|
1.Allwein, E.L., Schapire, R.E. and Singer, Y., “Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers”, SIC on Machine Learning, 2000. 2.Amir, B.D. et al., “Tissue Classification with Gene Expression Profiles”, Journal of Computational Biology, 2000. 3.Bioshop, C. “Neural networks for pattern recognition”, Oxford University Press, New York, 1995. 4.Chen, T.Y., Poon, P.L. and Tse, T.H., “A New Restructuring Algorithm for the Classification-Tree Method”, Software Technology and Engineering, 1999. 5.Chuang, H.Y. et al., “Ranking genes for discriminability on microarray data”, Journal of Information Science and Engineering, 2003. 6.Chuang, H.Y. et al.: “Identifying Significant Genes from Microarray Data”, IEEE 2004. 7.Cover, T. and Hart, P. “Nearest Neighbor Pattern Classification”, IEEE Transactions Information Theory, 1967. 8.Dasarathy, B.V. et al., “Concepts and Techniques, Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques”, IEEE Computer Society Press, 1991. 9.Dietterich, T.G.. and Bakiri, G. “Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs”, Ninth National Conference on Artificial Intelligence, 1995. 10.Dietterich, T.G. and Bakiri, G., “Solving Multiclass Learning Problems Via Error-Correcting Output Codes”, Journal of Artificial Intelligence Research, 1995. 11.Dudoit, S., Fridlyand J. and Speed, T.P., “Comparison of Discrimination Methods for the Classification of Tumors using Gene Expression Data”, Department of Statistics, 2000. 12.Gevaert, O. et al.,” Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks”, BMC Bioinformatics 2006. 13.Golub, T. R. et al., “Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring”, Science, 1999. 14.Hastie, T. and Tibshirani, R. et al., “Classification by Pairwise Coupling”, Neural Information Processing Systems, 1998. 15.Hastie, T., Tibshirani, R. and Friedman, J. “The Elements of Statistical Learning:Data Mining”, Springers Series in Statistics, 2001. 16.Hedenfalk, I .et al., “Gene-expression profiles in hereditary breast cancer”, New England J. Med., 2001. 17.Hettemansperger, T. P. “Statistical Inference based on ranks”, Wiley, New York, 1984. 18.Karlsson, E. et al., ” Gene expression variation to predict 10-year survival in lymph-node-negative breast cancer”, BMC Cancer 2008. 19.Kim, S.Y. et al., ” A gene sets approach for identifying prognostic gene signatures for outcome prediction”, BMC Genomics 2008. 20.Kre�惷l, U. et al., “Pairwise Classification and Support Vector Machines, Advances in Kernel Methods: Support Vector Learning”, MA, MIT Press, 1999. 21.McCallum, A.K. and Nigam, K. “A Comparison of Event Models for Naive Bayes Text Classification”, AAAI-98 Workshop on Learning for Text Categorization, 1998. 22.Mitchell, T.M., “Machine Learning”, McGraw-Hill, 1997. 23.Park, P.J. et al., “A Nonparametric Scoring Algorithm for Identifying Informative Genes from Microarray Data”, Pacific Symposium on Biocomputing, 2001. 24.Safavian, R.S. and Landgrebe, D., “A Survey of Decision Tree Classifier Methodology”, IEEE Transactions of Systems, 1991. 25.Sahami, M., Dumais, S., Heckerman, D. and Horvitz, E., “A Bayesian Approach to Filtering Junk E-Mail, Learning for Text Categorization”, AAAI-98 Workshop on Learning for Text Categorization, 1998. 26.Schena, M. et al., “DNA Microarrays : A Pratical Approach”, Oxford University Press, 1999. 27.Singh. D. et al.,” Gene expression correlates of clinical prostate cancer behavior”, Cancer Cell, 2002. 28.Statnikov, A. et al., “A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis”, BMC Bioinformatics 2004. 29.Statnikov, A. et al., “A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification”, BMC Bioinformatics 2008. 30.Specht, D.F., “Probabilistic Neural Network”, Neural Networks, 1990. 31.Van’t Veer. et al, “Gene expression profiling predicts clinical outcome of breast cancer” , Nature 2002 32.Vogt, C.C. and G.W. Cotrell, “Fusion via a linear combination of scores”, Info. Ret., 1999. 33.Weston, J. and Watkins, C., “Multi-Class Support Vector Machines”, Department of Computer Science, 1998. 34.Yang, J.H. and Honavar, V., “Feature Subset Selection Using a Genetic Algorithm”, IEEE on Intelligent Systems, 1998.
|