跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 10:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張貴媚
研究生(外文):Chang Kui Mei
論文名稱:毛細管電泳/雷射激發螢光偵測法應用於保米黴素及嘉賜黴素之分析
論文名稱(外文):Analysis of Blasticidin S and Kasugamycin by Capillary Electrophoresis with Laser-Induced Fluorescence Detection
指導教授:張玉珍張玉珍引用關係
指導教授(外文):Chang Yu Chen
學位類別:碩士
校院名稱:東海大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:毛細管電泳毛細管電泳毛細管電泳
外文關鍵詞:Capillary ElectrophoresisCapillary ElectrophoresisCapillary Electrophoresis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:705
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
Blasticidin S與 Kasugamycin皆屬抗生素類之殺菌劑,可干擾病原菌絲合成蛋白質,有效控制稻熱病(rice blast)。農藥中殺菌劑是用來保護農作物,然而在不當使用或施藥次數太多情況下,會造成農作物上的殘留,雨水也會使含有農藥的水流入河川,污染環境並且危及人民的健康,必須建立一套有系統的分析方法來監控Blasticidin S和 Kasugamycin。
本研究發展以毛細管電泳搭配氦-鎘雷射激發螢光偵測系統分析Blasticidin S及 Kasugamycin。利用naphthalene-2,3-dicarboxaldehyde (NDA) 將不具螢光性質的 Blasticidin S及Kasugamycin進行管柱前衍生,以毛細管電泳成功的分離NDA-fungicides衍生物。各分析物遷移時間的標準偏差(RSD)為1.0~1.1 %,訊號面積的RSD為4.0~6.4 % (n=7)。Blasticidin S和Kasugamycin的校正曲線範圍為75-5000 nM (n=5)間都呈一線性關係,相關係數(r)為0.999以上,偵測極限為33nM。將分析方法應用於地下水中回收率可達94 %以上。
Analysis of Blasticidin S and Kasugamycin by Capillary Electrophoresis with Laser-Induced Fluorescence Detection
目 錄
摘要 I
謝誌 II
目錄 III
圖目錄 V
表目錄 VI

壹、緒論 1
ㄧ、毛細管電泳背景 1
二、毛細管電泳簡介 5
1. 毛細管電泳分離原理 5
2. 電滲流 7
3. 毛細管電泳進樣方式 11
4. 毛細管電泳的偵測方式 13
三、保米黴素(Blasticidin S)與嘉賜黴素(Kasugamycin) 17
1. 簡介 17
2. 保米黴素(Blasticidin S) 18
3. 嘉賜黴素(Kasugamycin) 18
4. 生物毒性 20
5. 食品中農藥的殘留管制 20
6. 分析方法 23
四、研究動機 24
貳、儀器設備及實驗方法 26
ㄧ、藥品 26
二、儀器設備 28
三、實驗方法 31
1. 毛細管前處理及使用方式 31
2. 藥品配製 31
3. 真實樣品的配製 32
4. 衍生反應 32
5. 進樣方式 33
6. 毛細管電泳(CE)裝置 33
7. 雷射激發螢光(LIF)偵測裝置 33
參、結果與討論 36
ㄧ、衍生反應條件之探討 36
1. 衍生反應 36
2. 衍生緩衝溶液pH之探討 38
3. 衍生劑對分析物比例之探討 40
4. 衍生時間之探討 42
二、分離條件之探討 44
1. SDS濃度的影響 44
2. 電泳緩衝溶液pH的影響 46
3. 電壓的影響 48
三、最佳分析條件 50
四、標準品中檢量線與偵測極限 52
五、再現性 55
六、真實樣品之檢測 55
1. 地下水樣品中的檢量線與偵測極限 58
2. 回收率試驗 58
3. 分析方法確效試驗 61
肆、結論與未來展望 65
伍、參考文獻 66

圖目錄
圖(一)毛細管電泳基本裝置 6
圖(二)電滲流 8
圖(三) 雷射激發螢光偵測器內部元件構造 34
圖(四) NDA與一級胺化合物的衍生機制 37
圖(五) 衍生緩衝溶液pH值對訊號面積之關係圖 39
圖(六) 衍生劑與分析物比例對訊號面積之關係圖 41
圖(七) 衍生時間對訊號面積之關係圖 43
圖(八) 緩衝溶液中不同SDS濃度與殺菌劑之電泳圖 45
圖(九) 緩衝溶液pH值與殺菌劑之電泳圖 47
圖(十) 電壓與殺菌劑之電泳圖 49
圖(十一) 最佳分離條件之電泳圖 51
圖(十二) NDA-fungicides衍生產物電泳圖 54
圖(十三) 地下水分析 57










表目錄
表(一) Blasticidin S 與 Kasugamycin 之基本型態(free base)特性 19
表(二) Blasticidin S 與 Kasugamycin 鹽酸鹽類形態之生物毒性 21
表(三)各國殘留農藥安全容許量 22
表(四)標準品中檢量線、偵測極限及再現性 53
表(五)地下水檢量線 59
表(六)地下水中殺菌劑之回收率 60
表(七)地下水殺菌劑同日間與異日間之精密度 62
表(八) 單因子變異數分析結果 63
1.Strickland, R .D., “Electrophoresis”, Analytical Chemistry, Vol. 38, pp. 99R-103R (1966).
