrin 在腫瘤的轉移中扮演之角色 10
四. PKC(protein kinase C)在腫瘤的轉移中扮演之角色 11
五. TPA促進肝癌細胞HepG2移動的機制 11
肆、研究動機與目的 12
一.肝癌細胞的培養 (Cell culture) 14
二. 西方點墨法 (Western blotting assay) 14
三. 活性氧之測定(Reactive Oxygen Species assay) 18
四.細胞附著試驗(cell adhesion assay) 19
五. Small hairpin RNA(sh RNA) 20
六. Transient transfection 20
陸、研究結果 21
一. TPA激發 HepG2細胞 ROS之生成須透過PKC 22
二. integrin 的訊號傳遞為 TPA在HepG2 細胞中造成ROS的生成所必需 23
三. 啟動integrin signal造成ROS generation 24
四. integrin��ROS訊號途徑與ERK活化之關係 25
柒、討論 26
捌、圖表目錄 28
表格1、10% SDS-PAGE 膠液配方 29
表格2. 所使用的paxillin sh RNA 種類 29
表格3. transient transfection 試劑與細胞建議使用量 29
圖1. transfection 步驟流程圖 30
圖2. ROS可經由integrin訊息路徑來生成模式 31
圖3. HepG2 細胞經過TPA不同時間處理後ROS生成的表現 33
圖4. HepG2 及PKC stable clone經過TPA處理後ROS生成的表現 34
圖5. PKC抑制劑及integrin-related signal molecules 抑制TPA誘使ROS的生成 37
圖6. paxillin134/135 shRNA 可抑制TPA誘使ROS的生成 38
圖7. 細胞附著後啟動integrin signal誘使ROS的生成 40
圖8. TPA誘使懸浮與貼附的HepG2細胞造成ERK磷酸化之差異 41
圖9. H2O2 generator促進HepG2細胞經過TPA處理後誘導ERK磷酸化 42
圖10. MEK1抑制劑可抑制TPA誘使ROS的生成 43
圖11. TPA與integrin對HepG2細胞作用的訊息傳遞機制(簡圖)。 44
補充圖表 45
S1. paxillin shRNA 可抑制TPA誘使ROS的生成 46
玖、參考文獻 47
1.Aslan, M., and T. Ozben. 2003. Oxidants in receptor tyrosine kinase signal transduction pathways. Antioxid Redox Signal 5:781-8.
2.Barrallo-Gimeno, A., and M. A. Nieto. 2005. The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 132:3151-61.
3.Batlle, E., E. Sancho, C. Franci, D. Dominguez, M. Monfar, J. Baulida, and A. Garcia De Herreros. 2000. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84-9.
4.Berra, E., M. T. Diaz-Meco, J. Lozano, S. Frutos, M. M. Municio, P. Sanchez, L. Sanz, and J. Moscat. 1995. Evidence for a role of MEK and MAPK during signal transduction by protein kinase C zeta. EMBO J 14:6157-63.
5.Bokoch, G. M., and B. A. Diebold. 2002. Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100:2692-6.
6.Bredin, C. G., K. G. Sundqvist, D. Hauzenberger, and J. Klominek. 1998. Integrin dependent migration of lung cancer cells to extracellular matrix components. Eur Respir J 11:400-7.
7.Breen, A. P., and J. A. Murphy. 1995. Reactions of oxyl radicals with DNA. Free Radic Biol Med 18:1033-77.
8.Brinckerhoff, C. E., and L. M. Matrisian. 2002. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3:207-14.
9.Calalb, M. B., T. R. Polte, and S. K. Hanks. 1995. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol Cell Biol 15:954-63.
10.Cano, A., M. A. Perez-Moreno, I. Rodrigo, A. Locascio, M. J. Blanco, M. G. del Barrio, F. Portillo, and M. A. Nieto. 2000. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76-83.
11.Chen, K. C., Y. Zhou, W. Zhang, and M. F. Lou. 2007. Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells. Mol Vis 13:374-87.
12.Chernyavsky, A. I., J. Arredondo, E. Karlsson, I. Wessler, and S. A. Grando. 2005. The Ras/Raf-1/MEK1/ERK signaling pathway coupled to integrin expression mediates cholinergic regulation of keratinocyte directional migration. J Biol Chem 280:39220-8.
13.Chiarugi, P. 2005. PTPs versus PTKs: the redox side of the coin. Free Radic Res 39:353-64.
14.Chiarugi, P. 2003. Reactive oxygen species as mediators of cell adhesion. Ital J Biochem 52:28-32.
15.Chiarugi, P. 2001. The redox regulation of LMW-PTP during cell proliferation or growth inhibition. IUBMB Life 52:55-9.
16.Chiarugi, P., G. Pani, E. Giannoni, L. Taddei, R. Colavitti, G. Raugei, M. Symons, S. Borrello, T. Galeotti, and G. Ramponi. 2003. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161:933-44.
