跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:董于菁
研究生(外文):Yu-jing Dong
論文名稱:幽門桿菌HP1089蛋白的純化與功能分析
論文名稱(外文):Purification and function analysis of HP1089 protein in Helicobacter pylori
指導教授:張凱誌
指導教授(外文):Kai-chih Chang
學位類別:碩士
校院名稱:慈濟大學
系所名稱:醫學生物技術研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:65
中文關鍵詞:幽門桿菌
外文關鍵詞:Helicobacter pylori
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
目前染色體已完全解序的幽門桿菌 (Helicobacter pylori) 菌株為26695、J99、G27及HPAG1,此四株幽門桿菌之中,各菌株間其基因變異性高達7%,造成此結果的原因之一,是幽門桿菌具有相當突出的自然轉型能力,可在無須物理化學作用之下將外界的基因攝入菌體內。在我們之前的研究指出,幽門桿菌中hp1089基因對於幽門桿菌自然轉型能力具有影響。而在我們的實驗中,更確切的証實當幽門桿菌hp1089基因受到破壞時,幽門桿菌自然轉型及以電擊法攝入外界基因的能力有相當程度的下降。此一幽門桿菌臨床菌株 (NTUH-C1) hp1089基因序列與已發表幽門桿菌菌株 (26695) hp1089基因具有93%相似性;兩者HP1089蛋白質胺基酸序列則具有94%相似性。 因此我們將幽門桿菌臨床菌株 (NTUH-C1) HP1089蛋白的胺基酸序列根據資料庫進行比對分析,推測HP1089蛋白可能具有兩種與自然轉型能力相關之酵素活性。經由NCBI及FUGUE資料庫分析後,發現HP1089蛋白N端525個胺基酸之片段,與superfamily I helicase酵素活性的群組COG3893,具有39%的一致性。而HP1089蛋白C端253個胺基酸片段則與具有RecB family exonuclease活性之COG2887群組有40 %一致性。為了証明此蛋白是否具有上述兩種酵素活性,我們嘗試將此基因分為三個不同片段加以選殖;它們分別是hp1089 (2334 bp) 完整基因,包含hp1089基因5’端1800 bpDNA片段與hp1089基因3’端867 bp DNA片段。並將它們轉殖進重組蛋白表現載體上,接著嘗試以大腸桿菌誘導表現出具生物活性之個別蛋白,經純化後分析,此三種片段之蛋白,確實可與DNA結合,並且將DNA分解。另外我們也比較了hp1089基因受到破壞之突變株 (M1-38) 與野生株 (NTUH-C1) 兩者在蛋白表現上的差異,找出哪些基因會受到hp1089基因影響。
Nowadays, the completely sequenced Helicobacter pylori are 26695, J99, G27, and HPAG1, and the gene variation between each other is about 7%. One of the reasons that cause the gene variation is that the Helicobacter pylori has an excellent ability in natural transformation, which can uptake DNA fragment from other bacteria without any chemical treatment or physical effect. According to our preceding research, we found that the gene hp1089 could influence the natural transformation ability of Helicobacter pylori. In this research, we verified that both of the natural transformation ability and the electroporation competence of the Helicobacter pylori would be greatly reduced when the hp1089 gene was knockout. The sequence of the hp1089 gene shares a 93% similarity and the sequence of the HP1089 protein shares a 94% similarity between the Helicobacter pylori (NTUH-C1) and the published one (26695). Therefore, we compared and analyzed the amino acid sequence of HP1089 protein of Helicobacter pylori (NTUH-C1) to the database, and predicted that the HP1089 protein probably has two enzyme activities related to natural transformation ability. 525 amino acid in the N-terminal of HP1089 protein share 39% identity with group COG3893 in the inactivated superfamily I helicase; and 253 amino acid in the C-terminal of HP1089 protein share 40% identity with the COG2887 group in the RecB family exonuclease activity. In order to verify whether the HP1089 protein contain the function such as the helicase and the exonuclease, we attempted to clone three different gene sequence which include the full length, the 1800 bp DNA sequence in the 5’, and the 867 bp DNA sequence in the 3’ of hp1089. Moreover, we transformed them into the recombination vector, and then try to use E. coli to induce the expression of bioactivated protein. After purification, we find that this protein could bind to DNA and possess the exonuclease enzyme activity. Furthermore, we compared the differences in proteins expression profile between the hp1089 gene mutation and wild type to find out which gene would be affected by hp1089.