2.S. F. Y. Li , “Capillary electrophoresis”, Journal of Chromatography Library, Vol. 52 , Elsevier, New York, pp. 2 (1992).
3.A. Tiselius, “A new apparatus for electrophoresis analysis of colloidal mixtures”, Transactions of the Faraday Society, Vol. 33, pp. 524-531 (1937).
4.S. Hjerten, “Free zone electrophoresis”, Chromatographic Review, Vol. 9, pp. 122-239 (1967).
5.R. Kuhn, S. Hoffstetter-Kuhn, “Capillary electrophoresis:Principle and Practice”, Springer-Verlag, New York, pp. 2 (1993).
6.A. G. Ewing, R. A. Wallingford, and T. M. Olefirowicz , “Capillary electrophoresis”, Analytical Chemistry, Vol. 61, pp. 292A-303A (1989).
7.F. E. P. Mikkers, F. M. Everaerts, and Th. P. E. M. Verheggen ,“High- performance zone electrophoresis”, Journal of Chromatography, Vol. 169, pp. 11-20 (1979).
8.J. W. Jorgenson and K. D. Lukacs, “High-resolution separations based on electrophoresis and electroosmosis”, Journal of Chromatography,Vol. 218, pp. 209-216 (1981).
9.J. W. Jorgenson and K. D. Lukacs, “Zone electrophoresis in open-tubular glass capillaries”, Analytical Chemistry, Vol.53, pp. 1298-1302 (1981).
10.J. W. Jorgenson and K. D. Lukacs,“ Capillary zone electrophoresis”, Science, Vol. 222, pp. 266-272 (1983).
11.S. Terabe, K. Otsuka, K. Ichikawa, A. Tsuchiya, and T. Ando, “Electrokinetic separations with micellar solutions and open-tubular capillaries ”, Analytical Chemistry, Vol. 56, pp. 111-113 (1984).
12.魏國佐,林文政,「中性分子在微胞電動層析的樣品堆積」,化學,第59卷,第363-372頁(2001)。
13.D. R. Baker, Capillary electrophoresis, Wiley-Interscience, New York (1995).
14.S. Hjerten and M. D. Zhu, “Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing”, Journal of Chromatography, Vol. 346, pp. 265-270 (1985).
15.D. N. Heiger, High-performance Capillary electrophoresis-An introduction, Hewlett-Packard Company, France (1992) .
16.T. Tsuds, “Electrochromatography using high applied voltage”, Analytical Chemistry, Vol. 59, pp. 521-523 (1987).
17.A. S. Cohen and B. L. Karger, “High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins”, Journal of Chromatography, Vol. 397, pp. 409-417 (1987).
18.T. Tsuda, “Electrochromatography Using High Applied Voltage”, Analytical Chemistry, Vol. 59, pp. 521-523 (1997).
19.D. A. Skoog, F. J. Holler, and T. A Nieman, Principles of Instrumental Analysis, A Harcourt Higher Learning Company, Fifth Edition.
20.X. Huang, M. J.Gordon, and R. N. Zare, “Bisa in quantitative capillary zone electrophoresis caused by electrokinetic sample injection”, Analytical Chemistry, Vol. 60, pp. 375-377 (1988).
