跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/16 20:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:程雅琪
研究生(外文):Ya-Chi Cheng
論文名稱:磷酸鈣骨水泥添加聚麩胺酸之複合材料製備分析及以注射方式用於隆鼻之研究
論文名稱(外文):Injectable Calcium Phosphate Cement Incorporated with γ-PGA Particle For Rhinoplasty
指導教授:許淙慶許淙慶引用關係
口試委員:Subramaniam Sadhasivam芮祥鵬林峯輝
口試日期:2009-07-01
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:磷酸鈣骨水泥聚麩胺酸隆鼻注射流變性質
外文關鍵詞:Calcium phosphate cementPoly(γ-glutamic acid)RhinoplastyInjectionRheology
相關次數:
  • 被引用被引用:3
  • 點閱點閱:406
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去隆鼻主要是為了矯正畸形、改善鼻功能,而現今美學觀念抬頭,隆鼻是為了增強外觀。新型隆鼻使用注射方式將材料注入患者鼻背、鼻尖,並在患者鼻部放一模具加以定形,填入材料固化後即完成塑形。注射優點為最小侵入性外科手術、操作簡便、修復時間短、不會留下疤痕,可降低患者心理恐懼。
本實驗主要探討磷酸鈣骨水泥添加不同比例聚麩胺酸的氫氧機磷灰石相轉變率、微觀結構、注射性質、流變性質、固化時間、降解情形、生物相容性。實驗結果顯示,聚麩胺酸1%有最高的氫氧機磷灰石相轉變率,最短的成膠、固化時間,注射性質達臨床上使用門檻,聚麩胺酸降解後系統保持穩定,為毒性很低的材料且具生物適應性。由上述結果可顯示,本實驗開發出可注射式、可生物分解、可自體固化、具有骨誘導性的新型骨水泥,極具發展潛力應用於隆鼻,可望未來提供給不敢開刀之患者另一種新選擇。
Rhinoplasty was mainly performed to correct traumatic and improve nasal functionality. Today, it is gaining popularity for esthetic enhancement. A novel technique for rhinoplastry is operated by injecting material into patient’s nasal dorsum or nasal tip and place a removable mold for fixation. It’s a minimally invasive surgical procedure and has advantages of easy to handle, no visible skin incisions, reducing repair time and decreasing patient’s fear.
This study is focused on discussing the influences of three different ratios of γ-glutamic acid in CPC on HAP conversion, micro structure, injection, rheology, setting time, degradation and biocompatibility. Results showed the optimum ratio of γ-PGA in CPC for highest HAP conversion, shortest gelation and setting time and 85% clinical acceptable injectability is 1%. The system remains stable after degradable test and the results of cytotoxicity assays showed no harmful to the cell differentiation and proliferation. In summary, this bone cement composite possesses great developing potential to be applied on rhinoplasty and can be a new choice for patients who are afraid of operation.
摘 要 I
ABSTRACT II
誌謝 III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 簡介 1
1.1 前言 1
1.2 隆鼻的起源與歷史 3
1.2.1 古代隆鼻歷史 3
1.2.2 現代隆鼻歷史 3
1.2.3 合成材料的發展歷史 4
1.3 鼻部的構造 6
1.4 隆鼻的方式 8
1.5 隆鼻材料的介紹 9
1.6 研究動機 15
第二章 文獻回顧與理論基礎 17
2.1 磷酸鈣陶瓷 17
2.1.1 氫氧基磷灰石(Hydroxyapatite,HAP) 18
2.1.2 氫氧基磷灰石製造方法 19
2.1.3 磷酸鈣骨水泥固化機制 19
2.1.4 磷酸鈣骨水泥特性 20
2.1.5 無水二磷酸鈣混合四磷酸鈣之骨水泥系統 21
2.1.6 磷酸鈣陶瓷與骨鍵結、修復原理 24
2.2 γ-PGA(Polyglutamic acid)概述 26
2.2.1 γ-PGA之製造 26
2.2.2 γ-PGA之化學結構與特性 28
2.2.3 γ-PGA添加交聯劑修飾機制 30
2.3 流變原理 32
2.3.1 流變學基本概述 32
2.3.2 指數律(Power Law) 34
2.3.3 動力量測法(Dynamic Measurement) 35
第三章 實驗材料與方法 37
3.1 實驗藥品 38