中文摘要 I
Abstract II
目錄 III
圖表目錄 VI
第一章 前言 1
1.1 幽門桿菌 (Helicobacter pylori) 之簡介 1
1.2 幽門桿菌的致病因子 2
1.2.1 鞭毛 (Flagella) 2
1.2.2 脂多醣體 (Lipopolysaccharide, LPS) 2
1.2.3 尿素分解酵素 (Urease) 3
1.2.4 黏附因子 (Adhesin) 3
1.2.5 Neutrophil activating protein (NAP) 4
1.2.6 空泡性細胞毒素 (Vacuolating cytotoxin) 4
1.2.7 Cag pathogenicity island (cag-PAI) 4
1.3 幽門桿菌自然轉型作用機制 5
1.4 解旋�� (Helicase) 簡介 7
1.5 外切�� (Exonulcease) 簡介 8
1.6 實驗目的 9
第二章 材料 10
2.1 幽門桿菌菌株 10
2.2 大腸桿菌菌株 10
2.3 質體 11
2.4 培養基 11
2.5 引子 12
2.6 限制�� 13
2.7 抗生素 13
第三章 方法 14
3.1 幽門桿菌 (H. pylori) 的培養條件 14
3.2 HP1089 蛋白胺基酸序列比對 14
3.3 自然轉型作用 (Natural transformation) 14
3.4 以electroporation進行DNA轉型作用 15
3.4.1 勝任細胞 (competent cell) 之製備 15
3.4.2 Electroporation條件 15
3.5 幽門桿菌染色體DNA (chromosomal DNA) 之抽取與純化 16
3.6 質體DNA (plasmid DNA) 的抽取與純化 16
3.7 洋菜膠的電泳 (Agarose gel electrophoresis)及DNA回收 (Gel extraction) 17
3.7.1 洋菜膠製備、電泳條件及DNA顯像 17
3.7.2 DNA回收 17
3.8 大腸桿菌化學轉型作用 (chemical transformation) 18
3.8.1 勝任細胞 (competent cell) 之製備 18
3.8.2 熱休克 (heat shock) 18
3.9 聚合��鏈鎖反應 (Polymerase chain reaction, PCR) 18
3.10 TA選殖 (TA cloning) 19
3.11 接合反應 (Ligation) 19
3.12 去氧核醣核酸定序 (DNA sequencing) 19
3.13 表現蛋白 20
3.14 純化HP1089、HP1089_1-1800、HP1089_1466-2334蛋白 20
3.15 純化蛋白之透析 (dialysis) 與濃縮 (concentration) 21
3.16 外切�� (exonuclease) 酵素活性分析 22
3.17 Gel retardation功能分析 22
3.18 二維電泳 (2-dimensional electrophoresis) 23
3.18.1 樣品的前處理 23
3.18.2 一維電泳,等電點的聚焦電泳 (Isoelectric Focusing) 24
3.18.3 二維電泳,聚丙烯醯胺凝膠電泳 (SDS-Polyacrylamide gel electrophoresis、SDS-PAGE) 24
3.18.4 染色, coomassie blue 25
3.18.5 比對 25
3.18.6 膠內水解反應 (In gel digestion) 25
第四章 結果 27
4.1 野生株 (NTUH-C1) 與hp1089基因遭破壞之突變株 (M 1-38) 生長 狀態之比較 27
4.2 幽門桿菌自然轉型與electroporation效率分析結果 27
4.3 幽門桿菌HP1089蛋白胺基酸序列分析結果 28
4.4 幽門桿菌HP1089蛋白之誘導表現與純化 29
4.5 幽門桿菌HP1089蛋白中C端,HP1089_1466-2334蛋白之誘導 表現與純化 29
4.6 幽門桿菌HP1089蛋白中N端,HP1089_1-1800蛋白之誘導表現 30
4.7 外切�� (exonuclease) 功能分析結果 30
4.8 HP1089、HP1089_1466-2334、HP1089_1-1800蛋白與DNA結合能力 之Gel rotardation功能分析結果 31
4.9 二維電泳 (2-dimensional electrophoresis) 分析結果 31
第五章 討論 32
第六章 附圖表 34
第七章 參考文獻 53
1.1994. Helicobacter pylori in peptic ulcer disease. NIH Consens Statement 12:1-23.
2.Amundsen, S. K., J. Fero, L. M. Hansen, G. A. Cromie, J. V. Solnick, G. R. Smith, and N. R. Salama. 2008. Helicobacter pylori AddAB helicase-nuclease and RecA promote recombination-related DNA repair and survival during stomach colonization. Mol Microbiol 69:994-1007.
