跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 05:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭達智
研究生(外文):Dar-Chih Kuo
論文名稱:台灣全民健保論病例計酬下心臟冠狀動脈繞道手術醫師執行數量與相關手術結果因素之探討
論文名稱(外文):Association Between Surgeon Volume and Surgical Outcomes for CABG Patients Reimbursed by Case-payment Mechanism in Taiwan
指導教授:蔡淑鈴蔡淑鈴引用關係黃欽印黃欽印引用關係
指導教授(外文):Shu-Ling TsaiChin-Yin Huang
學位類別:碩士
校院名稱:東海大學
系所名稱:工業工程與經營資訊學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:69
中文關鍵詞:醫師手數量冠狀動脈繞道手術費用案病例計酬診斷關聯群
外文關鍵詞:Surgeon volumeCABGcostcase-paymentDRG
相關次數:
  • 被引用被引用:1
  • 點閱點閱:927
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本研究係以國家衛生研究院之全民健康保險研究資料庫所收錄的行政性資料為樣本來源,做一縱貫性且全國性的研究.目的係在探討中央健保局自1999年七月開始針對部分心臟冠狀動脈繞道手術實施按病例計酬之後,國內各醫院對於這一單項手術的費用效益以及利潤關係,並藉以分析其與醫院結構面與手術結果面的關聯.
本研究對象為民國88 年7 月至96 年6 月共8 年間,全台灣地區醫院向健保局申報冠狀動脈繞道手術按病例計酬之案件共15,449件,經資料收集後以SPSS 16.0 for windows 套裝軟體進行描述性及推論性分析比較.我們採用一般線性模式探討和分析每位醫師的平均手術利潤比和醫師個人手術量,醫師執行手術時之年齡,病患年齡,病患性別,病患住院日數, 病患出院後七日內再住院以及醫院權屬,醫院評鑑等級和醫院所屬健保局分局等變項之關聯;並以二元羅吉斯迴歸預測病患出院後七日內再住院與上述變項之機率.
研究結果發現手數量介於150到300例的醫師和年齡長於60歲的醫師具有最低的平均手術利潤比(即其病患住院費用總和平均最低),位於健保局北區分局轄區的醫院和公立醫院在所有醫院間有最低的平均手術利潤比.較常住院日以及出院後七日內再住院都提升平均手術利潤比.私立醫院醫學中心及低病患年齡均預測較低的七日內再住院機率.
本文是第一次以國內心臟冠狀動脈繞道手術實施按病例計酬的病例為研究對象探討費用效益的研究,在按病例計酬制即將完成階段性使命並代以全面性實施台灣版的診斷關聯群支付制度之際, 期望能透過本研究的結果提供執行診斷關聯群支付制度的實證參考.
This longitudinal, population-based, nation-wide study collected 15,449 patients who had received coronary artery bypass grafting (CABG) surgery during an eight-year and half period by 281 surgeons in Taiwan. The samples are drawn from the National Health Insurance Research Database (NHIRD). All cases share the same character of being reimbursed by National Health Insurance Bureau (NHIB) under the case-payment category implemented ever since July of 1999.
Using this administrative data, we investigated the cost-efficiency of all hospitals and surgeons undergoing CABG of this category and analyzed the associations between it and cumulative surgeon volume in addition to other parameters of hospitals and patients. “Cost” in this study specifically indicates “charge” of hospitalization. We take mean profit ratio as indicator of cost-efficiency; a lower ratio implies a higher efficiency.
General linear model (GLM) was used to explore associations between profit ratio per case and surgeon case volume (volume groups: One to 50, 51to 100, 101 to 150, 151 to 300 and >300), hospital ownership, accreditation status, geographic region; surgeon age, length of hospital stay and 7-day readmission. Data were statistically analyzed using SPSS 16.0 for Windows (SPSS Inc. Chicago, Illinois).