3.2 實驗儀器 39
3.3 材料製備 40
3.3.1 磷酸鈣粉末製備 40
3.3.2 γ-PGA添加EDC-NHS交聯反應 41
3.3.3 骨水泥溶液調配 42
3.3.4 CPC/γ-PGA複合材料製備 42
3.4 材料分析 44
3.4.1 X-ray繞射儀(XRD) 44
3.4.2 掃描式電子顯微鏡(SEM) 44
3.5 骨水泥分析 45
3.5.1 注射測試 45
3.5.2 流變測試 46
3.5.3 固化時間量測 47
3.5.4 降解測試 47
3.5.5 重量損失測試 48
3.6 生物相容性測試 48
3.6.1 LDH細胞毒性測試 48
3.6.2 WST-1細胞增生測試 50
第四章 結果與討論 52
4.1 X – Ray分析 52
4.1.1 四磷酸鈣X-Ray圖譜 52
4.1.2 CPC/γ-PGA複合材料X-Ray圖譜 53
4.1.3 HAP轉換率分析 56
4.2 Sem分析 58
4.3 注射測試分析 63
4.4 流變測試分析 64
4.5 固化時間測試 68
4.6 降解測試 68
4.6.1 pH值量測 71
4.6.2 重量損失測試 72
4.7 生物相容性 75
4.7.1 LDH細胞毒性測試 75
4.7.2 WST-1 細胞增生測試 76
第五章 結論 80
第六章 參考文獻 82
[1]Guy Lin, MD, William Lawson, DDS, MD. Complications using grafts and implants in rhinoplasty. Operative Techniques in Otolaryngology 2007;18: 315-323
[2]風華整形外科診所資訊網
[3]陳建業耳鼻喉科診所資訊網
[4]William Berg. History of Rhinoplasty
[5]Oknose information. Rhinoplasty Overview
[6]Rodolphe Meyer. Secondary Rhinoplasty
[7]李五一,孫隆祥,古老的象牙隆鼻術ㄧ例,中國耳鼻咽喉頭頸外科,2006年7月,第13卷第7期
[8]林峯輝,白育綸,俞耀庭,張興棟,生物醫用材料,新文京開發出版社2004年7月
[9]高全祥,王興萬,開放式鼻成形術,台灣耳鼻喉頭頸外科雜誌,2003,38,153-160
[10]Hockin H.K. Xu, Michael D. Weir, Elena F. Burguera1, Alexis M. Fraser. Injectable and macroporous calcium phosphate cement scaffold. Biomaterials 2006; 27:4279–4287
[11]Xiupeng Wang, Jiandong Ye, Hai Wang. Effects of Additives on the Rheological Properties and Injectability of a Calcium Phosphate Bone Substitute Material. Biomedical Materials Research 2005;78: 259-264
[12]林登山,高全祥,王興萬,使用膨體聚四氟乙烯材質於加高型鼻整形術,台灣耳鼻喉頭頸外科雜誌,2007,42,35-42
[13] K. Rezwana, Q.Z. Chena, J.J. Blakera, Aldo Roberto Boccaccinia. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006;27:3413–3431
[14]王文波,陳統一,陳中偉,羥基磷灰石水泥人造骨的研究進展,中華創傷雜誌,1997,13(2),127
[15]Alexander Berlin,MD,Joel L.Cohen,MD,David J. Goldberg,MD. Calicum Hydroxylapatite for Facial Rejuvenation. Semin Cutan Med Surg 2006; 25:132-137
[16]林銘煇,生物可分解性注射式骨水泥於脊椎整形術應用之研究,2006 ,國立台灣大學,醫學工程研究所碩士學位論文
[17]Chen XC, Mi C, Shi XD, Wang B,Ye YL. Clinical application of injectable calcium sulfate with vacuum mixing for grafting bone defects. Orthopedic Journal of China. 2007;15(24):1857-1859
[18]Andrew Perry, MD, Andrew Mahar, MSc, Jennifer Massie, MS, Noemi Arrieta, BS, Steven Garfin, MD, Choll Kim, MD,PhD. Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model. The Spine Journal 2005;5:489–493
[19]Trevidic Patrick, MD. Polyacrylamide Gel in Cosmetic Procedures: Experience with Aquamid,Semin Cutan Med Surg 2004; 23:233-235
[20]Joerg M. Buescher , Argyrios Margaritis. Critical Reviews in Biotechnology Online Publication Date: 01 January 2007
[21]Samar J. Kalita, Abhilasha Bhardwaj, Himesh A. Bhatt. Nanocrystalline calcium phosphate ceramics in biomedical engine. Materials Science and Engineering 2007;C 27:441–449.
