跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/02/27 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭亦彣
研究生(外文):Yi-Wen Cheng
論文名稱:液相非熱電漿備製含氮二氧化鈦降解偶氮染料並結合陶瓷膜回收光觸媒之研究
論文名稱(外文):LPNTP Prepared N-doped TiO2 for Azo Dye Degradation with the Catalyst Recovering System by Ceramic Membrane
指導教授:陳孝行陳孝行引用關係
指導教授(外文):Shiao-Shing Chen
口試委員:章裕民蘇昭瑾李奇旺
口試委員(外文):Yu-Min ChangChao-Chin SuChi-Wang Li
口試日期:2009-07-09
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:136
中文關鍵詞:液相非熱電漿含氮二氧化鈦可見光偶氮染料陶瓷膜
外文關鍵詞:Liquid-phase non-thermal plasmaN-dope TiO2Visible lightAzo dyesCeramic membranes
相關次數:
  • 被引用被引用:1
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以液相非熱電漿技術來備製含氮二氧化鈦,同步改善光觸媒於可見光源下之光催化效益,並發展一新之連續式光催化反應槽;同時更進一步利用UF陶瓷薄膜 (孔徑為10 nm) 系統回收含氮二氧化鈦可行性探討。後續針對備製所得之含氮二氧化鈦其應用前後之光催化活性與其物理特性,如能隙變化、晶相結構、氮吸附等;是否會因降解汙染物之後有所變動等疑慮,連同含氮二氧化鈦之回收率及使用壽命等一併進行探討研究之。
本研究備製出淡黃色之含氮二氧化鈦 (TiOxNy) 光觸媒,分別進行、ESCA、XRD、TEM及EDS分析,由UV/Visible觀察到含氮二氧化鈦之吸收光譜紅位移至439 nm之可見光區域,能隙從原本3.2eV (DP-25) 降低至2.82eV (TiOxNy),亦由XRD分析中發現,常溫常壓放電過程 (14.1W、40 min) 並不會改變二氧化鈦晶相,仍舊維持原來Anatase晶相。製備出之TiOxNy於可見光下 (光波長為419 nm) 進行偶氮染料 (Acid Orange 7) 降解,經12小時後,在氮掺雜比為TiO2:NH4Cl = 1:6時,其反應速率常數為0.1519 h-1;已明顯優於DP-25之反應速率常數 0.045 h-1之光催化活性,其TiOxNy光催化反應速率為DP-25的3.4倍。因此,備製出最佳之TiOxNy-1:6並加入曝氣源於可見光 (光波長419 nm) 下進行批次偶氮染料 (Acid Orange 7) 降解,約在10小時後,均可有效降解,最佳實驗條件為光觸媒添加量0.15 g/L、曝氣含氧量40%、曝氣流量200 mL/min。
在連續式可見光光催化系統中,於水力停留時間均控制在10小時,經反應16小時後,隨著曝氣含氧量增加反應去除效果增加,於曝氣含氧量40% O2時去除效果達61%,然在本研究光觸媒添加量範圍內,隨著光觸媒添加量增加反應效果亦增加,於光觸媒添加量為0.5 g/L時,反應去除率達96%,而光催化反應於pH = 2時反應去除效果為最佳。在陶瓷膜回收部分,反應在60分鐘之前,光觸媒TiOxNy顆粒回收率已達64%以上,在80分鐘後,光觸媒TiOxNy顆粒回收率超過83 %以上,當系統操作超過90分鐘以上,則回收率可達99.5%以上,且光觸媒於陶瓷膜分離程序中,光觸媒TiOxNy顆粒可被完全分離濃縮。回收後之光觸媒經光催化再利用後仍可再處理偶氮染料,然經回收多次後之光觸媒,其表面將會被染料佔據,而產生觸媒毒化現象,直接影響觸媒的重複使用性。然於曝氣條件下,則能延緩光觸媒毒化現象發生,增加其光觸媒回收再利用效率,亦讓光觸媒使用壽命可再次被延長。
This study strives to improve the photocatalytic activity by liquid-phase non-thermal plasma (LPNTP) technology for preparing N-doping TiO2 and to develop a new continuous photocatalytic reactor. The study further attempts to recover N-dope TiO2 particles by using ceramic membranes system. The obtained yellow colour N-doped TiO2 photocatalysts was characterized with UV-Vis spectrophotometer, XRD, ESCA, TEM, and EDS, respectively. The UV-Vis spectrum of N-doped TiO2 showed that the absorption band was shifted to 439 nm and the band gap was reduced to 2.82 eV. The structure analysis of XRD spectra showed that the peak positions and the crystal structure were not changed by plasma-treating at 14.1 W for 40 min. The photocatalytic activity of N-doped TiO2 was evaluated by conventional decolorization method using Acid Orange 7 and visible-light (λ = 419 nm). Eighty-five percent of Acid Orange 7 was degraded under visible light irradiation for 12 hours. In the batch photocatalytic system, ninety percent of azo dyes were degraded under visible light irradiation for 10 hours in the optimum condition of TiOxNy-1:6 with oxygen.
In the continuous photocatalytic system, sixty-one percent of AO7 concentration was degraded under visible light irradiation for 16 hours. In the initial period of ultrafiltration, the recovery rate of N-doped TiO2 particles achieved 64%. After 80 min, the recovery rate for TiOxNy particles was more than 83%. When the ultrafiltration experiment was carried out for 90 min, the recovery rate reached 99.5%. This result indicated that the photocatalyst was recovered completely.
The lifetime assessment of photocatalyst was evaluated by reusing the photocatalyst experiment 10 times. The decrease in efficiency of the recycled catalyst is due to the deposition of azo dye molecule on the photocatalysts surface, resulting in the blocking of its active sites as well as poisoning of the catalyst. Under aeration condition, the photocatalysts reused lifetime was longer than that in without aeration which reduces catalyst poisoning.