Results demonstrated surgeons performing cases between 151 to 300 and surgeons aged older than sixty have the lowest profit ratio among colleagues. Hospitals in northern area or public held performed best/better than their counterpart(s). Longer length of stay and readmission within a week after first discharge all brought profit ratio up. Private hospital, academic medical center and younger patient age predicted lower 7-day readmission possibility.
This is the first study focusing on cost-efficiency and associated surgical outcomes of CABG reimbursed by case-payment mechanism. This transitional payment system is to pass down the mission to a more continent Tw-DRGs in near future. Our study might act as a pilot for more precisely defining the implementation of Tw-DRGs.
Table of Contents

Research purpose and background ------------------------------------------------------ 1
Review of literatures
Improvement of medical and surgical quality -------------------------------------------- 2
Diagnosis-Related Group (DRG) and Case-Payment systems ------------------------- 6
Case-payment in Taiwan and quality improvement ----------------------------------- 8
Methods
Material -------------------------------------------------------------------------------------- 11
Variables ------------------------------------------------------------------------------------- 12
Statistics -------------------------------------------------------------------------------------- 19
Results
Descriptive statistics -------------------------------------------------------------------------21
One-way ANOVA --------------------------------------------------------------------------- 34
General linear model ------------------------------------------------------------------------ 38
Binary logistic regression of 7-day readmission -----------------------------------------40
Discussion --------------------------------------------------------------------------------------- 42
Study limitation -------------------------------------------------------------------------------- 61
Conclusion --------------------------------------------------------------------------------------- 63
Reference ----------------------------------------------------------------------------------------- 65
List of Figures
Figure 1. Frequency of surgical volume of all surgeons --------------------------------------23
Figure 2. Length of hospital stay and patient age/sex ---------------------------------------- 27
Figure 3. Association between length of hospital stay (LOS) and surgeon volume ------ 28
Figure 4. Length of stay and surgeon age ------------------------------------------------------ 29
Figure 5. Patient age/sex in relation to mean profit ratio -------------------------------------31
Figure 6. The Association between Profit Ratio and Surgeon Volume ---------------------32
Figure 7. The association between mean profit ratio and surgeon volume ---------------- 32
Figure 8. Association between surgeon age and their mean profit ratio ------------------- 33
Figure 9. Association between profit ratio and hospital accreditation level --------------- 33
Figure 10. Mean profit ratio by different NHIB branches ------------------------------------ 34
Figure 11. Average daily ward fee of our patients --------------------------------------------- 47
Figure 12. Statistics of average percentage of ward fee to the total hospital cost --------- 47
Figure 13. Distribution of surgeons with volume >300 by hospital accreditation level--- 54
Figure 14. Distribution of surgeons with volume between 151-300 by hospital
accreditation level ------------------------------------------------------------------- 54
Figure 15. Radar chart showing younger surgeons predominance in hospitals
managed by northern and southern branches of NHIB -----------------------------60












List of Tables
Table 1. Public hospitals in Taiwan, yearly numbers ----------------------------------------- 14
Table 2. Private hospitals in Taiwan, yearly numbers ---------------------------------------- 15
Table 3. Number of hospitals by accreditation level and NHIB branches in Taiwan ----- 16
Table 4. History of RVUs adjustment for CABG reimbursed by case-payment ---------- 17
Table 5.History of RVUs adjustment for CABG operation and ECC fee based on FFS - 18
Table 6. Sex, age distribution and yearly number of patients -------------------------------- 21
Table 7. Patient number by hospital accreditation level, ownership and NHIB branch -- 22
Table 8. Number of surgeons by different surgical volume groups ------------------------- 24
Table 9. Detailed case numbers for surgeons performed for less than 51 cases ----------- 24
