跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/14 16:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉譯淇
研究生(外文):Yi-Chi Liu
論文名稱:利用環氧樹脂合成超分枝高分子及其性質之研究
論文名稱(外文):Synthesis of Hyperbranched Polymers from Epoxy resin, and Characteristic Comparison
指導教授:鄭國忠鄭國忠引用關係
口試委員:許瑞祺曾勝茂郭文正
口試日期:2009-01-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:129
中文關鍵詞:環氧樹脂超分枝高分子黏度熱性質
外文關鍵詞:epoxy resinhyperbranched polymerviscositythermal property
相關次數:
  • 被引用被引用:0
  • 點閱點閱:951
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用兩種雙官能基環氧樹脂:雙酚型(DGEBA type)環氧樹脂(D.E.R.332,A2)和聯苯環氧樹脂(tetramethyl biphenyl epoxy resin,TMBP,A2),添加入單官能基罩蓋劑苯基環氧丙基醚(phenyl glycidyl ether,PGE,AR),再與多官能基胺化合物氨苯磺醯胺(sulfanilamide,SAA,B4),超分枝高分子可經由總體聚合法可成功製備出,發現其分子量為Mw=4786~9841,Mn=2385~3332。在本實驗中發現提高PGE的莫耳比時所合成出的超分枝高分子的分子量會降低。進一步利用錐板-平板流變儀測量高分子的流變行為,發現超分枝高分子的黏度會隨著分子量增加而增加。在SAA與D.E.R.332系統合成之超分枝高分子中,其Tg約為53~70℃,當Mw= 5998在溫度120℃時,黏度為12.4 Pa•s;而在SAA與TMBP系統合成之超分枝高分子中,其Tg約為51~62℃,當Mw= 4786在溫度120℃時,黏度為9.5 Pa•s。經由TGA觀察其5% wt. loss初始裂解溫度均超過300℃,耐熱穩定性良好,預期可作為高分子流變性改質劑。
In this study, hyperbranched polymers (HBPs) were synthesized via a bulk polymerization of multifunctional monomer sulfanilamide, SAA, and phenyl glycidyl ether, PGE, with addition different epoxy resin: diglycidyl ether of bisphenol A (DGEBA) type epoxy resin, D.E.R. 332 and tetramethyl biphenyl epoxy resin (TMBP), 1407, to synthesize SAA-D and SAA-T two type of HBPs. We can synthesize HBPs of Mw=4786~9841, Mn=2385~3332. Increasing the molar ratio of PGE in reaction decreases the molecular weight. Rheological behavior of the HBPs was measured by a cone-plate rheometer. It was found that the viscosity of HBPs increases with increasing molecular weight. At 120℃, and Mw=5998, the viscosity of HBPs prepared by SAA-D system is 12.4 Pa•s. In other hand, at 120℃, and Mw= 4786, the viscosity of HBPs prepared by SAA-T system is 9.5 Pa•s. The Tg’s of the HBPs synthesized from SAA-D system is about 53~70℃, and Tg of SAA-T system is about 51~62℃. The glass transition temperatures of the HBPs are about 53-70℃, which increases with the molecular weight of polymers.
摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
第一章 緒論 1
1.1 polymers簡介 2
1.2 Dendrimers簡介 3
1.3 超分枝高分子 6
1.4 研究動機 8
第二章 原理與文獻回顧 9
2.1 線性高分子與樹狀高分子的物理特性比較 9
2.2 環氧樹脂簡介 11
2.3 文獻回顧 13
2.4 超分枝高分子之文獻整理 15
2.5 A2+Bƒ聚合法合成超分枝高分子 18
2.5.1 添加單官能基罩蓋劑製備超分枝高分子 18
2.6 超分枝高分子的應用 19
2.7 流變行為探討 20
2.7.1 流變學簡介 20
2.7.2 穩態剪切行為 23
2.7.3 動態流變行為 24
2.7.4 流體類型 25
2.7.5 流變行為相關理論 27
2.7.6時間-溫度疊加原理 29
2.7.7 WLF方程式 30
第三章 實驗內容 38
3.1 實驗藥品 38
3.2 實驗設備 41
3.3 實驗流程與步驟 43
3.3.1 實驗流程 43
3.3.2 超高分枝高分子合成 43
3.3.3 傅立葉轉換紅外線光譜儀(FT-IR) 44
3.3.4 測量高分子分子量以及分佈 44
3.3.5 玻璃轉移溫度之測量 44
3.3.6 流變性質測量 44
3.3.7 最大裂解溫度之測量 45
3.3.8 環氧當量滴定 45
第四章 結果與討論 46
4.1 超分枝高分子合成 46
4.2 超分枝高分子分析 47
4.2.1 FT-IR分析(計算轉化率) 47
4.2.2滴定分析(計算轉化率) 49
4.2.3 GPC分子量測量 50
4.2.4 DSC熱分析 52
4.2.5 TGA熱重量分析 54
4.3 動態流變行為探討 56
4.4 動態模式與穩態模式流變行為探討 59
第五章 結論 60
圖表 61
參考文獻 120
附錄 127




















表目錄

表2.1 線性高分子與樹狀高分子之性質比較 10
表2.2一般硬化後的環氧樹脂具有下列特性 13
表4.1反應後利用IR吸收峰計算之超分枝高分子轉化率 49
表4.2反應後利用低定計算之超分枝高分子轉化率 50
表4.3各高分子的分子量及分子量分佈指數 52
表4.4各高分子之玻璃轉移溫度 54
表4.5超分枝高分子與線性高分子之TGA分析數據 55
表4.6超分枝高分子與線性高分子之G”、G’斜率變化 58
表4.7超分枝高分子與線性高分子之黏度比較 59





















圖目錄

圖1.1 非結晶性聚合物分子結構圖 3
圖1.2 結晶性聚合物分子鏈摺疊結構圖 3
圖1.3左為枝鏈澱粉(amylopectin),右為proteoglycan 4
圖1.4 dendritic polymer分成三種型態示意圖 4
圖1.5 超分枝狀高分子的(one-pot)逐步縮合反應-AB2型 5
圖1.6接枝型高分子從起始核心到第二個世代的結構示意圖 6
圖1.7高支鏈聚合物的分子型態 7
圖2.1 各種類型高分子的分子量與黏度關係 10
圖2.2 A2+B3型式單體的逐步聚縮合反應 15
圖2.3 AB2型式單體的逐步聚縮合反應 16
圖2.4 AB2型式單體的逐步聚縮合反應 17
圖2.5 三種不同的AB2型式單體的聚縮合反應 17
圖2.6 應力應變對照如圖 23
圖2.7牛頓流體剪應力、剪切率以及黏度的關係 25
圖2.8 擬塑性流體剪應力、剪切率以及黏度的關係 26
圖2.9 膨脹性流體剪應力、剪切率以及黏度的關係 26
圖2.10賓漢流體剪應力、剪切率以及黏度的關係 27
圖2.11主曲線疊合示意圖 30
圖3.1 超分枝高分子實驗流程圖 43
圖4.1 HBPⅠa IR圖 61
圖4.2 HBPⅠb IR圖 61
圖4.3 HBPⅠc IR圖 62
圖4.4 HBPⅠd IR圖 62
圖4.5 HBPⅠe IR圖 63
圖4.6 HBPⅡa IR圖 63
圖4.7 HBPⅡb IR圖 64
圖4.8 HBPⅡc IR圖 64
圖4.9 HBPⅡd IR圖 65
圖4.10 HBPⅡe IR圖 65
圖4.11 HBPⅠa之GPC圖 66
圖4.12 HBPⅠb之GPC圖 66
圖4.13 HBPⅠc之GPC圖 67
圖4.14 HBPⅠd之GPC圖 67
圖4.15 HBPⅠe之GPC圖 68
圖4.16 SAA-D系列高分子之GPC比較圖 68
圖4.17 HBPⅡa之GPC圖 69
圖4.18 HBPⅡb之GPC圖 69
圖4.19 HBPⅡc之GPC圖 70
圖4.20 HBPⅡd之GPC圖 70
圖4.21 HBPⅡe之GPC圖 71