中文摘要 i
英文摘要 iii
誌 謝 i
目 錄 iii
表目錄 v
圖目錄 vii
第一章 緒論 1
1.1研究緣起 1
1.2 研究目的 3
1.3 研究內容與範圍 3
1.4 研究方法與流程 4
第二章 文獻回顧 5
2.1 偶氮染料特性介紹 5
2.1.1 偶氮染料之產業應用 5
2.1.2 Acid orange 7之物化特性 5
2.1.3 Acid orange 7之環境危害及毒理效應 6
2.2 二氧化鈦特性介紹 7
2.2.1 二氧化鈦之構造及特性 8
2.2.2 傳統二氧化鈦改質技術 12
2.2.3 傳統含氮二氧化鈦之改質技術與前驅物介紹 15
2.2.4 懸浮系統光催化效益評估 21
2.3 電漿基礎原理介紹 23
2.3.1 電漿之原理與定義 23
2.3.2 電漿之性質介紹 24
2.3.3 非熱電漿的種類 26
2.3.4 影響非熱電漿程序及反應因素 29
2.4 薄膜分離技術應用 32
2.4.1 薄膜分離程序種類 32
2.4.2 薄膜性質與膜材料種類 35
2.4.3 陶瓷膜特性介紹 41
2.4.4 影響薄膜操作之因素 45
第三章 實驗方法與設備 48
3.1研究方法概論 48
3.2實驗藥品與實驗儀器設備 51
3.2.1 實驗藥品及器材 51
3.2.2 實驗分析儀器 53
3.3 實驗設計 54
3.4 光催化過程 55
3.5 連續式光催化反應結合陶瓷膜回收系統 56
3.6 分析方法 58
第四章 結果與討論 60
4.1 含氮二氧化鈦物性分析 60
4.1.1 UV/ Visible 能隙變化評估 61
4.1.2 TiOxNy之ESCA、TEM及EDS分析 62
4.1.3 TiOxNy之晶相組成分析 64
4.1.4 TiOxNy之BET、SEM與AN粒徑分析 65
4.2 含氮二氧化鈦之批次試驗光催化活性探討 67
4.2.1 含氮二氧化鈦比例之影響 69
4.2.2 曝氣含氧量之影響 71
4.2.3 光觸媒添加量之影響 76
4.2.4 曝氣流量之影響 78
4.2.5批次試驗綜合討論 80
4.3 連續式可見光光催化試驗探討 85
4.3.1 染料濃度之影響 85
4.3.2 光觸媒添加量之影響 92
4.3.3 pH值之影響 96
4.3.4 曝氣含氧量之影響 100
4.3.5 最佳化連續式光降解Acid orange 7之探討 103
4.4 陶瓷膜回收及再利用光觸媒探討 108
4.4.1 TiOxNy於陶瓷膜滲透通量之影響 108
4.4.2 TiOxNy於陶瓷膜回收率之探討 110
4.4.3 光觸媒使用壽命及再利用評估 112
第五章 結論與建議 116
5.1 結論 116
5.2 建議 118
參考文獻 119
2.Y. Liu, X. Chen, J. Li, and C. Burda,"Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts," Chemosphere, vol.61, no.1, 2005, pp.11-18.
3.J.C1.X. Lu, B. Yang, J. Chen, and R. Sun,"Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process," Journal of Hazardous Materials, vol.161, no.1, 2009, pp.241-245.
. Igwe, O.F. Mbonu, and A.A. Abia,"Sorption Kinetics, Intraparticle Diffusion and Equilibrium Partitioning of Azo Dyes on Great Millet (Andropogon sorghum) Waste Biomass," Journal of Applied Sciences, vol.7, no.19, 2007, pp.2840-2847.
4.Y. Wang, C. Feng, Z. Jin, J. Zhang, J. Yang, and S. Zhang,"A novel N-doped TiO2 with high visible light photocatalytic activity," Journal of Molecular Catalysis A: Chemical, vol.260, no.1-2, 2006, pp.1-3.
5.S. Sato, R. Nakamura, and S. Abe,"Visible-light sensitization of TiO2 photocatalysts by wet-method N doping," Applied Catalysis A: General, vol.284, no.1-2, 2005, pp.131-137.
6.S. Mozia, M. Tomaszewska, and A.W. Morawski,"A new photocatalytic membrane reactor (PMR) for removal of azo-dye Acid Red 18 from water," Applied Catalysis B: Environmental, vol.59, no.1-2, 2005, pp.131-137.
7.C. Chen, H. Bai, S.M. Chang, C. Chang, and W. Den,"Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources," Journal of Nanoparticle Research, vol.9, no.3, 2007, pp.365-375.
8.M. Maeda and T. Watanabe,"Visible light photocatalysis of nitrogen-doped titanium oxide films prepared by plasma-enhanced chemical vapor deposition," Journal of the Electrochemical Society, vol.153, no.3, 2006, pp.C186-C189.
9.G.A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G.A. Rizzi,"PECVD of amorphous TiO2 thin films: Effect of growth temperature and plasma gas composition," Thin Solid Films, vol.371, no.1, 2000, pp.126-131.
10.Y.L. Li and T. Ishigaki,"Synthesis and structural characterization of titanium oxides and composites by thermal plasma oxidation of titanium carbide," Thin Solid Films, vol.407, no.1-2, 2002, pp.79-85.
11.H. Yoneyama and T. Torimoto,"Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations," Catalysis Today, vol.58, no.2, 2000, pp.133-140.
12.P. Cui, X. Zhao, M. Zhou, and L. Wang,"Photocatalysis-Membrane Separation Coupling Reactor and Its Application," Chinese Journal of Catalysis, vol.27, no.9, 2006, pp.752-754.
13.Y. Zhao, J. Zhong, H. Li, N. Xu, and J. Shi,"Fouling and regeneration of ceramic microfiltration membranes in processing acid wastewater containing fine TiO2 particles," Journal of Membrane Science, vol.208, no.1-2, 2002, pp.331-341.
14.A.S.C. Chen, N. Stencel, and D. Ferguson,"Using ceramic membranes to recycle two nonionic alkaline metal-cleaning solutions," Journal of Membrane Science, vol.162, no.1-2, 1999, pp.219-234.
15.周迎輝、蒲敏、楊軼穎,「偶氮染料酸性橙在水滑石層間吸附作用的理論研究」,工業催化 No.10,第16卷,第環境保護與催化期,2008。
16.A. Troupis, T.M. Triantis, E. Gkika, A. Hiskia, and E. Papaconstantinou,"Photocatalytic reductive-oxidative degradation of Acid Orange 7 by polyoxometalates," Applied Catalysis B: Environmental, vol.86, no.1-2, 2009, pp.98-107.