3.Ando, T., D. A. Israel, K. Kusugami, and M. J. Blaser. 1999. HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori. J Bacteriol 181:5572-80.
4.Asahi, M., T. Azuma, S. Ito, Y. Ito, H. Suto, Y. Nagai, M. Tsubokawa, Y. Tohyama, S. Maeda, M. Omata, T. Suzuki, and C. Sasakawa. 2000. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J Exp Med 191:593-602.
5.Atherton, J. C., P. Cao, R. M. Peek, Jr., M. K. Tummuru, M. J. Blaser, and T. L. Cover. 1995. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 270:17771-7.
6.Blaser, M. J. 1992. Helicobacter pylori: its role in disease. Clin Infect Dis 15:386-91.
7.Boren, T., P. Falk, K. A. Roth, G. Larson, and S. Normark. 1993. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262:1892-5.
8.Censini, S., C. Lange, Z. Xiang, J. E. Crabtree, P. Ghiara, M. Borodovsky, R. Rappuoli, and A. Covacci. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A 93:14648-53.
9.Chang, H. W., and D. A. Julin. 2001. Structure and function of the Escherichia coli RecE protein, a member of the RecB nuclease domain family. J Biol Chem 276:46004-10.
10.Chen, I., and D. Dubnau. 2004. DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241-9.
11.Christie, P. J., and J. P. Vogel. 2000. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8:354-60.
12.Covacci, A., J. L. Telford, G. Del Giudice, J. Parsonnet, and R. Rappuoli. 1999. Helicobacter pylori virulence and genetic geography. Science 284:1328-33.
13.Eaton, K. A., and S. Krakowka. 1994. Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect Immun 62:3604-7.
14.Eaton, K. A., S. Suerbaum, C. Josenhans, and S. Krakowka. 1996. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect Immun 64:2445-8.
15.Gabbidon, M. R., V. E. Rampersaud, and D. A. Julin. 1998. Salt-stable complexes of the Escherichia coli RecBCD enzyme bound to double-stranded DNA. Arch Biochem Biophys 350:266-72.
16.Goodwin, C. S., and J. A. Armstrong. 1990. Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur J Clin Microbiol Infect Dis 9:1-13.
17.Hofreuter, D., S. Odenbreit, and R. Haas. 2001. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41:379-91.
18.Hsieh, P. F., J. C. Yang, J. T. Lin, and J. T. Wang. 1998. Molecular mechanisms of clarithromycin resistance in Helicobacter pylori. J Formos Med Assoc 97:445-52.
19.Hu, L. T., P. A. Foxall, R. Russell, and H. L. Mobley. 1992. Purification of recombinant Helicobacter pylori urease apoenzyme encoded by ureA and ureB. Infect Immun 60:2657-66.
20.Ilver, D., A. Arnqvist, J. Ogren, I. M. Frick, D. Kersulyte, E. T. Incecik, D. E. Berg, A. Covacci, L. Engstrand, and T. Boren. 1998. Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373-7.
21.Karnholz, A., C. Hoefler, S. Odenbreit, W. Fischer, D. Hofreuter, and R. Haas. 2006. Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J Bacteriol 188:882-93.
22.Kooistra, J., B. J. Haijema, A. Hesseling-Meinders, and G. Venema. 1997. A conserved helicase motif of the AddA subunit of the Bacillus subtilis ATP-dependent nuclease (AddAB) is essential for DNA repair and recombination. Mol Microbiol 23:137-49.
23.Marshall, B. J., and J. R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:1311-5.