圖4.22 SAA-T系列高分子之GPC比較圖 71
圖4.23 HBPⅠa之DSC掃描圖 72
圖4.24 HBPⅠb之DSC掃描圖 72
圖4.25 HBPⅠc之DSC掃描圖 73
圖4.26 HBPⅠd之DSC掃描圖 73
圖4.27 HBPⅠe之DSC掃描圖 74
圖4.28 HBPⅡa之DSC掃描圖 74
圖4.29 HBPⅡb之DSC掃描圖 75
圖4.30 HBPⅡc之DSC掃描圖 75
圖4.31 HBPⅡd之DSC掃描圖 76
圖4.32 HBPⅡe之DSC掃描圖 76
圖4.33 SAA-D系列高分子之DSC比較圖 77
圖4.34 SAA-T系列高分子之DSC比較圖 77
圖4.35 DETA系列高分子之DSC比較圖 78
圖4.36線性高分子之DSC比較圖 78
圖4.37不同超分枝高分子之Tg對分子量比較圖 79
圖4.38 D.E.R.332之TGA圖 79
圖4.39 TMBP之TGA圖 80
圖4.40 SAA之TGA圖 80
圖4.41 PGE之TGA圖 81
圖4.42 HBPⅠa之TGA圖 81
圖4.43 HBPⅠb之TGA圖 82
圖4.44 HBPⅠc之TGA圖 82
圖4.45 HBPⅠd之TGA圖 83
圖4.46 HBPⅠe之TGA圖 83
圖4.47 SAA-D系列高分子之TGA比較圖 84
圖4.48 HBPⅡa之TGA圖 84
圖4.49 HBPⅡb之TGA圖 85
圖4.50 HBPⅡc之TGA圖 85
圖4.51 HBPⅡd之TGA圖 86
圖4.52 HBPⅡe之TGA圖 86
圖4.53 SAA-T系列高分子之TGA比較圖 87
圖4.54 HBPⅠa動態模數對應變掃描 87
圖4.55 HBPⅠb動態模數對應變掃描 88
圖4.56 HBPⅠc動態模數對應變掃描 88
圖4.57 HBPⅠd動態模數對應變掃描 89
圖4.58 HBPⅠe動態模數對應變掃描 89
圖4.59 HBPⅡa動態模數對應變掃描 90
圖4.60 HBPⅡb動態模數對應變掃描 90
圖4.61 HBPⅡc動態模數對應變掃描 91
圖4.62 HBPⅡd動態模數對應變掃描 91
圖4.63 HBPⅡe動態模數對應變掃描 92
圖4.64 HBPⅠa之G”、G’對頻率之主曲線圖(參考溫度為120℃) 92
圖4.65 HBPⅠb之G”、G’對頻率之主曲線圖(參考溫度為120℃) 93
圖4.66 HBPⅠc之G”、G’對頻率之主曲線圖(參考溫度為120℃) 93
圖4.67 HBPⅠd之G”、G’對頻率之主曲線圖(參考溫度為120℃) 94
圖4.68 HBPⅠe之G”、G’對頻率之主曲線圖(參考溫度為120℃) 94
圖4.69 HBP1之G”、G’對頻率之主曲線圖(參考溫度為120℃) 95
圖4.70 HBP2之G”、G’對頻率之主曲線圖(參考溫度為120℃) 95
圖4.71 HBP3之G”、G’對頻率之主曲線圖(參考溫度為120℃) 96
圖4.72 HBP4之G”、G’對頻率之主曲線圖(參考溫度為120℃) 96
圖4.73 HBP5之G”、G’對頻率之主曲線圖(參考溫度為120℃) 97
圖4.74 LIP1之G”、G’對頻率之主曲線圖(參考溫度為120℃) 97
圖4.75 LIP2之G”、G’對頻率之主曲線圖(參考溫度為120℃) 98
圖4.76 HBPⅡa之G”、G’對頻率之主曲線圖(參考溫度為120℃) 98
圖4.77 HBPⅡb之G”、G’對頻率之主曲線圖(參考溫度為120℃) 99
圖4.78 HBPⅡc之G”、G’對頻率之主曲線圖(參考溫度為120℃) 99
圖4.79 HBPⅡd之G”、G’對頻率之主曲線圖(參考溫度為120℃) 100
圖4.80 HBPⅡe之G”、G’對頻率之主曲線圖(參考溫度為120℃) 100
圖4.81在不同溫度下HBPⅠa之複合黏度對頻率作圖 101
圖4.82在不同溫度下HBPⅠb之複合黏度對頻率作圖 101
圖4.83在不同溫度下HBPⅠc之複合黏度對頻率作圖 102
圖4.84在不同溫度下HBPⅠd之複合黏度對頻率作圖 102
圖4.85在不同溫度下HBPⅠe之複合黏度對頻率作圖 103
圖4.86在不同溫度下HBPⅡa之複合黏度對頻率作圖 103
圖4.87在不同溫度下HBPⅡb之複合黏度對頻率作圖 104
圖4.88在不同溫度下HBPⅡc之複合黏度對頻率作圖 104
圖4.89在不同溫度下HBPⅡd之複合黏度對頻率作圖 105
圖4.90在不同溫度下HBPⅡe之複合黏度對頻率作圖 105
圖4.91在不同溫度下LIP1之複合黏度對頻率作圖 106
圖4.92在不同溫度下LIP2之複合黏度對頻率作圖 106
