跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡端任
研究生(外文):Dran-Ren Tsai
論文名稱:鉻對於沃斯回火片狀石墨鑄鐵之影響
論文名稱(外文):The Influence of Chromium on The Austempered Flake Graphite Cast Iron
指導教授:唐自標
口試委員:陳貞光許正勳徐開鴻
口試日期:2009-07-07
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:78
中文關鍵詞:片狀石墨鑄鐵沃斯回火機械性質
外文關鍵詞:gray cast ironaustemperedchromiummechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗旨在利用改變沃斯回火溫度(300℃∼400℃),以及合金鉻的含量(0.2~1.5wt%)等實驗條件,將片狀石墨鑄鐵於900℃恆溫2小時後,急冷至沃斯回火溫度持溫2小時,進行沃斯回火熱處理,以期探討沃斯回火溫度、鉻含量對於沃斯回火片狀石墨鑄鐵的顯微組織以及機械性質等影響。
實驗結果顯示,沃斯回火熱處理後,基地組織由肥粒鐵以及塊狀和少量之條狀沃斯田鐵所組成,沃斯回火溫度較低時,肥粒鐵組織為細密之針狀,當沃斯回火溫度較高時,肥粒鐵組織會有粗大化的現象,殘留沃斯田鐵所佔之比例會也會有所增加;在相同的熱處理條件下,當鉻含量較低時,沃斯回火熱處理後之組織中所含之殘留沃斯田鐵則是有所下降,而當鉻含量較高時,由於鉻會與碳形成碳化物析出於基地相中,使得沃斯田鐵量增加,析出物和基地組織中的鉻含量比例,會隨著沃斯回火溫度改變而有所增減。
當沃斯回火溫度增加時,則鑄件之機械性質,硬度以及抗拉強度會隨之下降,抗拉強度最大值則出現於添加1.5wt%Cr之鑄鐵試片,沃斯回火溫度為300℃時,達到1448 MPa。
The study was carried out to change austempering temperature (300℃~400℃), and the content of chromium (0.3~1.5wt%). The flake graphite cast iron were austenitized at 900℃ for 2 hours, and then quenched to the austempering temperature and holded the temperature for 2 hours. The study was to examine the influence of the austempering temperature and the percent of chromium on the mechanical properties and the microstructure of the austempered flake graphite cast iron.
The result of the study showed that the matrix were composed of ferrite and block and a few of string-type of austenite. When the austempering temperature were low temperature, the structure of ferrite were to grow and coarse, and the retained austenite content and the value of retained austenite content multiplied by the carbon content of austenite rises with rising austmpering temperature. The Heat treatment in the same conditions, when the chromium content was lower, the retained austenite volume fraction was decrease; when the chromium content was higher, there was formation of carbide precipitation in the matrix, caused to increased austenitic volume fraction, the ratio of chromium content of carbide and the matrix, it will decrease as the temperature increases.
When the tempering temperature increased, the mechanical properties of the casting iron, the hardness and tensile strength will be drop, and the ultimate tensile strength occurs in the 1.5wt% Cr, and austempering temperature at 300 ℃ to 1448 MPa.
摘要 I
ABSTRACT II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧與理論基礎 3
2.1 鐵-碳平衡相圖 3
2.2 石墨型態 5
2.2.1 片狀石墨 5
2.2.2 球狀石墨 8
2.2.3 蠕蟲狀石墨 9
2.3 基地組織相 10
2.3.1 沃斯田鐵(Austenite)相 10
2.3.2 肥粒鐵(Ferrite)相 10
2.3.3 雪明碳鐵(Cementite)相 10
2.3.4 波來鐵(Pearlite)相 10
2.3.5 沃斯肥粒鐵 11
2.4 沃斯回火熱處理 13
2.4.1 沃斯田鐵化 14
2.4.2 急冷至沃斯回火溫度 16
2.4.3 在沃斯回火溫度持溫 17
2.4.4 自沃斯回火溫度空冷至室溫 18
2.5 合金元素的影響 19
2.5.1 碳 20
2.5.2 矽 20
2.5.3 錳 22
2.5.4 磷 23
2.5.5 硫 23
2.5.6 鉻 23
第三章 研究方法 25
3.1 使用材料 27
3.2 試片製作及取樣 27
3.3 沃斯回火熱處理 29
3.3.1 沃斯田鐵化熱處理 29
3.3.2 沃斯回火溫度持溫 29
3.4 金相顯微組織觀察 30
3.5 殘留沃斯田鐵分率計算 31
3.6 殘留沃斯田鐵中碳含量計算 34
3.7 機械性質量測 35
3.7.1 硬度試驗 35
3.7.2 拉伸試驗 35
第四章 結果與討論 37
4.1 不同的鉻含量對於片狀石墨鑄鐵之影響 37
4.1.1 顯微組織 37
4.1.2 機械性質 40
4.2 不同鉻含量對顯微組織之影響 41
4.2.1 沃斯回火溫度為300℃ 41
4.2.2 沃斯回火溫度為350℃ 45
4.2.3 沃斯回火溫度為400℃ 48
4.3 不同沃斯回火溫度對於顯微組織之影響 54
4.3.1 顯微組織 55
4.3.2 機械性質 67
第五章 結論 72
參考文獻 73
[1] "Ductile Iron Data for Design Engineers". Canada: Rio Tinto Iron & Titanium, Inc., 1990, vol. 2, pp. 10.