Table 10. Number and percentage of patients associated with hospitals accreditation
level and each surgeon volume ------------------------------------------------------- 25
Table 11. Number and percentage of patients of each surgeon volume group
in different hospital accreditation level ---------------------------------------------- 25
Table 12. Patient number versus surgeon volume and age ------------------------------------ 26
Table 13. Length of hospital stay ----------------------------------------------------------------- 26
Table 14. Distribution of various LOS of different hospital accreditation level ------------ 28
Table 15 Seven-day readmission rate among different surgeon volume groups ------------ 30
Table 16. Statistics of profit ratio of our samples ----------------------------------------------- 30
Table 17. One-way ANOVA of surgeon volume and mean profit ratio --------------------- 35
Table 18. One-way ANOVA of surgeon age and mean profit ratio -------------------------- 35
Table 19. One-way ANOVA of patient sex/age and profit ratio ------------------------------ 35
Table 20. Mean profit ratio of patients operated in different hospitals ----------------------- 36
Table 21. Mean profit ratio of patients operated in hospitals governed
under different NHIB branches -------------------------------------------------------- 36
Table 22. Mean profit ratio associated with various length of hospital stay ----------------- 37
Table 23. LOS and surgeon volume --------------------------------------------------------------- 37
Table 24. LOS and hospital accreditation level -------------------------------------------------- 38
Table 25. ANOVA and logistic regression for 7-day readmission and mean profit ratio -- 38
Table 26. General linear modeling results of mean profit ratio for different
surgeon volume --------------------------------------------------------------------------- 40
Table 27. Binary logistic regression of seven-day readmission -------------------------------- 41
Table 28. The payment standards for patients stay at ICU and general ward ---------------- 46
Table 29. Average fees charged during admission for each different duration
of hospital stay ------------------------------------------------------------------------------ 49
Table 30. Cross-tabulation between surgeon volume and hospital accreditation level ------ 53
Table 31. Accreditation levels of major public and private (for- and not-for profit)
hospitals inTaiwan ------------------------------------------------------------------------ 58
Table 32. Number and percentage of patients operated by surgeons of different age
in each NHIB branch----------------------------------------------------------------------- 59
References
English references
1. Anderson JG, Harshbarger W, Weng HC, Jay SJ, Anderson MM. Modeling the costs and outcomes of cardiovascular surgery. Health Care Manag Sci 2002;5:103-11.
2. Miranda DR. Improving the cost-effectiveness of coronary artery bypass grafting surgery. Better clinical research or simply better management? Intensive Care Med 2001;27:461-3.
3.TF L. Coronary Artery Bypass Graft Surgery: Quality of Care Before and After Implementation of the Case-based Prospective Payment System: National Yang-Ming University; 2002.
4.CF Y. The effect of The Implement of Case Payment System on Expenditure and Quality of Care --- A Case Study of CoronaryArtery Bypass Graft Surgery: Kaoshiung Medical University; 2002.
5.Grover FL, Cleveland JC, Jr., Shroyer LW. Quality improvement in cardiac care. Arch Surg 2002;137:28-36.
6.Chassin MR. Achieving and sustaining improved quality: lessons from New York State and cardiac surgery. Health Aff (Millwood) 2002;21:40-51.
7. Donabedian A. The quality of medical care. Science 1978;200:856-64.
8.Ferguson TB, Jr., Dziuban SW, Jr., Edwards FH, et al. The STS National Database: current changes and challenges for the new millennium. Committee to Establish a National Database in Cardiothoracic Surgery, The Society of Thoracic Surgeons. Ann Thorac Surg 2000;69:680-91.
9. S.A.M. Nashef*. European system for cardiac operative risk evaluation (EuroSCORE) European Journal of Cardio-thoracic Surgery 1999;16.
10. Heart surgery in the United Kindgom. the Healthcare Commission,the Society for Cardiothoracic Surgery in Great Britain and Ireland, 2009. (Accessed at http://www.myendnoteweb.com/EndNoteWeb/2.5/release/EndNoteWeb.html?pageIn=add&func=new&.)
11.Adult cardiac surgery in New York state, 2003-2005: New York State Department of Health; 2008.
12.Carey JS, Danielsen B, Junod FL, Rossiter SJ, Stabile BE. The California Cardiac Surgery and Intervention Project: evolution of a public reporting program. Am Surg 2006;72:978-83.