圖4.93 SAA-D系列高分子於120 ℃之複合黏度對頻率比較圖 107
圖4.94 SAA-T系列高分子於120 ℃之複合黏度對頻率比較圖 107
圖4.95 DETA系列高分子於120 ℃之複合黏度對頻率比較圖 108
圖4.96線性高分子於120 ℃之複合黏度對頻率比較圖 108
圖4.97分子量相近的高分子於120 ℃之複合黏度對頻率比較圖 109
圖4.98分子量相近的超分枝高分子於120 ℃之複合黏度對頻率比較圖 109
圖4.99不同高分子之複合黏度對分子量比較圖 110
圖4.100在不同溫度下HBPⅠa之複合黏度與剪切黏度比較圖 110
圖4.101在不同溫度下HBPⅠb之複合黏度與剪切黏度比較圖 111
圖4.102在不同溫度下HBPⅠc之複合黏度與剪切黏度比較圖 111
圖4.103在不同溫度下HBPⅠd之複合黏度與剪切黏度比較圖 112
圖4.104在不同溫度下HBPⅠe之複合黏度與剪切黏度比較圖 112
圖4.105在不同溫度下HBPⅡa之複合黏度與剪切黏度比較圖 113
圖4.106在不同溫度下HBPⅡb之複合黏度與剪切黏度比較圖 113
圖4.107在不同溫度下HBPⅡc之複合黏度與剪切黏度比較圖 114
圖4.108在不同溫度下HBPⅡd之複合黏度與剪切黏度比較圖 114
圖4.109在不同溫度下HBPⅡe之複合黏度與剪切黏度比較圖 115
圖4.110 SAA-D系列高分子之G”對頻率之比較圖(參考溫度為120℃) 115
圖4.111 SAA-D系列高分子之G’對頻率之比較圖(參考溫度為120℃) 116
圖4.112 SAA-T系列高分子之G”對頻率之比較圖(參考溫度為120℃) 116
圖4.113 SAA-T系列高分子之G’對頻率之比較圖(參考溫度為120℃) 117
圖4.114 DETA系列高分子之G”對頻率之比較圖(參考溫度為120℃) 117
圖4.115 DETA系列高分子之G’對頻率之比較圖(參考溫度為120℃) 118
圖4.116 DMED系列高分子之G”對頻率之比較圖(參考溫度為120℃) 118
圖4.117 DMED系列高分子之G’對頻率之比較圖(參考溫度為120℃) 119
[1]Malcolm P. Stevens, Polymer Chemistry, USA, Oxford University Press Inc, 1999, pp.128.
[2]Jean M. J. Frechet and Donald A. Tomalia, Dendrimers and Other Dendritic Polymers, New York: John Wiley & Sons, 2001, pp.9-18
[3]John Scheirs, Dendrimers and Other Dendritic Polymers, Wiley Series in Polymer Science, Great Britain(2001), p.14-16.
[4]K. Uhrich, "Hyperbranched polymeric micelles: Drug encapsulation, release and polymer degradation, " Trends in Polym. Sci. Vol.38, Issue 2, 1997, pp. 582.
[5]C. Gao and D. Yan, "Hyperbranched polymers: From synthesis to applications, " Prog. Polym. Sci, vol.29, 2004, pp. 183.
[6]B. Voit, "New developments in hyperbranched polymers," J. of Polym. Sci. Part A: Polym. Chem. vol.38, 2000, pp. 2505.
[7]H. K. Young, "Hyperbranched polymers 10 years after," J. of Polym. Sci. Part A: Polym. Chem. vol.36, 2000, pp. 1685.
[8]H. Liu, J. H. Nasman, M. Skrifvars, "Radical alternating copolymerization: A strategy for hyperbranched materials," J. of Polym. Sci. Part A: Polym. Chem. vol.38, 2000, pp. 3074.