[2] D. C. William, Fundamentals of Materials Science and Engineering, New York: John Wiley&Sons, 2001, pp. 302-307.
[3] 陳建同,沃斯回火球墨鑄鐵相轉變動力學之研究,博士論文,國立台灣科技大學機械工程系,台北,1996。
[4] V. Gerval and J. Lacaze, "Critical temperature range in spheroidal graphite cast iron," ISIJ International, vol. 40, no. 4, 2002, pp. 386-392.
[5] 周繼揚,鑄鐵彩色金相學,北京:機械工業出版社,2002。
[6] J. R. Davis, ASM Specialty Handbook : Cast Irons, Ohio: ASM International, 1996.
[7] ASTM designation A247-67, " Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings," ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
[8] 潘國桐、廖高宇,球墨鑄鐵手冊,高雄:中華民國鑄造學會,1994。
[9] "ASM Metals Handbook," Ohio: ASM International, 1988, vol. 15, 9th Ed., pp. 1455-1456.
[10] 余煥騰, 陳適範, 唐自標, 金屬熱處理學, 台北: 六合出版社, 1995, 第10-14頁。
[11] W. Xu, M. Ferry and Y. Wang, "Influence of alloying elements on as-cast microstructure and strength of gray iron," Materials Science and Engineering A, vol. 390, no. 1-2, 2005, pp. 326-333.
[12] B. V. Kovacs, "Austempered ductile iron. Fact and Fiction," Modern Casting, vol. 80, no. 3, 1990, pp. 38-41.
[13] M. D. VanMaldegiam and K. B. Rundman, "On the structure and properties of austempered gray cast iron," Trans. AFS, vol. 94, 1986, pp. 249-254.
[14] R. C. Voigt and C. R. Loper, "Austempered ductile iron—process control and quality assurance," Journal of Heat Treating, vol. 3, no. 4, 1984, p.p. 291-309.
[15] L. Bartosiewicz, I. Singh, F. A. Alberts, A. R. Krause and S. K. Putatunda, "The influence of chromium on mechanical properties of austempered ductile cast iron," Journal of Materials Engineering and Performance, vol. 4, no. 1, 1995, p.p. 90-101.
[16] J. F. Janowak and R. B. Gundlach, "Development of a Ductile Iron for Commercial Austempering," Trans. AFS, vol. 91, 1983, pp. 377-388.
[17] P. P. Rao and S. K. Putatunda, "Investigations on the fracture toughness of austempered ductile iron alloyed with chromium," Materials Science and Engineering A, vol. 346, no. 1-2 , 2003, pp. 254-265.
[18] P. P. Rao and S. K. Putatunda, "Investigations on the fracture toughness of austempered ductile irons austenitized at different temperatures," Materials Science and Engineering A, vol. 349, no. 1-2, 2003, pp. 136-149.
[19] M. C. Cakir, A. Bayram, Y. Isik and B. Salar, "The effects of austempering temperature and time onto the machinability of austempered ductile iron," Materials Science and Engineering: A, vol. 407, no. 1-2, 2005, pp. 147-153.
[20] J. M. Radzikowska, "Effect of specimen preparation on evaluation of cast iron microstructures," Materials Characterization, vol. 54, no. 4-5, 2005, pp. 287-304.
[21] B. Kovacs, "Development of Austempered Ductile Iron for Crankshafts", ASME 2nd International Conference on Austempered Ductile Iron, Ann Arbor, Michigan, USA, 17-19 Mar., 1986, pp. 291-296
[22] M. Bahmani, R. Elliott and N. Varahram, "The relationship between fatigue strength and microstructure in an austempered Cu-Ni-Mn-Mo alloyed ductile iron," Journal of Materials Science, vol. 32, no. 20, 1997, pp. 5383-5388.
[23] K. P. Jen, J. Wu and S. Kim, “Study of fracture and fatigue behavior of austempered ductile iron”, Trans. AFS, vol. 102, 1992, pp. 833-846.
[24] B. V. Kovacs and J. R. Keough, "Physical properties and application of austempered gray iron," Trans. AFS, vol. 101, 1993, pp. 283-291.
[25] Y. J. Kim, H. Shin, H. Park and J. D. Lim, "Investigation into mechanical properties of austempered ductile cast iron (ADI) in accordance with austempering temperature," Materials Letters, vol. 62, no. 3, 2008, pp. 357-360.
[26] A. D. Basso, R. A. Marti?nez and J. A. Sikora, "Influence of austenitising and austempering temperatures on microstructure and properties of dual phase ADI," Materials Science and Technology, vol. 23, no. 11, 2007, pp. 1321-1326.