17.M.A. Behnajady, N. Modirshahla, M. Shokri, and B. Vahid,"Design equation with mathematical kinetic modeling for photooxidative degradation of C.I. Acid Orange 7 in an annular continuous-flow photoreactor," Journal of Hazardous Materials, 2008.
18.朱正華、張式強,「關於染料理論研究的戰略意義」,染料與染色 ,第5卷,第3期,1990。
19.V. Subramanian, P.V. Kamat, and E.E. Wolf,"Mass-transfer and kinetic studies during the photocatalytic degradation of an azo dye on optically transparent electrode thin film," Industrial and Engineering Chemistry Research, vol.42, no.10, 2003, pp.2131-2138.
20.N. Chahbane, D.L. Popescu, D.A. Mitchell, A. Chanda, D. Lenoir, A.D. Ryabov, K.W. Schramm, and T.J. Collins,"FeIII-TAML-catalyzed green oxidative degradation of the azo dye Orange II by H2O2 and organic peroxides: Products, toxicity, kinetics, and mechanisms," Green Chemistry, vol.9, no.1, 2007, pp.49-57.
21.L.C. Abbott, S.N. Batchelor, J. Oakes, B.C. Gilbert, A.C. Whitwood, J.R.L. Smith, and J.N. Moore,"Experimental and computational studies of structure and bonding in parent and reduced forms of the azo dye orange II," Journal of Physical Chemistry A, vol.109, no.12, 2005, pp.2894-2905.
22.陳宇陽,Fenton 程序改善染整廢水有機物特性之研究,碩士論文,淡江大學水資源及環境工程學系,台北,2000。
23.徐永錢、顏昭錫、黃杏釗,「染料製程廢水之混凝脫色」,第二十一屆廢水處理研討會論文集,1996,第547頁。
24.C. Gayathri and A. Ramalingam,"Studies of third-order optical nonlinearities and optical limiting properties of azo dyes," Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, vol.69, no.3, 2008, pp.980-984.
25.L.Y. Liu, M. Pu, L. Yang, D.Q. Li, D.G. Evans, and J. He,"Experimental and theoretical study on the structure of acid orange 7-pillared layered double hydroxide," Materials Chemistry and Physics, vol.106, no.2-3, 2007, pp.422-427.

26.C.R. Crecca and A.E. Roitberg,"Theoretical study of the isomerization mechanism of azobenzene and disubstituted azobenzene derivatives," Journal of Physical Chemistry A, vol.110, no.26, 2006, pp.8188-8203.
27.P. Ji, J. Zhang, F. Chen, and M. Anpo,"Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation," Applied Catalysis B: Environmental, vol.85, no.3-4, 2009, pp.148-154.
28.J.P. Silva, S. Sousa, J. Rodrigues, H. Antunes, J.J. Porter, I. Goncalves, and S. Ferreira-Dias,"Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains," Separation and Purification Technology, vol.40, no.3, 2004, pp.309-315.
29.J.H. Yan, Y.N. Liu, Z. Bo, X.D. Li, and K.F. Cen,"Degradation of gas-liquid gliding arc discharge on Acid Orange II," Journal of Hazardous Materials, vol.157, no.2-3, 2008, pp.441-447.
30.C. Du, T. Shi, Y. Sun, and X. Zhuang,"Decolorization of Acid Orange 7 solution by gas-liquid gliding arc discharge plasma," Journal of Hazardous Materials, vol.154, no.1-3, 2008, pp.1192-1197.
31.G. Mezohegyi, A. Kolodkin, U.I. Castro, C. Bengoa, F. Stuber, J. Font, A. Fabregat, and A. Fortuny,"Effective anaerobic decolorization of azo dye acid orange 7 in continuous upflow packed-bed reactor using biological activated carbon system," Industrial and Engineering Chemistry Research, vol.46, no.21, 2007, pp.6788-6792.
32.E. Akceylan, M. Bahadir, and M. Yilmaz,"Removal efficiency of a calix[4]arene-based polymer for water-soluble carcinogenic direct azo dyes and aromatic amines," Journal of Hazardous Materials, vol.162, no.2-3, 2009, pp.960-966.
33.D.T. Sponza and M. Isik,"Toxicity and intermediates of C.I. Direct Red 28 dye through sequential anaerobic/aerobic treatment," Process Biochemistry, vol.40, no.8, 2005, pp.2735-2744.
34.K. Golka, S. Kopps, and Z.W. Myslak,"Carcinogenicity of azo colorants: Influence of solubility and bioavailability," Toxicology Letters, vol.151, no.1, 2004, pp.203-210.
35.K.T. Chung,"Mutagenicity and carcinogenicity of aromatic amines metabolically produced from azo dyes," Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews, vol.18, no.1, 2000, pp.51-74.
36.E. Clarke and R. Anliker,"Organic dyes and pigments.," The handbook of environmental chemistry., vol.pringer Verlag, H. Otto.New York, 1980, pp.181-215.
37.M.B. Pasti-Grigsby, A. Paszczynski, S. Goszczynski, D.L. Crawford, and R.L. Crawford,"Biodegradation of novel azo dyes.," In: Appl Biotechnol Site Remediat, Batelle, Columbus, OH, 1994, pp.384-390.
38.P. Rajaguru, L.J. Fairbairn, J. Ashby, M.A. Willington, S. Turner, L.A. Woolford, N. Chinnasamy, and J.A. Rafferty,"Genotoxicity studies on the azo dye Direct Red 2 using the in vivo mouse bone marrow micronucleus test," Mutation Research - Genetic Toxicology and Environmental Mutagenesis, vol.444, no.1, 1999, pp.175-180.
39.M. Gago-Dominguez, J.E. Castelao, J.M. Yuan, R.K. Ross, and M.C. Yu,"Lipid peroxidation: A novel and unifying concept of the etiology of renal cell carcinoma (United States)," Cancer Causes and Control, vol.13, no.3, 2002, pp.287-293.
40.黃國軒,利用TiO2結合奈米碳管降解偶氮染料系染料之研究,碩士論文,國立雲林科技大學環境與安全衛生工程系,雲林,2006。
41.K. Chung and C. Cerniglia,"Mutagenicity of azo dyes: structure activity relationships.," Mutat Res vol.277, 1992, pp.201-220.