[9]C. Nguyen, C. J. Hawker, R. D. Miller, E. Huang, J. L. Hedrick, "Hyperbranched polyesters as nanoporosity templating agents for organosilicates," Macro- molecules. vol.33, 2000, pp. 4281.
[10]T. Sato, N. Higashida, T. Hirano, M. Seno, "Initiator-Fragment Incorporation Radical Copolymerization of Divinylbenzene and N-Isopropylacrylamide with Dimethyl 2,2-Azobisisobutyrate: Formation of Soluble Hyperbranched Polymer Nanoparticle," J. of Polym. Sci., Part A: Polym. Chem. vol.42, 2004, pp. 1609.

[11]J. Chen, H. Peng, C. C. W. Law, Y. Dong, J. W. Y. Lam, I. D. Williams, B. Z. Tang, "Hyperbranched poly(phenylenesilolene)s: Synthesis, thermal stability, electronic conjugation, optical power limiting, and cooling-enhanced light emission," Macromolecules, vol.36, 2003, pp. 4319.
[12]Y. Bai, N. Song, J. P. Gao, X. Sun, X. Wang, G. Yu, Z. Y. Wang, "A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant," J. Am. Chem. Sco, vol.127, 2005, pp. 2060.
[13]D. Zhang and D. Jia, "Synthesis of novel low-viscosity liquid epoxidized aromatic hyperbranched polymers," J. Polym. Sci, vol.9, 2005, pp. 13.
[14]D. Schmaljohann and B. Voit, "Kinetic Evaluation of Hyperbranched A2 + B3 Polycondensation Reactions," Macromol. Theory Simul., vol.12, 2003, pp. 697.
[15]D. P. Bernal, L. Bedrossian, K. Collins, E. Fossum, "Effect of core reactivity on the molecular weight, polydispersity, and degree of branching of hyperbranched poly(arylene ether phosphine oxide)s," Macromolecules, vol.36, 2003, pp. 333.
[16]D. Yan, A. H. E. Muller, K. Matyjaszewski, "Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching," Macromolecules, vol.30, 1997, pp. 7024.
[17]K. C. Cheng, "Kinetic model of diepoxides with reactive diluents cured with amines," J. Polym. Sci., Polym. Phys. Ed. vol.36, 1998, pp. 2339.
[18]K. E. Uhrich, C. Hawker, J. M. J. Fréchet and S. R. Turner, "One-pot synthesis of hyperbranched polyethers," Macromolecules, vol.25, 1992. pp. 4583.
[19]D. Schmaljohann, and B. Voit, "Kinetic Evaluation of Hyperbranched A2 + B3 Polycondensation Reactions," Macromol. Theory Simul., vol.12, 2003, pp. 697.
[20]K. L. Wooley, C. J. Hawker, R. Lee and J. M. J. Fréchet, "One-pot synthesis of hyperbranched polyesters," Polym J, vol.26, 1994, pp. 187.
[21]G. Yang, M. Jikei and M. Kakimoto, "Synthesis and properties of hyperbranched aromatic polyamides," Macromolecules, vol.32, 1999, pp. 2215.

[22]S. J. Wang, X. D. Fan, Q. F. Si, J. Ko, Y. Y. Liu, W. Q. Qiao, G. B. Zhang, "Preparation and Characterization of a Hyperbranched Polyethoxysiloxane Based Anti-fouling Coating," J. of Appl. Polym. Sci, vol.102, 2006, pp. 5818.
[23]Z.-G. Huang, W.-F.Shiu, "Synthesis and properties of a novel hyperbranched polyphosphate acrylate applied to UV curable flameretardant coatings," Eur. Polym. J., vol.43, 2007, pp. 1302.
[24]C. W. Macosko, Rheology: Principles, Measurements and Application, VCH, 1994
[25]J. Ferguson, Z. Kemblowski, "Applied Fluid Rheology," Elserier, England, 1991.
[26]C. D. Han, "Multiphase Flow Polymer Processing," Academic Press,Inc., Sec.3, 1981.
[27]J .M. Dealy and K. F. Wissbum, "Melt Rheology and its Role in Plastic Processing," Van Nostrand Reinhold, New York, 1990
[28]R. B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Vol.1,2nd Fluid Mechanics, New York: John Wiley & Sons, 1987, pp. 784.
[29]S. Onogi, T. Jujii, H. Kato, S. Ogihara, "Relation between Steady-Flow and Dynamic Viscosity for Polyethylene Melts," J Phys. Chem., vol.68, 1964, pp. 1598.