[22]Dennis P. Link, Juliette van den Dolder, Wouter J.F.M. Jurgens,Joop G.C. Wolke, John A. Jansen. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Biomaterials 2006;27:4941–4947
[23]M. Bohner,F. Theiss,D. Apelt,W. Hirsiger,R. Houriet,G. Rizzoli,E. Gnos,C. Frei,J.A. Auer,B. von Rechenberg. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials 2003;24 :3463–3474.
[24]Hideki Aoki. Medical Applications of Hydroxyapatite. Ishiyaku Euro American, Inc, Tokyo.St. Louis,1994
[25]M. Vallet-Regi, D. Arcos. Silicon substituted hydroxyapatite. A method to upgrade calcium phosphate based implants. Journal of Materials Chemistry 2005;15:1509-1516
[26]Q. Liu, J. R. de Wijn, C. A. van Blitterswijk. A study on the graft reaction of isocyanates with hydroxyapatite particles. J. Biomed.Mater. Res.1998;40: 358-364
[27]Qing Liu, Joost R. de Wijn and Clemens A. van Blitterswijk. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix. J.Biomed. Mater. Res. 1998; 40: 490-497.
[28]Qing Liu, Joost R. de Wijn and Clemens A. van Blitterswijk. Nano-apatite/polymer composites: mechanical and physicochemical characteristics. Biomaterials 1997; 18: 1263-1270.
[29]Q. Liu, J. R. de Wijn, C. A. van Blitterswijk. Covalent bonding of PMMA, PBMA, and poly(HEMA) to hydroxyapatite particles. J.Biomed. Mater. Res. 1998; 40: 257-263.
[30]Hideyuki Nakano, Takeshi Ohno and Shoji Yamanaka. Nuclear Magnetic Resonance Spectroscopic Study on the Grafting Ethylene Oxide onto the Interlayer Surface of γ–Zirconium Phosphate. Chem.Lett. 1994; 9-12
[31]Chow LC, Brown WE. A new calcium phosphate water-setting cement. In Cement Research Progress Brow PW ed, American Ceramic Society, Westerville, Ohio 1986:325-379
[32]Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res 1995;29(12): 1537-1543
[33]Ishikawa K, Miyamoto Y, Kon M, Nagayama M, Asaoka K. Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. Biomaterials 1995;16(7):527-532
[34]Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K. In vivo setting behaviour of fast-setting calcium phosphate cement. Biomaterials 1995;16(11):855-860
[35]Paul W. Brown, Brent Constantz. Hydroxyapatite and Related Materials. CRC Press;1994:343
[36]Andrew Richard, Argyrios Margaritis. Poly(glutamic Acid) for Biomedical Applications ,Critical Reviews in Biotechnology. 2001;21(44):219-232
[37]Youji Miyamoto,Kunio Ishikawa,Masaaki Takechi,Taketomo Toh,Yuki Yoshida,Masaru Nagayama,Masayuki Kon, Kenzo Asaok. Tissue response to fast-setting calcium phosphate cement in bone. Biomedical Materials Research 1998;37:457-464
[38]S. Takagi, L.C. Chow, K. Ishikawa. Formation of hydroxyapatite in new calcium phosphate cements. Biomaterials 1998;19:1593-1599
[39]R. Stulajterov´a, L. Medveck´y. Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007.