21.D. J. Rose, Jr. and J. W. Jorgenson, “Characterization and automation of sample introduction methods for capillary zone electrophoresis”, Analytical Chemistry, Vol. 60, pp. 642-648 (1988).
22.M. Deml, F. Foret, and P. Boček, “Electric sample splitter for capillary zone electrophoresis”, Journal of Chromatography, Vol. 320, pp. 159-165 (1985).
23.T. Tsuda, T. Mizuno, and J. Akiyama, “Aids for analytical chemists”, Analytical Chemistry, Vol. 59, pp.799-800 (1987).
24.R. A. Wallingfrd and A. G. Ewing, “Characterization of a microinjector for capillary zone electrophoresis”, Analytical Chemistry, Vol. 59, pp. 678-681 (1987).
25.J. A. Olivares, N. T. Nguyen, C. R. Yonker, and R. D. Smith, “On-line mass spectrometric detection for capillary zone electrophoresis”, Analytical Chemistry, Vol. 59, pp. 1230-1232 (1987).
26.R. D. Smith, J. A. Olivares, N. T. Nguyen, and H. R. Udseth, “Capillary zone electrophoresis-mass spectrometry using an electrospray ionization interface”, Analytical Chemistry, Vol. 60, pp. 436-441 (1988).
27.T. J. Thompson, F. Foret, P. Vouros, and B. L. Karger, “Capillary electrophoresis/Electrospray ionization mass spectrometry: improvement of protein detection limits using on-column transient isotachophoretic sample preconcentration”, Analytical Chemistry, Vol. 65, pp. 900-906 (1993).
28.A. J. Zemann, “Conductivity detection in capillary electrophoresis”, Trends in Analytical Chemistry, Vol. 20, pp. 346-354 (2001).
29.X. Huang and R. N. Zare, “Improved end-column conductivity detector for capillary zone electrophoresis”, Analytical Chemistry, Vol. 63, pp. 2193-2196 (1991).
30.M. W. F. Nielen, “Indirect time-resolved luminescence detection in capillary zone electrophoresis”, Journal of Chromatography, Vol. 608, pp. 85-93 (1992).
31.R. Dadoo, A. G. Seto, L. A. Colόn, and R. N. Zare, “End-column chemiluminescence detector for capillary electrophoresis”, Analytical Chemistry, Vol. 66, pp. 303-306 (1994).
32.M. Nieddu, G. Boatto, Antonio Carta et. al., “Simultaneous determination of ten amphetamine designer drugs in human whole blood by capillary electrophoresis with diode array detection”, Biomedical Chramatography, Vol. 19, pp.737-742 (2005).
33.J. P. Chervet, R. E. J. van Soest, and M. Ursem, “ Z-shaped flow cell for UV detection in capillary electrophoresis”, Journal of Chromatography, Vol. 543, pp. 439-449 (1991).
34.S. E. Moring, R. T. Reel, and R. E. J. van Soest, “Optical improvements of a z-shaped cell high-sensitivity UV absorbance detection in capillary electrophoresis”, Analytical Chemistry, Vol. 65, pp. 3454-3459 (1993).
35.G. Hempel, D. Lehmkuhl, S. Krűmpelmann, G. Blaschke, and J. Boos, “Determination of paclitaxel in biological fluids by micellar electrokinetic chromatography”, Journal of Chromatography A, Vol. 745, pp. 173-179 (1996).
36.J. Olgemőller, G. Hempel, J. Boos, and G. Blaschke, “Determination of (E)-5-(2-bromovinyl)-2’-deoxyuridine in plasma and urine by capillary electrophoresis”, Journal of Chromatography B, Vol. 726, pp. 261-268 (1999).
37.J. A. Taylor and E. S. Yeung, “Axial-beam absorbance detection for capillary electrophoresis”, Journal of Chromatography, Vol. 550, pp. 831-837 (1991).
38.T. Tsuda, J. V. Sweedler, and R. N. Zare, “Rectangular capillaries for capillary zone electrophoresis”, Analytical Chemistry, Vol. 62, pp. 2149-2152 (1990).
39.T. Wang, J. H. Aiken, R. A. Huie, and R. A. Hartwick, “Nanoliter-scale multireflection cell for absorption detection in capillary electrophoresis”, Analytical Chemistry, Vol. 63, pp. 1372-1376 (1991).