42.S. Aber, N. Daneshvar, S.M. Soroureddin, A. Chabok, and K. Asadpour-Zeynali,"Study of acid orange 7 removal from aqueous solutions by powdered activated carbon and modeling of experimental results by artificial neural network," Desalination, vol.211, no.1-3, 2007, pp.87-95.
43.峠田博史,光觸媒圖解,台北:商周出版,2003。
44.A.L. Linsebigler, G. Lu, and J.T. Yates Jr,"Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results," Chemical Reviews, vol.95, no.3, 1995, pp.735-758.
45.Phase Diagrams for Ceramists Figure 4150~4999,1975.
46.A. Sclafani, L. Palmisano, and M. Schiavello,"Influence of the preparation methods of TiO2 on the photocatalytic degradation of phenol in aqueous dispersion," Journal of Physical Chemistry, vol.94, no.2, 1990, pp.829-832.
47.M.A. Fox and M.T. Dulay,"Heterogeneous photocatalysis," Chemical Reviews, vol.93, no.1, 1993, pp.341-357.
48.Y. Ichihashi, H. Yamashita, and M. Anpo,"Relationship between the local structures of titanium oxide photocatalysts and their reactivities - XAFS, UV, photoluminescence and photoreaction investigations," Journal De Physique. IV : JP, vol.7, no.2, 1997, pp.C2-883-885.
49.H.M. Lee and C.S. Kim,"Effects of oxygen vacancies on the ferromagnetism in Fe-doped anatase TiO2," Journal of Magnetism and Magnetic Materials, vol.310, no.2, Part 3, 2007, pp.2099-2101.
50.T.L. Sung, C.M. Liu, M. Sato, C.H. Hsieh, and S. Teii,"Influence of gas on decoloration of organic dyes in pulsed streamer discharge," 2006 Taiwan-Japan Bilateral Technology Interchange Project, Taoyuan, Taiwan, 2006, pp.97-101.
51.M.S. Wong, H. Pang Chou, and T.S. Yang,"Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst," Thin Solid Films, vol.494, no.1-2, 2006, pp.244-249.
52.B. Wawrzyniak and A.W. Morawski,"Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen," Applied Catalysis B: Environmental, vol.62, no.1-2, 2006, pp.150-158.
53.T.S. Yang, M.C. Yang, C.B. Shiu, W.K. Chang, and M.S. Wong,"Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation," Applied Surface Science, vol.252, no.10, 2006, pp.3729-3736.
54.R. Silveyra, L. De La Torre Saenz, W.A. Flores, V.C. Martinez, and A.A. Elguezabal,"Doping of TiO2 with nitrogen to modify the interval of photocatalytic activation towards visible radiation," Catalysis Today, vol.107-108, 2005, pp.602-605.
55.M. Mrowetz, W. Balcerski, A.J. Colussi, and M.R. Hoffmann,"Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination," Journal of Physical Chemistry B, vol.108, no.45, 2004, pp.17269-17273.
56.I. Shiyanovskaya and M. Hepel,"Decrease of recombination losses in bicomponent WO3/TiO2 films photosensitized with cresyl violet and thionine," Journal of the Electrochemical Society, vol.145, no.11, 1998, pp.3981-3985.
57.M.G. Kang, H.E. Han, and K.J. Kim,"Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol.125, no.1-3, 1999, pp.119-125.
58.S. Koutsopoulos, T. Johannessen, K.M. Eriksen, and R. Fehrmann,"Titania-supported Pt and Pt-Pd nanoparticle catalysts for the oxidation of sulfur dioxide," Journal of Catalysis, vol.238, no.1, 2006, pp.206-213.
59.N.P. Hua, Z.Y. Wu, Y.K. Du, Z.G. Zou, and P. Yang,"Titanium dioxide nanoparticles codoped with Pt and N for photodegradation of Cl3CCOOH," Acta Physico - Chimica Sinica, vol.21, no.10, 2005, pp.1081-1085.
60.A. Nakajima, K. Takakuwa, Y. Kameshima, M. Hagiwara, S. Sato, Y. Yamamoto, N. Yoshida, T. Watanabe, and K. Okada,"Preparation and properties of titania-apatite hybrid films," Journal of Photochemistry and Photobiology A: Chemistry, vol.177, no.1, 2006, pp.94-99.
61.W. Choi, A. Termin, and M.R. Hoffmann,"Effects of metal-ion dopants on the photocatalytic reactivity of quantum-sized TiO2 particles," Angewandte Chemie (International Edition in English), vol.33, no.10, 1994, pp.1091-1092.
62.T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, and Y. Taga,"Band-gap narrowing of titanium dioxide by nitrogen doping," Japanese Journal of Applied Physics, Part 2: Letters, vol.40, no.6 A, 2001, pp.L561-L563.
63.M. Anpo,"Applications of titanium oxide photocatalysts and unique second-generation TiO2 photocatalysts able to operate under visible light irradiation for the reduction of environmental toxins on a global scale," Studies in Surface Science and Catalysis, vol.130 A, 2000, pp.157-166.
64.C. Sun, L.H. Huang, and Y.L. Liu,"Preparation and characterization of N-doped TiO2 nanotubes," Gongneng Cailiao/Journal of Functional Materials, vol.36, no.9, 2005, pp.1412-1414+1417.
65.Y.M. Sung, Y.J. Lee, and S.M. Lee,"Anatase crystal growth and photocatalytic characteristics of hot water-treated polyethylene oxide-titania nanohybrids," Journal of Crystal Growth, vol.267, no.1-2, 2004, pp.312-316.
66.S. Livraghi, A. Votta, M.C. Paganini, and E. Giamello,"Preparation and spectroscopic characterisation of nitrogen doped titanium dioxide," Studies in Surface Science and Catalysis, vol.155, 2005, pp.375-380.
67.K. Kobayakawa, Y. Murakami, and Y. Sato,"Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea," Journal of Photochemistry and Photobiology A: Chemistry, vol.170, no.2, 2005, pp.177-179.
68.W. Li, L.F. Liu, F.L. Yang, X.W. Zhang, and J.C.M. Yu,"Preparation of N doped TiO2 by using ACF as template and its photocatalytic application in removing nitrogen from water," Ganguang Kexue yu Guanghuaxue/Photographic Science and Photochemistry, vol.23, no.5, 2005, pp.374-381.