17.Clark, E. A., T. R. Golub, E. S. Lander, and R. O. Hynes. 2000. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532-5.
18.Cully, M., H. You, A. J. Levine, and T. W. Mak. 2006. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6:184-92.
19.Darley-Usmar, V., H. Wiseman, and B. Halliwell. 1995. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 369:131-5.
20.Datta, R., K. Yoshinaga, M. Kaneki, P. Pandey, and D. Kufe. 2000. Phorbol ester-induced generation of reactive oxygen species is protein kinase cbeta -dependent and required for SAPK activation. J Biol Chem 275:41000-3.
21.Dietrich, S., R. Uppalapati, T. Y. Seiwert, and P. C. Ma. 2005. Role of c-MET in upper aerodigestive malignancies--from biology to novel therapies. J Environ Pathol Toxicol Oncol 24:149-62.
22.Duprat, F., E. Guillemare, G. Romey, M. Fink, F. Lesage, M. Lazdunski, and E. Honore. 1995. Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci U S A 92:11796-800.
23.Egeblad, M., and Z. Werb. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161-74.
24.Ferraro, D., S. Corso, E. Fasano, E. Panieri, R. Santangelo, S. Borrello, S. Giordano, G. Pani, and T. Galeotti. 2006. Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 25:3689-98.
25.Gamaley, I. A., and I. V. Klyubin. 1999. Roles of reactive oxygen species: signaling and regulation of cellular functions. Int Rev Cytol 188:203-55.
26.Gillery, P., J. C. Monboisse, F. X. Maquart, and J. P. Borel. 1988. Glycation of proteins as a source of superoxide. Diabete Metab 14:25-30.
27.Griner, E. M., and M. G. Kazanietz. 2007. Protein kinase C and other diacylglycerol effectors in cancer. Nat Rev Cancer 7:281-94.
28.Gupta, G. P., and J. Massague. 2006. Cancer metastasis: building a framework. Cell 127:679-95.
29.Gutteridge, J. M., and B. Halliwell. 1990. Reoxygenation injury and antioxidant protection: a tale of two paradoxes. Arch Biochem Biophys 283:223-6.
30.Hajra, K. M., D. Y. Chen, and E. R. Fearon. 2002. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 62:1613-8.
31.Hay, E. D. 1995. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 154:8-20.
32.Hordijk, P. L. 2006. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 98:453-62.
33.Huang, C., K. Jacobson, and M. D. Schaller. 2004. MAP kinases and cell migration. J Cell Sci 117:4619-28.
34.Hunt, J. V., C. C. Smith, and S. P. Wolff. 1990. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39:1420-4.
35.Ip, Y. C., S. T. Cheung, K. L. Leung, and S. T. Fan. 2005. Mechanism of metastasis by membrane type 1-matrix metalloproteinase in hepatocellular carcinoma. World J Gastroenterol 11:6269-76.
36.Kang, Y., and J. Massague. 2004. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell 118:277-9.
37.Kermorgant, S., D. Zicha, and P. J. Parker. 2004. PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO J 23:3721-34.
38.Kheradmand, F., E. Werner, P. Tremble, M. Symons, and Z. Werb. 1998. Role of Rac1 and oxygen radicals in collagenase-1 expression induced by cell shape change. Science 280:898-902.
39.King, T. E., S. C. Pawar, L. Majuta, I. C. Sroka, D. Wynn, M. C. Demetriou, R. B. Nagle, F. Porreca, and A. E. Cress. 2008. The role of alpha 6 integrin in prostate cancer migration and bone pain in a novel xenograft model. PLoS One 3:e3535.
40.Kuphal, S., R. Bauer, and A. K. Bosserhoff. 2005. Integrin signaling in malignant melanoma. Cancer Metastasis Rev 24:195-222.
41.Larsson, C. 2006. Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 18:276-84.
42.Lipscomb, E. A., and A. M. Mercurio. 2005. Mobilization and activation of a signaling competent alpha6beta4integrin underlies its contribution to carcinoma progression. Cancer Metastasis Rev 24:413-23.
43.Lo, I. C., J. M. Shih, and M. J. Jiang. 2005. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci 12:377-88.
44.Marnett, L. J. 1987. Peroxyl free radicals: potential mediators of tumor initiation and promotion. Carcinogenesis 8:1365-73.
45.Matsuzawa, A., and H. Ichijo. 2005. Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal 7:472-81.
46.McCord, J. M. 1987. Oxygen-derived radicals: a link between reperfusion injury and inflammation. Fed Proc 46:2402-6.
47.Mehta, R. J., B. Diefenbach, A. Brown, E. Cullen, A. Jonczyk, D. Gussow, G. A. Luckenbach, and S. L. Goodman. 1998. Transmembrane-truncated alphavbeta3 integrin retains high affinity for ligand binding: evidence for an 'inside-out' suppressor? Biochem J 330 ( Pt 2):861-9.