13.Shahian DM, Normand SL, Torchiana DF, et al. Cardiac surgery report card comprehensive review and statistical critique. Ann Thorac Surg 2001;72:2155-68.
14.Khuri SF, Daley J, Henderson W, et al. The Department of Veterans Affairs' NSQIP: the first national, validated, outcome-based, risk-adjusted, and peer-controlled program for the measurement and enhancement of the quality of surgical care. National VA Surgical Quality Improvement Program. Ann Surg 1998;228:491-507.
15.Bridgewater B, Grayson AD, Brooks N, et al. Has the publication of cardiac surgery outcome data been associated with changes in practice in northwest England: an analysis of 25,730 patients undergoing CABG surgery under 30 surgeons over eight years. Heart 2007;93:744-8.
16.Barbour G. The role of outcomes data in health care reform. Ann Thorac Surg 1994;58:1881-4.
17.Hall BL, Campbell DA, Jr., Phillips LR, Hamilton BH. Evaluating individual surgeons based on total hospital costs: evidence for variation in both total costs and volatility of costs. J Am Coll Surg 2006;202:565-76.
18.Beveridge RN. Creating value-focused healthcare delivery systems: Part three--Core competencies. J Oncol Manag 1997;6:16-23.
19.Fleming ST. The relationship between the cost and quality of hospital care: a review of the literature. Med Care Rev 1990;47:487-502.
20.Donabedian A, Wheeler JR, Wyszewianski L. Quality, cost, and health: an integrative model. Med Care 1982;20:975-92.
21.RB F. Diagnosis Related Groups: Understanding Hospital Performance. Interfaces 1991;21:6-26.
22.Busse R, Schreyogg J, Smith PC. Hospital case payment systems in Europe. Health Care Manag Sci 2006;9:211-3.
23.Schreyogg J, Stargardt T, Tiemann O, Busse R. Methods to determine reimbursement rates for diagnosis related groups (DRG): a comparison of nine European countries. Health Care Manag Sci 2006;9:215-23.
25.Blankenau R. Managing costs and care. Medicare bundled pricing CABG demo is catching on fast. Hosp Health Netw 1993;67:40, 2, 4.
27.Wen HC, Tang CH, Lin HC, Tsai CS, Chen CS, Li CY. Association between surgeon and hospital volume in coronary artery bypass graft surgery outcomes: a population-based study. Ann Thorac Surg 2006;81:835-42.
28.Wu SC, Chien LN, Ng YY, Chu HF, Chen CC. Association of case volume with mortality of chinese patients after coronary artery bypass grafting: Taiwan experience. Circ J 2005;69:1327-32.
29.Lin HC, Xirasagar S, Chen CH, Lin CC, Lee HC. Association between physician volume and hospitalization costs for patients with stroke in Taiwan: a nationwide population-based study. Stroke 2007;38:1565-9.
30.Lin CS, Lee HC, Lin CT, Lin HC. The association between surgeon case volume and hospitalization costs in free flap oral cancer reconstruction operations. Plast Reconstr Surg 2008;122:133-9.
31.Klabunde CN, Harlan LC, Warren JL. Data sources for measuring comorbidity: a comparison of hospital records and medicare claims for cancer patients. Med Care 2006;44:921-8.
32.Iezzoni LI. Assessing quality using administrative data. Ann Intern Med 1997;127:666-74.
33.Hannan EL, Kilburn H, Jr., Lindsey ML, Lewis R. Clinical versus administrative data bases for CABG surgery. Does it matter? Med Care 1992;30:892-907.
34.Baldwin LM, Klabunde CN, Green P, Barlow W, Wright G. In search of the perfect comorbidity measure for use with administrative claims data: does it exist? Med Care 2006;44:745-53.
35.Charlson ME ST, Peterson J, Gold J. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of Chronic Disease 1987;40:373-83.
36.Schneeweiss S, Maclure M. Use of comorbidity scores for control of confounding in studies using administrative databases. Int J Epidemiol 2000;29:891-8.