69.X.H. Huang, Y.C. Tang, C. Hu, H.Q. Yu, and C.S. Chen,"Preparation and characterization of visible-light-active nitrogen-doped TiO2 photocatalyst," Journal of Environmental Sciences, vol.17, no.4, 2005, pp.562-565.
70.X.H. Zhang, L.T. Luo, and Z.H. Duan,"Synthesis and characteristics of mesoporous titanium oxide," Gongneng Cailiao/Journal of Functional Materials, vol.36, no.6, 2005, pp.952-957.
71.S. Sakthivel and H. Kisch,"Photocatalytic and photoelectrochemical properties of nitrogen-doped titanium dioxide," ChemPhysChem, vol.4, no.5, 2003, pp.487-490.
72.J.H. Lee, H.J. Oh, Y. Jeong, Y.J. Lee, J.S. Kim, and C.S. Chi."Characteristics of photocatalytic titania fabricated by anodization,"in Materials Science Forum,2005,pp.4153-4156.
73.G. Wang, J. Tu, B. Zhang, W. Zhang, J. Wu, and H. Huang,"Photochargeable behavior of hydrogen storage alloy electrode modified with TiO2 nanoparticles," Huagong Xuebao/Journal of Chemical Industry and Engineering (China), vol.55, no.SUPPL., 2004, pp.201-204.
74.I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi,"Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal," Journal of Molecular Catalysis A: Chemical, vol.161, no.1-2, 2000, pp.205-212.
75.T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara,"Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping," Applied Catalysis B: Environmental, vol.42, no.4, 2003, pp.403-409.
76.O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, and J.T. Yates Jr,"Photochemical activity of nitrogen-doped rutile TiO2(110) in visible light," Journal of Physical Chemistry B, vol.108, no.19, 2004, pp.6004-6008.
77.B. Kosowska, S. Mozia, A.W. Morawski, B. Grzmil, M. Janus, and K. Kaucki,"The preparation of TiO2-nitrogen doped by calcination of TiO2•xH2O under ammonia atmosphere for visible light photocatalysis," Solar Energy Materials and Solar Cells, vol.88, no.3, 2005, pp.269-280.
78.H. Tokudome and M. Miyauchi,"N-doped TiO2 nanotube with visible light activity," Chemistry Letters, vol.33, no.9, 2004, pp.1108-1109.
79.J. Wang, S. Yin, M. Komatsu, Q. Zhang, F. Saito, and T. Sato,"Preparation and characterization of nitrogen doped SrTiO3 photocatalyst," Journal of Photochemistry and Photobiology A: Chemistry, vol.165, no.1-3, 2004, pp.149-156.
80.C. Di Valentin, G. Pacchioni, and A. Selloni,"Origin of the different photoactivity of N-doped anatase and rutile TiO2," Physical Review B - Condensed Matter and Materials Physics, vol.70, no.8, 2004, pp.085116-1-085116-4.
81.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga,"Visible-light photocatalysis in nitrogen-doped titanium oxides," Science, vol.293, no.5528, 2001, pp.269-271.
82.L. Miao, S. Tanemura, H. Watanabe, Y. Mori, K. Kaneko, and S. Toh,"The improvement of optical reactivity for TiO2 thin films by N2-H2 plasma surface-treatment," Journal of Crystal Growth, vol.260, no.1-2, 2004, pp.118-124.
83.B.C. Hsu, S.S. Chen, C. Su, and Y.T. Liu,"Preparation and characterization of nitrogen-doped titanium dioxide," Journal of Nanoscience and Nanotechnology, vol.7, no.9, 2007, pp.3104-3110.
84.C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello,"Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations," Journal of Physical Chemistry B, vol.109, no.23, 2005, pp.11414-11419.
85.B. Xin, Z. Ren, P. Wang, J. Liu, L. Jing, and H. Fu,"Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+-TiO2 photocatalysts," Applied Surface Science, vol.253, no.9, 2007, pp.4390-4395.
86.J. Yu, X. Zhao, W. Chen, X. Ye, and Z. Shi,"Preparation of nanometer TiO2 thin film by sol-gel processing and its photo catalytic properties," Guangxue Jishu/Optical Technique, no.4, 1998, pp.17-19.
87.T. Ihara, M. Miyoshi, M. Ando, S. Sugihara, and Y. Iriyama,"Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment," Journal of Materials Science, vol.36, no.17, 2001, pp.4201-4207.
88.D. Herman, J. Sicha, and J. Musil,"Magnetron sputtering of TiOxNy films," Vacuum, vol.81, no.3, 2006, pp.285-290.
89.Y. Wang and C.S. Hong,"TiO2-mediated photomineralization of 2-chlorobiphenyl: The role of O2," Water Research, vol.34, no.10, 2000, pp.2791-2797.
90.S. Mozia and A.W. Morawski,"Hybridization of photocatalysis and membrane distillation for purification of wastewater," Catalysis Today, vol.118, no.1-2, 2006, pp.181-188.
91.A.M. Braun and E. Oliveros, How to evaluate photochemical methods for water treatment, in Water Science and Technology. 1997. pp. 17-23.
92.J.A. Byrne, B.R. Eggins, N.M.D. Brown, B. McKinney, and M. Rouse,"Immobilisation of TiO2 powder for the treatment of polluted water," Applied Catalysis B: Environmental, vol.17, no.1-2, 1998, pp.25-36.
93.C.M. Ling, A.R. Mohamed, and S. Bhatia,"Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream," Chemosphere, vol.57, no.7, 2004, pp.547-554.
94.G. Balasubramanian, D.D. Dionysiou, M.T. Suidan, I. Baudin, and J.M. Laine,"Evaluating the activities of immobilized TiO2 powder films for the photocatalytic degradation of organic contaminants in water," Applied Catalysis B: Environmental, vol.47, no.2, 2004, pp.73-84.
95.賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程研究所,台中,2000。
96.H.H. Kim,"Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects," Plasma Processes and Polymers, vol.1, no.2, 2004, pp.91-110.
97.M. Arif Malik,"Synergistic effect of plasmacatalyst and ozone in a pulsed corona discharge reactor on the decomposition of organic pollutants in water," Plasma Sources Science and Technology, vol.12, no.4, 2003, pp.S26-S32.