40.Y. Xue and E. S. Yeung, “On-Column double-beam laser absorption detection for capillary electrophoresis”, Analytical Chemistry, Vol. 65, pp. 1988-1993 (1993).
41.Y. Xue and E. S. Yeung, “Double-beam laser Indirect absorption detection in capillary electrophoresis’’, Analytical Chemistry, Vol. 65, pp. 2923-2972 (1993).
42.J. W. Jorgenson and K. D. Lukacs, “Capillary Zone Electrophoresis”, Science, Vol. 222, pp. 266-272 (1983).
43.E. Gassmann, J. E. Kuo, and R. N. Zare, “Electrokinetic separation of chiral compounds”, Science, Vol. 230, pp. 813-814 (1985).
44.H. A. Baradelmeijer, J. C. M. Waterval, H. Lingeman, R. V. Hof, A. Bult, and W. J. M. Underberg, “Pre-, on- and post-column derivatization in capillary eletrophoresis”, Electrophoresis, Vol. 18, pp. 2214-2227 (1997).
45.王鳳玉,「以毛細管電泳/雷射激發螢光偵測應用於微量藥物分析」,碩士論文,朝陽科技大學應用化學系,台中 (2003)。
46.吳懿娟,「毛細管電泳/雷射激發螢光偵測法分析環境水樣中保米黴素及嘉賜黴素之含量」,碩士論文,朝陽科技大學應用化學系,台中 (2006)。
47.魏妙宜,「毛細管電泳在除草劑與藥物上的應用」,碩士論文,朝陽科技大學應用化學系,台中 (2004)。
48.United States Environmental Protection Agency, About biopesticides, http://www.epa.gov/pesticides/biopesticides/whatarebiopesticides.htm
49.陳保良、李木川、黃德昌、葉瑩,「生物性農藥管理及未來發展」,農業生技產業季刊,第四期,第54~59頁 (2005)。
50.高穗生,「生物農藥之產業現況及應用」,農業生技產業季刊,第四期,第34~39頁 (2005)。
51.石信徳,黃振文,「保護植物的重要菌源-鏈黴素」,科學發展,第391期,第22-27頁 (2005)。
52.簡錦忠,「稻熱病」,花蓮區農業推廣簡訊刊,第三期,第7-9頁 (1989)。
53.H. Kidd and R. James, The Agrochemicals Hand book, Royal Society of chemistry information Services, Third Edition (1991).
54.Pesticides Index, Taiwan Provincial Deparment of Agriculture and Forestry (PDAF), July (1968)
55.徐聖煦,農藥化學,台北市正中書局印行(1971)。
56.G. Matolcsy, M. Nádasy, V. Andriska, Pesticide Chemistry, Elsevier (1988).
57.Tomlin, Clive, The pesticide manual: a world compendium, Farnham, Surrey, UK: British Crop Protection Council (1997).
58.United States Environmental Protection Agency, Pesticide Fact Sheet, Kasugamycin,http://www.epa.gov/opprd001/factsheets/kasugamycin.pdf
59.E. J. Vandamme, Biotechnology of industrial antibiotics, New York:M. Dekker (1984).
60.H. Seto and H. Yonehara, “Studies on biosynthesis of blasticidin S. VI”, The Journal of Antibiotics, Vol. 30, pp. 1019-1021 (1977).
61.L. G. Copping and J. J. Menn, “Review, Biopesticides: a review of their action, applications and efficacy”, Pest Management Science, Vol. 56, pp.651-676 (2000).
62.B. K. Hwang and H. S. Chung, “Acquired Tolerance to Blasticidin-S in Pyricularia oryzae”, Phytopathology, Vol. 67, pp. 421-424 (1976).
63.T. O. Fukauda, N. T. Ando, S. Ohsato et al., “A fluorescent antibiotic resistance marker for rapid production of transgenic rice plants”, Journal of Biotechnology, Vol.122, pp. 521-527 (2006).
64.I. Yamaguchi, K. Takagi and T. Misato, “The Sites for degradation of Blasticidin S”, Agricultural & Biological Chemistry, Vol. 36, pp. 1719-1727(1972).