48.Mochizuki, T., S. Furuta, J. Mitsushita, W. H. Shang, M. Ito, Y. Yokoo, M. Yamaura, S. Ishizone, J. Nakayama, A. Konagai, K. Hirose, K. Kiyosawa, and T. Kamata. 2006. Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 25:3699-707.
49.Munro, J. M., and R. S. Cotran. 1988. The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Invest 58:249-61.
50.Nelson, K. K., and J. A. Melendez. 2004. Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37:768-84.
51.Nieto, M. A. 2002. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3:155-66.
52.Oka, M., and U. Kikkawa. 2005. Protein kinase C in melanoma. Cancer Metastasis Rev 24:287-300.
53.Poli, G., G. Leonarduzzi, F. Biasi, and E. Chiarpotto. 2004. Oxidative stress and cell signalling. Curr Med Chem 11:1163-82.
54.Pryor, W. A. 1986. Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657-67.
55.Quan, Y., J. Du, and X. Wang. 2007. High glucose stimulates GRO secretion from rat microglia via ROS, PKC, and NF-kappaB pathways. J Neurosci Res 85:3150-9.
56.Rhyu, D. Y., Y. Yang, H. Ha, G. T. Lee, J. S. Song, S. T. Uh, and H. B. Lee. 2005. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 16:667-75.
57.Rucci, N., C. DiGiacinto, L. Orru, D. Millimaggi, R. Baron, and A. Teti. 2005. A novel protein kinase C alpha-dependent signal to ERK1/2 activated by alphaVbeta3 integrin in osteoclasts and in Chinese hamster ovary (CHO) cells. J Cell Sci 118:3263-75.
58.Schlaepfer, D. D., S. K. Hanks, T. Hunter, and P. van der Geer. 1994. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 372:786-91.
59.Shin, I., S. Kim, H. Song, H. R. Kim, and A. Moon. 2005. H-Ras-specific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Chem 280:14675-83.
60.Sies, H. 1991. Oxidative stress: from basic research to clinical application. Am J Med 91:31S-38S.
61.Starke, P. E., C. N. Oliver, and E. R. Stadtman. 1987. Modification of hepatic proteins in rats exposed to high oxygen concentration. FASEB J 1:36-9.
62.Steinberg, D. 1991. Antioxidants and atherosclerosis. A current assessment. Circulation 84:1420-5.
63.Thiery, J. P. 2002. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442-54.
64.Tudor, K. S., K. L. Hess, and J. M. Cook-Mills. 2001. Cytokines modulate endothelial cell intracellular signal transduction required for VCAM-1-dependent lymphocyte transendothelial migration. Cytokine 15:196-211.
65.Uemura, S., H. Matsushita, W. Li, A. J. Glassford, T. Asagami, K. H. Lee, D. G. Harrison, and P. S. Tsao. 2001. Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress. Circ Res 88:1291-8.
66.Wang, D. S., K. F. Dou, K. Z. Li, and Z. S. Song. 2004. Enhancement of migration and invasion of hepatoma cells via a Rho GTPase signaling pathway. World J Gastroenterol 10:299-302.
67.Wang, Z., M. R. Castresana, and W. H. Newman. 2001. Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem Biophys Res Commun 285:669-74.
68.Wu, W. S. 2006. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 25:695-705.
69.Wu, W. S., R. K. Tsai, C. H. Chang, S. Wang, J. R. Wu, and Y. X. Chang. 2006. Reactive oxygen species mediated sustained activation of protein kinase C alpha and extracellular signal-regulated kinase for migration of human hepatoma cell Hepg2. Mol Cancer Res 4:747-58.
70.Wu, W. S., J. R. Wu, and C. T. Hu. 2008. Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 27:303-14.
71.Yamasaki, H. 1996. Role of disrupted gap junctional intercellular communication in detection and characterization of carcinogens. Mutat Res 365:91-105.
72.Yan, F., W. Li, H. Jono, Q. Li, S. Zhang, J. D. Li, and H. Shen. 2008. Reactive oxygen species regulate Pseudomonas aeruginosa lipopolysaccharide-induced MUC5AC mucin expression via PKC-NADPH oxidase-ROS-TGF-alpha signaling pathways in human airway epithelial cells. Biochem Biophys Res Commun 366:513-9.
73.Yang, J., S. A. Mani, J. L. Donaher, S. Ramaswamy, R. A. Itzykson, C. Come, P. Savagner, I. Gitelman, A. Richardson, and R. A. Weinberg. 2004. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927-39.
74. 張育勳, The Signal Transduction Mechanisms for TPA-Induced Cell Adhesion and Migration of Human Hepatoma G2. 全國碩博士論文
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