[30]Jr. E. K. Harris, D. Ph., "Effect of blending on the rheological properties of polystyrene," J. Appl. Polym. Sci. vol.17, 2003, pp. 1679.
[31]K. Yasuda, R. C. Armstrong and R. E. Cohen, "Shear Flow Properties of Concentrated Solutions of Linear and Star Branched Polystyrenes," Rheol. Acta, vol.20, 1981, pp.163.
[32]P. E. Rouse, "A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers," J. Chem. Phys., vol.21, 1953, pp. 1272.
[33]F. Bueche, "The Viscoelastic Properties of Plastics," J. Chem. Phys., vol.22, 1954, pp. 603.
[34]B. H. Zimm, "Dynamics of Polymer Molecules in Dilute Solution: Viscoelasticity, Flow Birefringence and Dielectric Loss," J. Chem. Phys., vol.24, 1956, pp. 269.

[35]J. G. Kirkwood, J. Riseman, "The Intrinsic Viscosities and Diffusion Constants of Flexible Macromolecules in Solution," J. Chem. Phys., vol.16, 1948, pp. 565.
[36]B. H. Zimm and R. W. Kilb, " Dynamics of branched polymer molecules in dilute solution," J. Polym. Sci., vol. 37, 1958, pp. 19.
[37]K. Osaki, Y. Mitsuda, J.L. Schrag and J. D. Ferry " Numerical calculations of the viscoelastic properties of dilute solutions of comb-shaped branched polymers," Trans. Soc. Rheol., vol.18, 1974, pp. 395.
[38]R. L. Sammler and J. L. Schrag "Bead-spring model predictions of solution dynamics for flexible homopolymers incorporating long-chain branches and/or rings," Macromolecules, vol.21, 1988, pp. 1132.
[39]R. L. Sammler and J. L. Schrag "Predictions of the ability of solution dynamics experiments to characterize long-chain structure in flexible homopolymers," Macromolecules, vol.21, 1988, pp. 3273.
[40]A. I. M. Denneman and R. J. J. Jongschaap "A bead-spring model incorporating cyclic structures, non-equal springs and beads with non-equal friction coefficients," J. Rheol., vol.40, 1996, pp. 589.
[41]P. Soo-Jin, L. Kai and J. Fan-Long, "Synthesis and characterization of hyper-branched polyimides from 2,4,6-triaminopyrimidine and dianhydrides system," Mater. Chem. Phys., vol.108, 2008, pp. 214.
[42]K. Yoshikazu, K. Yuki, T. Masaki, K. Noriaki, S. Toshifumi and K. Toyoji, "Synthesis, Characterization, and Functionalization of Hyperbranched Poly(3,4-epoxycyclohexanemethanol)," Am. Chem. Soc., vol.40, 2007, pp. 9313.
[43]Jonathan M. Dodds, Edoardo De Luca, Lian R. Hutchings, Nigel Clarke, "Rheological Properties of HyperMacs—Long-Chain Branched Analogues of Hyperbranched Polymers," J. Polym. Sci., Part B: Polym. Phys., vol.45, 2007, pp. 2762.
[44]James D. Mendez, S. Michael, W. Christoph, "Hyperbranched Poly(p-phenylene ethynylene)s," Macromol. Chem. Phys. vol.208, 2007, pp. 1625.

[45]Kishore K. Jena, K. V. S. N. Raju, B. Prathab and Tejraj M. Aminabhavi, "Hyperbranched Polyesters:Synthesis,Characterization and Molecular Simulations," J. Phys. Chem. B, vol.111, 2007, pp. 8801.
[46]Jonathan M. Dodds, Edoardo De Luca, Lian R. Hutchings and Nigel Clarke "Rheological Properties of HyperMacs-Long-Chain Branched Analogues of Hyperbranched Polymers," J. Polym. Sci., Part B: Polym. Phys., vol. 45, 2007, pp. 2762.
[47]Pawe1 G. Parzuchowski, Magdalena Kiz´lin´ska, Gabriel Rokicki, "New hyperbranched polyether containing cyclic carbonate groups as a toughening agent for epoxy resin," polymer, vol.48, 2007, pp. 1857.
[48]L. Yao, J. Deng, and W.-F. Shi, "Cure Kinetics of DGEBA with Hyperbranched Poly ( 3 - hydroxyphenyl ) Phosphate as Curing Agent Studied by Non- isothermal DSC," Chem. Res. Chinese U, vol.22 , 2006, pp. 18.