37.Rathore SS, Epstein AJ, Volpp KG, Krumholz HM. Hospital coronary artery bypass graft surgery volume and patient mortality, 1998-2000. Ann Surg 2004;239:110-7.
38.Hong D, Tandan VR, Goldsmith CH, Simunovic M. Users' guide to the surgical literature: how to use an article reporting population-based volume-outcome relationships in surgery. Can J Surg 2002;45:109-15.
39.Weber WP, Guller U, Jain NB, Pietrobon R, Oertli D. Impact of surgeon and hospital caseload on the likelihood of performing laparoscopic vs open sigmoid resection for diverticular disease: a study based on 55,949 patients. Arch Surg 2007;142:253-9; discussion 9.
40.Council PHCCC. Cardiac Surgery in Pennsylvania 2005.
42.Thomas JW. Hospital Cost Efficiency Measurement: Methodological Approaches: Pacific Business Group on Health; 2006.
43.General linear model. 2009. (Accessed at http://en.wikipedia.org/wiki/General_linear_model.)
44.Xakellis GC ME, Ginsinger B. Evaluation of healthplan performance: rolling up publicly available measures into six domains. In: Association for Health Services Research Meeting. Ford Motor Company, Dearborn, MI 48121, USA.; 1998:1998; 15: 212-3.
45.Committee on Quality of Health Care in America IoM. Crossing the Quality Chasm: A new health system for the 21th century; 2001.
46.Development COoSHPa. The California Report on Coronary Artery Bypass Graft Surgery 2005 Hospital Data. In. Sacramento, CA; 2007.
47.Naglie G, Tansey C, Krahn MD, O'Rourke K, Detsky AS, Bolley H. Direct costs of coronary artery bypass grafting in patients aged 65 years or more and those under age 65. CMAJ 1999;160:805-11.
48.Sun X, Zhang L, Lowery R, et al. Early readmission of low-risk patients after coronary surgery. Heart Surg Forum 2008;11:E327-32.
49.Hannan EL, Racz MJ, Walford G, et al. Predictors of readmission for complications of coronary artery bypass graft surgery. JAMA 2003;290:773-80.
50.Health NJDo. Cardiac surgery in New Jersey 2004. In; 2007.
51.LoGerfo JP. The prospective payment system and quality. No skeletons in the closet. JAMA 1990;264:1995-6.
52.Volavka MP. Technical Notes for PHC4's Report on CABG and Valve Surgery, Calendar Year 2005. In: Council TPHCCC, ed.; 2007.
53.Taheri PA, Butz DA, Greenfield LJ. Length of stay has minimal impact on the cost of hospital admission. J Am Coll Surg 2000;191:123-30.
54.Norris C, Jacobs P, Rapoport J, Hamilton S. ICU and non-ICU cost per day. Can J Anaesth 1995;42:192-6.
56.Hannan EL, Racz MJ, Jollis JG, Peterson ED. Using Medicare claims data to assess provider quality for CABG surgery: does it work well enough? Health Serv Res 1997;31:659-78.
57.Torchiana DF, Meyer GS. Use of administrative data for clinical quality measurement. J Thorac Cardiovasc Surg 2005;129:1223-5.
58.Jirkmeyer DB, HOSPITAL VOLUME AND SURGICAL MORTALITY IN THE UNITED STATES. The New England Journal of Medicine 2002;346:1128-37.
59.Dimick JB, Birkmeyer JD, Upchurch GR, Jr. Measuring surgical quality: what's the role of provider volume? World J Surg 2005;29:1217-21.
60.Hannan EL, Wu C, Ryan TJ, et al. Do hospitals and surgeons with higher coronary artery bypass graft surgery volumes still have lower risk-adjusted mortality rates? Circulation 2003;108:795-801.
61.Birkmeyer J. HOSPITAL VOLUME AND SURGICAL MORTALITY IN THE UNITED STATES. The New England Journal of Medicine 2002;346:1128-37.