65.石山哲爾,「Kasugamycin 在農藥上的應用」,中國化學會誌,第3期,第 A23-A31頁 (1966)。
66.M. Taga, J. Nakagawa, M. Tsuda and A. Ueyama, “Identification of three different loci controlling kasugamycin resistance in Puricularia oryzae”, Phytopathology, Vol. 69, pp. 463-466 (1979).
67.行政院農業委員會農業藥物毒物試驗所,植物保護手冊。
68.衛生署食品衛生署公告之蔬果殘留安全容許量,http://dohlaw.doh.gov.tw/Chi/NewsContent.asp?msgid=2275。
69.Federal Register Rules and Regulations, Vol. 70, pp. 55748-55752 (2005).
70.中華人民共合國農業部種植業管理司,植保植檢網,農藥合理使用準則,http://www.ppq.gov.cn/Article_Show.asp?ArticleID=284
71.行政院農業委員會農糧署,台灣農產品主要外銷國(地區)殘留農藥容許量標準,http://www.afa.gov.tw/Public/peasant/20063993357055.doc。
72.The Japan Food Chemical Research Foundation,http://www.m5.ws001. squarestart.ne.jp/foundation/agrdtl.php?
a_inq=15600。
73.T. Endo, K. Furuta, A. Kaneko et al., “Inactivation of Blasticidin S by Bacillus cereus’’, The Journal of Antibiotics, Vol. 40, pp. 1791-1795 (1987).
74.保米黴素(Blasticidin-S)有效成分檢驗方法,行政院農業委員會動植物防疫檢疫局防檢三字第0941484442號公告。
75.嘉賜黴素(Kasugamycin)有效成分檢驗方法,行政院農業委員會87農糧字第87144286號公告。
76.C. C. Lo, Y. J. Lee, C. J. Chang, “High-performance liquid chromatographic method for the determination of Blasticidin S in formulated products with photodiode array detection”, Journal of Agricultural and Food Chemistry, Vol. 44, pp. 153-158 (1996).
77.C. C. Lo, Y. J. Lee, C. J. Chang, “High-performance capillary electrophoresis method for the determination of Blasticidin S in formulated products”, Journal of Agricultural and Food Chemistry, Vol. 43, pp. 2892-2895 (1995).
78.蕭懿民,「毛細管在農藥主成份分析之應用」,台灣省農業藥物毒物試驗所技術專刊第80號。
79.C. C. Lo, Y. J. Lee, C. J. Chang, “High-performance capillary electrophoresis method for the determination of antibiotic fungicide Kasugamycin in formulated products”, Journal of Agricultural and Food Chemistry, Vol. 44, pp. 2231-2234 (1996).
80.牛長群,祝仕清,張惠敏,「反相離子對高效液相色譜法和高效毛細管電泳法測定春雷黴素」,中國抗生素雜誌,第26卷,第五期,第348-350頁 (2001)。
81.M. Junshi, K. Philip, “Residue analysis of polyoxins B, D and blasticidin S in crops and soils”, Pesticide Chemistry 5th, pp. 309-316 (1983).
82.O. Haruki, O. Kousaburo, “Sensitive determination of blasticidin S in human blood and urine by high-performance liquid chromatography after conversion to cytomycin”, Journal of Foresic Toxicology, Vol. 17, pp. 163-170 (1999).
83.H. Danbara and M. Yoshikawa, “Plasmid-Determined Epistatic Susceptibility to Kasugamycin”, Antimicrobial Agents and Chemistry, Vol. 8, pp. 243-250 (1975).
84.E. R. Dabbs, “Kasugamycin-dependent mutants of Escherichia coli”, Journal of Bacteriology, Vol. 136, pp. 994-1001 (1978).
85.M. Kimura and I. Yamaguchi, “Recent development in the use of Blasticidin S, a microbial fungicide, as a useful reagent in molecular biology”, Pesticides Biochemistry and Physiology, Vol. 56, pp. 243-248 (1996).
86.S. Goyard, S. M. Beverley, “Blasticidin resistance: a new independent marker for stable transfection of Leishmania”, Molecular and Biochemical Parasitology, Vol. 108, pp. 249-252 (2000).
87.K. Suzukake and M. Hori, “Biochemical study of minosaminomycin in relation to the Kasugamycin group antibiotics”, The Journal of Antibiotics, Vol. 30, pp. 132-140 (1977).