[40]Guan-Huei Ho, Tong-Ing Ho , Kuo-Huang Hsieh,Yuan-Chi Su , Pi-Yao Lin , Jeng Yang,Kun-Hsiang Yang and Shih-Ching Yang. γ-Polyglutamic Acid Produced by Bacillus subtilis (natto): Structural Characteristics, Chemical Properties and Biological Functionalities. Journal of the Chinese Chemical Society 2006;53:1363-1384
[41]Joerg M. Buescher, Argyrios Margaritis. Microbial Biosynthesis of Polyglutamic Acid Biopolymer and Applications in the Biopharmaceutical, Biomedical and Food Industries,Critical Reviews in Biotechnology 2007: 27:1–19
[42]S.W. Chang , J.F. Shaw , K.H. Yang , S.F. Chang , C.J. Shieh. Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly(c-glutamic acid) by RSM. Bioresource Technology 2008;99:2800–2805
[43]Shan-hui Hsu ,Chen-Huan Lin. The properties of gelatin–poly (γ-glutamic acid) hydrogels as biological glues. Biorheology 2007;44:17–28
[44]Ivanovics, G., V. Bruckner. Chemische und immunologische Studien uber den Mechanimus der Milzbrandinfektion und Immunitat; die chemische Struktur der Kapdelsubstanz des Milzbrandbasillus und der serologisch identischen spezifischen Substanz des Bacillus mesentericus. Z. Immunitatsforsch. 1937;90: 304-318
[45]Hara, T., Y. Fuzio, S. Ueda. Elimination of Plasmid-Linked Polyglutamate Production by Bacillus subtilis (natto) with Acridine Orange. Applied and Enviromental Microbiology. 1982;44:1456-1458
[46]Ing-Lung Shih,Yi-Tsong Van. The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology 2001;79 :207-225
[47]Zanuy, D., C. Aleman, S. Munoz-Guerra : On the helical conformation of un-ionized poly (γ-glutamic acid). Int. J. Biol. Macromol. 23 : 175-184 (1998).
[48]何觀輝,聚麩胺酸之結構特性與化學特性,化工資訊與商情 2006;31;64-71
[49]何觀輝,聚麩胺酸水膠及其工業應用,Bioindustry 2005;16
[50]味丹企業有限公司,γ-PGA及Hydrogels 產品手冊(第二版) 2005
[51]Greg T. Hermanson. Bioconjugate Techniques, Rockford, Pierce Chemical Company 1996: 4-13
[52]Greg T. Hermanson. Bioconjugate Techniques, Rockford, Pierce Chemical Company 1996:169-186.
[53]Ikada Y, C. Nishi, N. Nakajima. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J. of Biomed. Mater. Res 1995;29:829-834
[54]Kharas G.B, Kamenetsky M, Simantirakis J, Beinlich K.C, Rizzo A.T, Caywood G.A, Watson K. Synthesis and characterization of fumarate-based polyesters for use in bioresorbable bone cemen composites. J.Appl. Polym.Sci.
1997; 66: 1123-1137
[55]Yang V.C. Overview of drug delivery system. Albert B,Prescott Professor of Pharmaceuyical Science 2000
[56]Achim Gopfrrich. Mechanisms of polymer degradation and erosion. Biomaterial 1996;17:103-114
[57]劉士榮,高分子流變學,滄海書局(第二版) 2005
[58]Changsheng Liu, Huifang Shao, Feiyue Chen, Haiyan Zheng. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry. Biomaterials 2006;27:5003-5013
[59]Hugo Leonardo Rocha Alves,Luis A. dos Santos,Carlos P.Bergmann. Injectability evaluation of tricalcium phosphate bone cement. J. Mater Med 2008; 19:2241-2246
[60]M.P.Ginebra, A.Rilliard, E.Ferandez, C.Elvira, J.San Roman, J.A Planell. Mechanical and rheological improvement of a calcium phosphate cement by the addition of polymeric drug. Biomedical Materials Research 2001;57:113-118
[61]M.M.Nachlas, et al . The determination of lactic dehydrogenase with a tetrazolium salt. Anal.Biochem 1960;1:317-26
[62]Mosmann.T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Meth 1983;65:55-63
[63]Cell Proliferation Reagent WST-1. Roche Molecular Biochemicals Mai 1999; Version 3
[64]Otsuka M,Matsuda Y,Suway et al. Effect of particle size of metastable calcium phosphate on mechanical strength of a novel self-setting bioactive calcium phosphate cement. J. Biomed Master Res 1995;29(12):25
[65]Y.Fukase, E.D.Eanes, S.Takagi, L.C.Chow, W.E.Brown. Setting reactions and compressive strength of a calcium phosphate cement. J. Dent. Res 1990; 69:1852-1856.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top