98.菅井秀郎,等離子體電子工程學,北京: 科學出版社,2002,第21-33頁。
99.G. Petitpas, J.-D. Rollier, A. Darmon, J. Gonzalez-Aguilar, R. Metkemeijer, and L. Fulcheri,"A comparative study of non-thermal plasma assisted reforming technologies," International Journal of Hydrogen Energy, vol.32, no.14, 2007, pp.2848-2867.
100.M.I. Boulos,"Thermal plasma processing," IEEE Transactions on Plasma Science, vol.19, no.6, 1991, pp.1078-1089.
101.L. Wang, X. Jiang, and Y. Liu,"Degradation of bisphenol A and formation of hydrogen peroxide induced by glow discharge plasma in aqueous solutions," Journal of Hazardous Materials, vol.154, no.1-3, 2008, pp.1106-1114.
102.S.D. Anghel and A. Simon,"An alternative source for generating atmospheric pressure non-thermal plasmas," Plasma Sources Science and Technology, vol.16, no.3, 2007, pp.B1-B4.
103.A. Bogaerts, E. Neyts, R. Gijbels, and J. Van Der Mullen,"Gas discharge plasmas and their applications," Spectrochimica Acta - Part B Atomic Spectroscopy, vol.57, no.4, 2002, pp.609-658.
104.J. Gao, X. Wang, Z. Hu, H. Deng, J. Hou, X. Lu, and J. Kang,"Plasma degradation of dyes in water with contact glow discharge electrolysis," Water Research, vol.37, no.2, 2003, pp.267-272.
105.B. Yang, M. Zhou, and L. Lei,"Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen," Chemosphere, vol.60, no.3, 2005, pp.405-411.
106.鄭立群,以非熱電漿處理CF4 及SF6 之效率探討,碩士論文,國立中央大學環境工程研究所,桃園,2006。
107.黃忠良,放電現象應用,台南市: 復漢出版社有限公司,2000。
108.R. Morrow,"The theory of positive glow corona," Journal of Physics D: Applied Physics, vol.30, no.22, 1997, pp.3099-3114.
109.A.M. Bilgic, U. Engel, E. Vogest, M. Kuckelheim, and J.A.C. Broekaert,"New low-power microwave plasma source using microstrip technology for atomic emission spectrometry," Plasma Sources Science and Technology, vol.9, no.1, 2000, pp.1-4.
110.M. Seelig and J.A.C. Broekaert,"Investigations on the on-line determination of metals in air flows by capacitively coupled microwave plasma atomic emission spectrometry," Spectrochimica Acta - Part B Atomic Spectroscopy, vol.56, no.9, 2001, pp.1747-1760.
111.E.A.H. Timmermans, F.P.J. De Groote, J. Jonkers, A. Gamero, A. Sola, and J.J.A.M. Van der Mullen,"Atomic emission spectroscopy for the on-line monitoring of incineration processes," Spectrochimica Acta - Part B Atomic Spectroscopy, vol.58, no.5, 2003, pp.823-836.
112.B. Rosenkranz and J. Bettmer,"Microwave-induced plasma-optical emission spectrometry - Fundamental aspects and applications in metal speciation analysis," TrAC - Trends in Analytical Chemistry, vol.19, no.2-3, 2000, pp.138-156.
113.G. Franz,"Comprehensive analysis of chlorine-containing capacitively coupled plasmas," Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, vol.23, no.3, 2005, pp.369-387.
114.L. Wilken, V. Hoffmann, and K. Wetzig,"Electrical measurements at radio frequency glow discharges for spectroscopy," Spectrochimica Acta - Part B Atomic Spectroscopy, vol.62, no.10, 2007, pp.1085-1122.
115.U. Kogelschatz, B. Eliasson, and W. Egli,"From ozone generators to flat television screens: History and future potential of dielectric-barrier discharges," Pure and Applied Chemistry, vol.71, no.10, 1999, pp.1819-1828.
116.V.I. Gibalov and G.J. Pietsch,"Development of dielectric barrier discharges in gas gaps and on surfaces," Journal of Physics D: Applied Physics, vol.33, no.20, 2000, pp.2618-2636.
117.Z. Falkenstein and J.J. Coogan,"Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures," Journal of Physics D: Applied Physics, vol.30, no.5, 1997, pp.817-825.
118.J.J. Ruan, W. Li, Y. Shi, Y. Nie, X. Wang, and T.E. Tan,"Decomposition of simulated odors in municipal wastewater treatment plants by a wire-plate pulse corona reactor," Chemosphere, vol.59, no.3, 2005, pp.327-333.
119.Y.S. Chen, X.S. Zhang, Y.C. Dai, and W.K. Yuan,"Pulsed high-voltage discharge plasma for degradation of phenol in aqueous solution," Separation and Purification Technology, vol.34, no.1-3, 2004, pp.5-12.
120.S.H. Chen, T.F. Huang, Y.C. Chen, H.M. Lee, and M.H. Huang,"Research and Development of Environmental Plasma at INER," 2006 Taiwan-Japan Bilateral Technology Interchange Project, Taoyuan, Taiwan, 2006, pp.46-53.
121.A.T. Sugiarto and M. Sato,"Pulsed plasma processing of organic compounds in aqueous solution," Thin Solid Films, vol.386, no.2, 2001, pp.295-299.
122.T.L. Sung, C.M. Liu, M. Sato, C.H. Hsieh and S. Teii."Influence of gas on decoloration of organic dyes in pulsed streamer discharge,"in 2006 Taiwan-Japan Bilateral Technology Interchange Project,Taoyuan, Taiwan,The Workshop on the Applications of Plasma to Green Environmental Technology,2006,pp.pp.97-101.
123.Y.Z. Wen and X.Z. Jiang,"Pulsed corona discharge-induced reactions of acetophenone in water," Plasma Chemistry and Plasma Processing, vol.21, no.3, 2001, pp.345-354.
124.L.C. Lei, Y. Zhang, X.W. Zhang, Y.X. Du, Q.Z. Dai, and S. Han,"Degradation performance of 4-chlorophenol as a typical organic pollutant by a pulsed high voltage discharge system," Industrial and Engineering Chemistry Research, vol.46, no.17, 2007, pp.5469-5477.