[27] O. Erić, M. Jovanović, L. Šidanin, D. Rajnović, and S. Zec, "The austempering study of alloyed ductile iron", Materials & Design, vol. 27, no. 7, 2006, pp. 617-622.
[28] R. Boeri and F. Weinberg, “Microsegregation in Ductile Iron”, Trans. AFS, vol.97, 1989, pp.179-184.
[29] 林娟寧,製程條件對無合金沃斯回火鐵-碳-矽材料顯微組織與機械性質之影響,碩士論文,義守大學,高雄,2006。
[30] C. D. Lundin, K. K. Khan and D. Yang, " Effect of carbon migration in Cr-Mo weldments on metallurgical structure and mechanical properties," Welding Research Council Bulletin, no. 407, 1995, pp. 1-49.
[31] N. K. Datta and N. N. Engel, "Electron Microprobe Study of the Distribution of Si, Cu, Ni, Mn, Mo and Cr in Ductile Iron," Trans. AFS, vol. 84, 1977, pp. 431-436.
[32] C. Z. Wu, Y. J. Chen and T. S. Shih, "Phase transformation in austempered ductile iron by microjet impact," Materials Characterization, vol. 48, no. 1, 2002, pp. 43-54.
[33] J. J. Lewandowski, C. A. Hippsley and J. F. Knott, "Effects of impurity segregation and test environment on sustained load cracking of 2.25%Cr-1%Mn steel," Acta metallurgica, vol.35, no. 8, 1987, pp.2081-2090.
[34] ASTM designation A897, " Standard Specification for Austempered Ductile Iron Castings," ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
[35] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction 3rd Ed., New Jersey: Prentice-Hall, 2001.
[36] ASTM designation E975, " Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation," ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
[37] S. K. Putatunda, "Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process," Materials Science and Engineering: A, vol. 315, no. 1-2, 2001, pp. 70-80.
[38] A. K. De, D. C. Murdock, M. C. Mataya, J. G. Speer, and D. K. Matlock, "Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction," Scripta Materialia, vol. 50, no. 12, 2004, pp. 1445-1449.
[39] J. L. Garin and R. L. Mannheim, "Strain-induced martensite in ADI alloys," Journal of Materials Processing Technology, vol. 143-144, no. 1, 2003, pp. 347-351.
[40] S. K. Putatunda and P. K. Gadicherla, "Influence of austenitizing temperature on fracture toughness of a low manganese austempered ductile iron (ADI) with ferritic as cast structure," Materials Science and Engineering: A, vol. 268, no. 1-2, 1999, pp. 15-31.
[41] K. B. Rundman and R. C. Klung, "X-ray and metallographic study of an austempered ductile cast iron," Trans. AFS, 1982, pp. 499-508.
[42] ASTM designation E8M, " Standard Test Methods for Tension Testing of Metallic Materials," ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
[43] CNS 2111, G 2013: Method of Tensile Test for Metallic Materials.
[44] M. H. Saleh and R. Priestner, "Retained austenite in dual-phase silicon steels and its effect on mechanical properties," Journal of Materials Processing Technology, vol. 113, no. 1-3, 2001, pp. 587-593.
[45] A. Suprihanto, D. Harsokoesoemo, R. Suratman, "The Effect of Cr & Cu on the Fatigue Strength of Grey Cast Irons," Key Engineering Materials, vol. 306-308, 2006, pp. 953-958.
[46] P. I. Popov and I. G. Sizov, "Effect of alloying elementes on the structure and properties of iron with vermicular graphite," Metal Science and Heat Treatment, vol. 48, no. 5-6, 2006, pp. 272-275.
[47] H. T. Angus, Cast Iron: Physical and Engineering Properties, 2nd Ed., London: British Cast Iron Research Association, 1976, pp. 179.
[48] J. Rickard and I. C. Hughes, "Eutectic structure in white cast iron," BCIRA, 1961, vol. 9, pp.11-25.
[49] "ASM Metals Handbook", Ohio: ASM International, 9th Ed., 1988, vol. 15, pp.168-181.
[50] A. Bedolla-Jacuinde, S. L. Aguilar, and B. Hernández, "Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: I. Effect on microstructure," Journal of Materials Engineering and Performance, vol. 14, no. 2, 2005, pp. 149-157.
[51] Li. Chung, "Phase transformation and fatigue properties of austempered ductile iron", International Journal of Cast Metals Research, vol. 15, no. 2, 2002, pp. 125-134.
[52] 吳滄欽,沃斯回火球墨鑄鐵相變態與機械性質之研究,博士論文,國立中央大學機械工程研究所,桃園,2002。
[53] S. K. Putatunda, A. V. Singar, R. Tackett, and G. Lawes, "Development of a high strength high toughness ausferritic steel," Materials Science and Engineering: A, vol. 513-514, 2009, pp. 329-339.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