88.T. Kitagawa, T. Kawasaki, H. Munechika, “Enzyme immunoassay of Blasticidin S with high sensitivity: A new and convenient method for preparation of immunogenic (hapten-protein) conjugates”, Journal of Biochemistry, Vol. 92, pp. 585-590 (1982).
89.I. Yamaguchi and T. Misato, “Active center and mode of reaction of Blasticidin S Deaminase”, Agricultural & Biological Chemistry, Vol. 49, pp. 3355-3361 (1985).
90.M. Kuwano, K. Matsui, K. Takenaka et al., “A mouse leukemia cell mutant resistant to Blasticidin S”, International Journal of Cancer, Vol. 20, pp. 296-302 (1977).
91.C. J. Kim, Y. Keun, and G. T. Chun, “Enhancement of kasugamycin production by pH shock in batch cultures of streptomyces kasugaensis”, Biotechnology Progress, Vol. 16, pp. 548-522 (2000).
92.N. Otake, S. Takeuchi, T. Endō and H. Yonehara, “Chemical studies on Blasticidin S part III. The structure of Blasticidin S”, Agricultural & Biological Chemistry, Vol. 30, pp. 132-141 (1966).
93.簡麗娟,「毛細管電泳/雷射激發螢光偵測法應用於有機硒化合物的分析」,碩士論文,東海大學化學系碩士班,台中 (2006)。
94.R. G. Carlson, K. Srinivasachar, R. C. Givens, B. K. Matuszewski, “New derivatizing of N-substituted 1-cyanobenz [f]isoindole and their spectroscopic properties,” Journal of Organic Chemistry, Vol. 51, pp. 3987-3983 (1986).
95.R. Georges , L. Marlène, and C. G. Jean et al., “The use of naphthalene-2,3-dicarboxaldehyde for the analysis primary amines using high-performance liquid chromatography and capillary electrophoresis,” Biomedical Chromatography, Vol. 21, pp. 1223-1239 (2007).
96.W. Ried, H. Bodem, “A simple and productive synthesis for naphthalene-(2,3)-dicarboxaldehyde,” Chemische Berichte, Vol. 89, pp. 708-712 (1956).
97.X. Liu, L. X. Yang, and Y. T Lu, “Determination of biogenic amines by 3-(2-furoyl) quinoline-2-carboxaldehyde and capillary electrophoresis with laser-induced fluorescence detection,” Journal of Chromatography A, Vol. 998, pp. 213-219 (2003).
98.W. A. Jacobs, M. W. Leburg and E. J. Madaj, “Stability of o-phthalaldehyde-derived isoindoles,” Analytical Biochemistry, Vol. 156, pp. 334-34 (1956).
99.P. de Montigny, J. F. Stobaugh, R. S. Givens et al., “Naphthalene-2,3-dicarboxaldehyde/cyanide ion:a rationally designed fluorogenic reagent for primary amines,” Analytical Chemistry, Vol. 59, pp. 1096-1101 (1987).
100.M. Shou, A. D. Smith, J. G. Shackman, J. Peris et al., “In vivo monitoring of amino acids by microdialysis sampling with on-line derivatization by naphthalene-2,3-dicarboxyaldehyde and rapid micellar electrokinetic capillary chromatography,” Journal of Neuroscience Methods, Vol. 138, pp. 189-197 (2004).
101.D. P. Manica, J. A. Lapos, A. D. Jones and A. G. Ewing, “Analysis of the stability of amino acids derivatized with naphthalene-2,3-
dicarboxaldehyde using high-performance liquid chromatography and mass spectrometry,” Analytical Biochemistry, Vol. 322, pp. 68-78 (2003).
102.J. F. Stobaugh, A. J. Repta, L. A. Sternson and K. W. Garren, “Factors affecting the stability of fluorescent isoindoles derived from reaction of o-phthalaldehyde and hydroxyalkylthiols with primary amines,” Analytical Biochemistry, Vol. 135, pp. 485-504 (1983).
103.AOAC Peer-Verified Methods Program, Manual on policies and procedures, Arlington, Va., USA (November 1993).
104.Ludwig Huber, Validation Qualification in Analytical Laboratories, Iterpharm/ CRC, USA, pp. 127 (1999).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top