125.李琳、單德芳,膜技術基本原理,中國:中國清華大學出版社,1999。
126.J.Mallevialle, P.E. Odendaal, and M.R. Wiesner,"Water Treatment Membrane Processes," New York,McGraw-Hill, 1996.
127.林子堯,水中腐植特性對薄膜過濾淨水之影響,碩士論文,國立台灣大學環境工程研究所,台北,1998。
128.M. Mulder,"Basic Principles of Membrane Technology," Dordrecht: Kluwer Academic Publishers, 1996.
129.M. Cheryan,"Ultrafiltration Handbook," Technomic Publishing,Lancaster, 1986.
130.R. Prasad and K.K. Sirkar,"DISPERSION-FREE SOLVENT EXTRACTION WITH MICROPOROUS HOLLOW-FIBER MODULES," AIChE Journal, vol.34, no.2, 1988, pp.177-188.
131.I. Bemberis and K. Neely, ULTRAFILTRATION AS A COMPETITIVE UNIT PROCESS,1986,pp.65-77.
132.P. Bailey and R. Skelton,"Ultrafiltration with spiral wound modules - current state of the art," 1980.
133.J.L. Short,"Selection, applications and optimization of hollow-fibre UF (ultrafiltration) membranes," 1982.
134.S. Chen, H. Fan, and K. Yuen-Koh,"A membrane reactor with two dispersion-free interfaces for homogeneous catalytic reactions," The Chemical Engineering Journal, vol.49, no.1, 1992, pp.35-43.
135.M. Lidman, D.W. Webster, and A. Tornqvist,"Ultrafiltration of microbiological products," 1984.
136.周慶隆,應用光催化薄膜分離程序去除含界面活性劑水溶液中之疏水性有機物,碩士論文,國立高雄第一科技大學環境與安全衛生工程學系,高雄,2005。
137.黃志彬、江萬豪,「產業廢水回收再利用-半導體業」,化工技術,第17卷,第11期,2003。
138.S. Lentsch, P. Aimar, and J.L. Orozco,"Separation albumin-PEG: Transmission of PEG through ultrafiltration membranes," Biotechnology and Bioengineering, vol.41, no.11, 1993, pp.1039-1047.
139.焦自強,「應用範圍逐漸擴大的微過濾技術」,化工技術,第3卷,第5期,1995,第151-155頁。
140.邱卓皓,溫度效應對陶瓷薄膜操作影響之探討,碩士論文,國立屏東科技大學食品科學系,屏東,2000。
141.經濟部工業局編印,廢水薄膜處理技術應用與推廣手冊,,2000。
142.呂維明、呂文方,過濾技術,台北:高立圖書有限公司,1994。
143.M. Cheryan,"Ultrafiltration and Microfiltration Handbook," Technomic Publishing Company, Inc., Lancaster, PA, USA., 1998.
144.T. Tsuru,"Nano/subnano-tuning of porous ceramic membranes for molecular separation," Journal of Sol-Gel Science and Technology, vol.46, no.3, 2008, pp.349-361.
145.黃定加、陳慧英,「陶瓷薄膜」,化工技術,第40卷,第3期,1993,第101頁。
146.J.C.S. Wu, H. Sabol, G.W. Smith, D.L. Flowers, and P.K.T. Liu,"Characterization of hydrogen-permselective microporous ceramic membranes," Journal of Membrane Science, vol.96, no.3, 1994, pp.275-287.
147.H.P. Hsieh, Inorganic membranes for separation and reaction,1996.
148.丁進國,微孔陶瓷薄膜在液相系統分離之應用研究-油/水乳化液的分離,碩士論文,台灣大學化學工程研究所,台北,1998。
149.R. Bhave,"Inorganic membranes: synthesis, characterization,and applications.," Van Nostrand Reinhold, New York, 1991.
150.T.S. Govindan and S. Sourirajan,"Reverse osmosis separation of some inorganic salts in aqueous solution using porous cellulose acetate membranes," IandEC Process Design and Development, vol.5, no.4, 1966, pp.422-429.
151.H.L. Howe,"Hazardous Chemicals Handling and Disposal," The Institute of Advanced Sanitation Research, International, 1971, pp.58-80.
152.邵剛,反滲透,北京:冶金工業出版社,2000。
153.高山鎮,薄膜阻塞控制之研究,碩士論文,國立成功大學環境工程學系,台南,2000。
154.張錦松、張錦輝、李孫榮、陳健民、曾如娟譯,薄膜分離法,高立圖書有限公司,1996。
155.S. Sourirajan and A.F. Sirianni,"Membrane separation studies with some polyoxyethylated alkylphenols in aqueous solution," Industrial & Engineering Chemistry Product Research and Development, vol.5, no.1, 1966, pp.30-34.
156.J.A. Nilson and F.A. DiGiano,"Influence of NOM composition on nanofiltration," Journal / American Water Works Association, vol.88, no.5, 1996, pp.53-66.
157.林士正、蔡幸芬、張振章,「以逆滲透回收再利用染整產業排放水之研究」,第二十四屆廢水處理技術研討會論文集,1999,第101-106頁。
158.A.G. Fane, P. Beatson, and H. Li,"Membrane fouling and its control in environmental applications," Water Science and Technology, vol.41, 2000, pp.303-308.
159.黃明樟,薄膜程序處理染整業放流水回收再利用之研究,碩士論文,淡江大學水資源及環境工程學系,台北,2001。
160.S. Benfer, U. Popp, H. Richter, C. Siewert, and G. Tomandl,"Development and characterization of ceramic nanofiltration membranes," Separation and Purification Technology, vol.22-23, 2001, pp.231-237.
161.Y.C. Hong, C.U. Bang, D.H. Shin, and H.S. Uhm,"Band gap narrowing of TiO2 by nitrogen doping in atmospheric microwave plasma," Chemical Physics Letters, vol.413, no.4-6, 2005, pp.454-457.
162.S. Wang, X. Wu, W. Qin, and Z. Jiang,"TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell," Electrochimica Acta, vol.53, no.4, 2007, pp.1883-1889.
163.Y.J. Lin, Y.H. Chang, W.D. Yang, and B.S. Tsai,"Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method," Journal of Non-Crystalline Solids, vol.352, no.8, 2006, pp.789-794.