[49]S. J. Wang, X. D. Fan, Q. F. Si, J. Ko, Y.-Y. Liu, W. Q. Qiao, G. B. Zhang, "Preparation and Characterization of a Hyperbranched Polyethoxysiloxane Based Anti-fouling Coating" J. Polym. Sci. vol.102, 2006, pp.5818.
[50]R. K. Kainthan, E. B. Muliawan, S.G. Hatzikiriakos, D. E. Brooks, "Synthesis, Characterization, and Viscoelastic Properties of High Molecular Weight Hyperbranched Polyglycerols," Macromolecules, vol.39, 2006, pp. 7708.
[51]D. Zhang and D. Jia, "Synthesis of novel low-viscosity liquid epoxidized aromatic hyperbranched polymers," J. Polym. Sci. vol.9, 2005. pp. 13.
[52]S. Tanaka, T. Iso, J. Sugiyama and k. Takeuchi, "Preparation of hyperbranched copolymers containing triphenylamine and divinylbenzene units," J. of Polym. Sci. vol.154, 2005, pp. 125.
[53]S. Unal, C. Oguz, E. Yilgor, M. Gallivan, T. E. Long, I. Yilgor, "Understanding the structure development in hyperbranched polymers prepared by oligomeric A2CB3 approach: comparison of experimental results and simulations," Polymer vol. 46, 2005, pp.4533.

[54]K. Seung Yeop, C. Jeongsoo, S. Hee Jae, "Viscoelastic Relaxation and Molecular Mobility of Hyperbranched Poly(ε-caprolactone)s in Their Melt State," Chem. Mater., vol.17, 2005, pp. 1148.
[55]K. Seung Yeop, C. Jeongsoo, S. Hee Jae, L. Sang Hoon, "Amelioration of mechanical brittleness in hyperbranched polymer.1. Macroscopic evaluation by dynamic viscoelastic relaxation," Polymer, vol.45, 2004, pp. 6889.
[56]Y. Zhibin, A. Fahad, Z. Shiping, "Melt Rheological Properties of Branched Polyethylenes Produced with Pd- and Ni–Diimine Catalysts," Macromol. Chem. Phys., vol.205, 2004, pp.897.
[57]S. Unal, I. Yilgor, E. Yilgor, J. P. Sheth, G. L. Wilkes, and T. E. Long, "A New Generation of Highly Branched Polymers: Hyperbranched, Segmented Poly(urethane urea) Elastomers," Macromolecules, vol. 37, 2004, pp. 7081.
[58]J. Hao, M. Jikei and M. Kakimoto, "Preparation of hyperbranched aromatic polyimides via A2+B3 approach," Macromolecules, vol.35, 2002, pp. 5372.
[59]Suneel, D. M. A. Buzza, D. J. Groves, T. C. B. McLeish, D. Parker, A. J. Keeney, and W. J. Feast," Rheology and Molecular Weight Distribution of Hyperbranched Polymers," Macromolecules, vol. 35, 2002, pp. 9605.
[60]H. Magnusson, E. Malmstrom, A. Hult, "Influence of reaction conditions on degree ofbranching in hyperbranched aliphatic polyethers from 3-ethyl-3-(hydroxymethyl)oxetane," Macromolecules, vol.34, 2001, pp.5786.
[61]H. Magnusson, E. Malmstrom, A. Hult, "Structure buildup in hyperbranched polymers from 2,2-bis(hydroxymethyl)propionic acid," Macromolecules, vol.38, 2001, pp. 3099.
[62]H. Liu, J. H. Nasman, M. Skrifvars, "Radical alternating copolymerization: A strategy for hyperbranched materials," J. Polym. Sci., Part A: Polym. Chem., vol.38, 2000, pp. 3074.
[63]P. W. Zhu, S. Zheng, G. Simon, "Dielectric Relaxations in a Hyperbranched Polyester with Terminal Hydroxyl Groups:Effects of Generation Number," Macromol. Chem. Phys., vol.202, 2002, pp. 3008.
[64]廖彥程,利用多官能基單體及罩蓋劑合成超分枝高分子,碩士論文,國立臺北科技大學化學工程系研究所,台北,2008。
[65]L. H. Sperling, Introduction to Physical Polymer Science, New York: John Wiley & Sons, 2001, pp. 455.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