24.Monteiro, M. A., K. H. Chan, D. A. Rasko, D. E. Taylor, P. Y. Zheng, B. J. Appelmelk, H. P. Wirth, M. Yang, M. J. Blaser, S. O. Hynes, A. P. Moran, and M. B. Perry. 1998. Simultaneous expression of type 1 and type 2 Lewis blood group antigens by Helicobacter pylori lipopolysaccharides. Molecular mimicry between h. pylori lipopolysaccharides and human gastric epithelial cell surface glycoforms. J Biol Chem 273:11533-43.
25.Odenbreit, S., J. Puls, B. Sedlmaier, E. Gerland, W. Fischer, and R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287:1497-500.
26.Ogura, K., S. Maeda, M. Nakao, T. Watanabe, M. Tada, T. Kyutoku, H. Yoshida, Y. Shiratori, and M. Omata. 2000. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J Exp Med 192:1601-10.
27.Parsonnet, J., G. D. Friedman, D. P. Vandersteen, Y. Chang, J. H. Vogelman, N. Orentreich, and R. K. Sibley. 1991. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325:1127-31.
28.Roggero, E., E. Zucca, G. Pinotti, A. Pascarella, C. Capella, A. Savio, E. Pedrinis, A. Paterlini, A. Venco, and F. Cavalli. 1995. Eradication of Helicobacter pylori infection in primary low-grade gastric lymphoma of mucosa-associated lymphoid tissue. Ann Intern Med 122:767-9.
29.Sharma, A., R. G. Nitharwal, B. Singh, A. Dar, S. Dasgupta, and S. K. Dhar. 2009. Helicobacter pylori single-stranded DNA binding protein--functional characterization and modulation of H. pylori DnaB helicase activity. FEBS J 276:519-31.
30.Singleton, M. R., M. S. Dillingham, M. Gaudier, S. C. Kowalczykowski, and D. B. Wigley. 2004. Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432:187-93.
31.Singleton, M. R., and D. B. Wigley. 2002. Modularity and specialization in superfamily 1 and 2 helicases. J Bacteriol 184:1819-26.
32.Smeets, L. C., J. J. Bijlsma, S. Y. Boomkens, C. M. Vandenbroucke-Grauls, and J. G. Kusters. 2000. comH, a novel gene essential for natural transformation of Helicobacter pylori. J Bacteriol 182:3948-54.
33.Smeets, L. C., J. J. Bijlsma, E. J. Kuipers, C. M. Vandenbroucke-Grauls, and J. G. Kusters. 2000. The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol Med Microbiol 27:99-102.
34.Suerbaum, S., C. Josenhans, T. Sterzenbach, B. Drescher, P. Brandt, M. Bell, M. Droge, B. Fartmann, H. P. Fischer, Z. Ge, A. Horster, R. Holland, K. Klein, J. Konig, L. Macko, G. L. Mendz, G. Nyakatura, D. B. Schauer, Z. Shen, J. Weber, M. Frosch, and J. G. Fox. 2003. The complete genome sequence of the carcinogenic bacterium Helicobacter hepaticus. Proc Natl Acad Sci U S A 100:7901-6.
35.Telford, J. L., P. Ghiara, M. Dell'Orco, M. Comanducci, D. Burroni, M. Bugnoli, M. F. Tecce, S. Censini, A. Covacci, Z. Xiang, and et al. 1994. Gene structure of the Helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J Exp Med 179:1653-58.
36.Thompson, S. A., and M. J. Blaser. 1995. Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect Immun 63:2185-93.
37.Tonello, F., W. G. Dundon, B. Satin, M. Molinari, G. Tognon, G. Grandi, G. Del Giudice, R. Rappuoli, and C. Montecucco. 1999. The Helicobacter pylori neutrophil-activating protein is an iron-binding protein with dodecameric structure. Mol Microbiol 34:238-46.
38.Tummuru, M. K., T. L. Cover, and M. J. Blaser. 1993. Cloning and expression of a high-molecular-mass major antigen of Helicobacter pylori: evidence of linkage to cytotoxin production. Infect Immun 61:1799-809.
39.Wang, G., and R. J. Maier. 2009. A RecB-like helicase in Helicobacter pylori is important for DNA repair and host colonization. Infect Immun 77:286-91.
40.Yeeles, J. T., and M. S. Dillingham. 2007. A dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases. J Mol Biol 371:66-78.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top