164.B.C. Mutsuddy and R.G. Ford,"Ceramic Injection Molding.," Chapman and Hall,London, U.K., 1995, pp.1–26.
165.S.M. Ji, P.H. Borse, H.G. Kim, D.W. Hwang, J.S. Jang, S.W. Bae, and J.S. Lee,"Photocatalytic hydrogen production from water-methanol mixtures using N-doped Sr2Nb2O7 under visible light irradiation: Effects of catalyst structure," Physical Chemistry Chemical Physics, vol.7, no.6, 2005, pp.1315-1321.
166.D.E. Gu, B.C. Yang, and Y.D. Hu,"V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation," Catalysis Communications, vol.9, no.6, 2008, pp.1472-1476.
167.V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra, and F. Miano,"Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion," Applied Catalysis, vol.69, no.1, 1991, pp.323-340.
168.M.R. Dhananjeyan, R. Annapoorani, and R. Renganathan,"A comparative study on the TiO2 mediated photo-oxidation of uracil, thymine and 6-methyluracil," Journal of Photochemistry and Photobiology A: Chemistry, vol.109, no.2, 1997, pp.147-153.
169.S. Naskar, S.A. Pillay, and M. Chanda,"Photocatalytic degradation of organic dyes in aqueous solution with TiO2 nanoparticles immobilized on foamed polyethylene sheet," Journal of Photochemistry and Photobiology A: Chemistry, vol.113, no.3, 1998, pp.257-264.
170.J. Eckenfelder, W. Wesley ,Industrial Water Pollution Control,New York:McGraw-Hill,1967。
171.H. Gupta and S. Tanaka,"Photocatalytic mineralisation of perchloroethylene using titanium dioxide," Water Science and Technology, vol.31, no.9, 1995, pp.47-54.
172.I. Ilisz and A. Dombi,"Investigation of the photodecomposition of phenol in near-UV-irradiated aqueous TiO2 suspensions. II. Effect of charge-trapping species on product distribution," Applied Catalysis A: General, vol.180, no.1-2, 1999, pp.35-45.
173.S. Lakshmi, R. Renganathan, and S. Fujita,"Study on TiO2-mediated photocatalytic degradation of methylene blue," Journal of Photochemistry and Photobiology, A: Chemistry, vol.88, no.2-3, 1995, pp.163-167.
174.W.Z. Tang and H. An,"UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions," Chemosphere, vol.31, no.9, 1995, pp.4157-4170.
175.L.B. Reutergardh and M. Iangphasuk,"Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and CdS photocatalysis," Chemosphere, vol.35, no.3, 1997, pp.585-596.
176.F. Kiriakidou, D.I. Kondarides, and X.E. Verykios,"The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes," Catalysis Today, vol.54, no.1, 1999, pp.119-130.
177.W. Nam, J. Kim, and G. Han,"Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor," Chemosphere, vol.47, no.9, 2002, pp.1019-1024.
178.R.J. Davis, J.L. Gainer, G. O''Neal, and I.W. Wu,"Photocatalytic decolorization of wastewater dyes," Water Environment Research, vol.66, no.1, 1994, pp.50-53.
179.D.E. Kritikos, N.P. Xekoukoulotakis, E. Psillakis, and D. Mantzavinos,"Photocatalytic degradation of reactive black 5 in aqueous solutions: Effect of operating conditions and coupling with ultrasound irradiation," Water Research, vol.41, no.10, 2007, pp.2236-2246.
180.C.H. Wu and C.H. Yu,"Effects of TiO2 dosage, pH and temperature on decolorization of C.I. Reactive Red 2 in a UV/US/TiO2 system," Journal of Hazardous Materials, 2009.
181.C.M. So, M.Y. Cheng, J.C. Yu, and P.K. Wong,"Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation," Chemosphere, vol.46, no.6, 2002, pp.905-912.
182.J. Lea and A.A. Adesina,"The photo-oxidative degradation of sodium dodecyl sulphate in aerated aqueous TiO2 suspension," Journal of Photochemistry and Photobiology A: Chemistry, vol.118, no.2, 1998, pp.111-122.
183.M.S.T. Goncalves, A.M.F. Oliveira-Campos, E.M.M.S. Pinto, P.M.S. Plasencia, and M.J.R.P. Queiroz,"Photochemical treatment of solutions of azo dyes containing TiO2," Chemosphere, vol.39, no.5, 1999, pp.781-786.
184.邱永亮、魏盛德合譯,染色化學,徐氏基金會出版,1975。
185.M. Muruganandham and M. Swaminathan,"Photocatalytic decolourisation and degradation of Reactive Orange 4 by TiO2-UV process," Dyes and Pigments, vol.68, no.2-3, 2006, pp.133-142.
186.N. Daneshvar, D. Salari, and A.R. Khataee,"Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2," Journal of Photochemistry and Photobiology A: Chemistry, vol.162, no.2-3, 2004, pp.317-322.
187.Y. Lin, C. Ferronato, N. Deng, F. Wu, and J.M. Chovelon,"Photocatalytic degradation of methylparaben by TiO2: Multivariable experimental design and mechanism," Applied Catalysis B: Environmental, vol.88, no.1-2, 2009, pp.32-41.
188.J. Bandara and J. Kiwi,"Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye Orange II," New Journal of Chemistry, vol.23, no.7, 1999, pp.717-724.
189.L. Defrance and M.Y. Jaffrin,"Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: Application to a membrane bioreactor used for wastewater treatment," Journal of Membrane Science, vol.152, no.2, 1999, pp.203-210.
190.G.C.C. Yang and S.W. Chan,"Photocatalytic reduction of chromium(VI) in aqueous solution using dye-sensitized nanoscale ZnO under visible light irradiation," Journal of Nanoparticle Research, vol.11, no.1, 2009, pp.221-230.
191.M. Janus, E. Kusiak, J. Choina, and A.W. Morawski,"Lifetime of Carbon-Modified TiO2 Photocatalysts Under UV Light Irradiation," Catalysis Letters, 2009, pp.1-6.
192.M. Okuda, T. Tsuruta, and K. Katayama,"Lifetime and diffusion coefficient of active oxygen species generated in TiO2 sol solutions," Physical Chemistry Chemical Physics, vol.11, no.13, 2009, pp.2287-2292.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top