62.Carey JS, Parker JP, Brandeau C, Li Z. The "occasional open heart surgeon" revisited. J Thorac Cardiovasc Surg 2008;135:1254-60.
63.Hwang CS, Pagano CR, Wichterman KA, Dunnington GL, Alfrey EJ. Resident versus no resident: a single institutional study on operative complications, mortality, and cost. Surgery 2008;144:339-44.
64.Shine D, Beg S, Jaeger J, Pencak D, Panush R. Association of resident coverage with cost, length of stay, and profitability at a community hospital. J Gen Intern Med 2001;16:1-8.
65.Khuri SF, Najjar SF, Daley J, et al. Comparison of surgical outcomes between teaching and nonteaching hospitals in the Department of Veterans Affairs. Ann Surg 2001;234:370-82; discussion 82-3.
66.Babineau TJ, Becker J, Gibbons G, et al. The "cost" of operative training for surgical residents. Arch Surg 2004;139:366-9; discussion 9-70.
67.O'Neill L, Lanska DJ, Hartz A. Surgeon characteristics associated with mortality and morbidity following carotid endarterectomy. Neurology 2000;55:773-81.
68.Waljee JF, Greenfield LJ, Dimick JB, Birkmeyer JD. Surgeon age and operative mortality in the United States. Ann Surg 2006;244:353-62.
69.Diamond HS, Fitzgerald LL, Day R. An analysis of the cost and revenue of an expanded medical residency. J Gen Intern Med 1993;8:614-8.
70.Lien HM, Chou SY, Liu JT. Hospital ownership and performance: evidence from stroke and cardiac treatment in Taiwan. J Health Econ 2008;27:1208-23.
71.Hsiu-chuan S. Krugman, Cabinet officials discuss healthcare system. Taipei Times 2009.

Chinese references
24.中央健康保險局. 全民健康保險住院診斷關聯群支付方案規劃報告,2006.
26.中央健康保險局. 94 年10 月健保醫字第0940029272 號令修正「全民健康保險醫療費用支付標準」論病例計酬診療項目,2005.
41.行政院衛生署. 民國96年醫療機構現況及醫療服務量統計摘要,2008.
55.中央健康保險局. 增,修訂"全民健康保險醫療費用支付標準",2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 影響病人選擇冠狀動脈繞道手術或以心導管置入塗藥支架治療因素之研究
2. 論病例計酬實施對醫療費用及品質之影響─以冠狀動脈繞道手術為例
3. 台灣診斷關聯群實施、市場競爭程度與醫療資源耗用及照護品質之相關性探討-以心導管、經皮心臟血管手術、冠狀動脈繞道手術為例
4. 台灣診斷關聯群支付制度實施前後對醫療利用、醫療行為及醫療品質之影響─以冠狀動脈繞道手術為例
5. 以群集分析技術探討同縣市醫學中心婦產科病患就醫特性—以台中市為例
6. 冠狀動脈繞道手術使用三種不同侵襲性血液動力學衛材的臨床效果評估
7. 論病例計酬實施前後冠狀動脈繞道手術醫療品質之探討
8. 探討因缺血性心臟病進行冠狀動脈繞道手術後的急診與住院醫療耗用情形
9. Tw-DRGs支付制度實施前後醫療資源利用比較-以全膝關節置換術為例
10. 傳統式及腹腔鏡式闌尾切除手術在論病例計酬制及TW-DRG制度下之醫療費用分析
11. 論病例計酬與診斷關聯群對醫療資源耗用之影響
12. 病人特性與醫院特性對同一組DRG住院天數與醫療費用影響力之比較--以單純性肺炎及胸(肋)膜炎為例
13. Tw-DRGs支付制度實施成效初探-以某醫學中心全膝關節置換病患為例
14. Tw-DRGs實施後醫院經營之因應及醫師行為的改變-以地區教學醫院為例
15. 全國施行冠狀動脈繞道術及冠狀動脈介入性治療之醫療品質與資源利用探討