跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭伍富
研究生(外文):Wu-Fu Cheng
論文名稱:鋅顆粒燃料電池之流動電解液研究
論文名稱(外文):Study of Flowing Electrolyte of Zinc Particle Fuel Cell
指導教授:黃國修黃國修引用關係
指導教授(外文):Kuo-Shiu Huang
口試委員:蔡博章吳浴沂
口試日期:2009-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:50
中文關鍵詞:顆粒流動電解液相較於氫燃料
外文關鍵詞:ZincParticleFlowing ElectrolyteCompares in hydrogen fuel
相關次數:
  • 被引用被引用:8
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
鋅金屬燃料電池使用多孔性鋅板作為陽極,液態氫氧化鉀為電解液,當電池進行放電反應時,鋅板會氧化成為氧化鋅並且附著於陽極表面,導致鋅陽極反應面積減少使性能下降最終停止放電,此時必須更換鋅板才能使電池繼續運作。本研究使用鋅顆粒取代鋅板,以加料方式添加至電池中進行反應,並利用陽極反應時會溶解於電解液之特性施以流動電解液將反應物帶離電池中,且連續添加鋅顆粒,以補充被溶解之陽極部份,使電池維持在最佳的反應狀態下運作。
本實驗結果電池最大功率到達12W,對應之電壓為0.8V,功率最高點之電流密度約為300 mA/cm2。實驗研究參數包含流動電解液之濃度、溫度及流速,結果顯示KOH電解液濃度在40wt%時能有最高的電流密度輸出,陰極與陽極對電解液濃度需求正好相反,因此濃度過高或過低都不利於電池運作。電解液溫度越高對電池性能也越好,但溫度高於45℃後電池性能提升有趨緩現象,當溫度高於65℃時需考慮水分蒸發問題。電解液流速主要作用在於溶解鋅顆粒之反應物,實驗結果顯示電解液流速過快,不利於電池反應。陽極因為使用顆粒狀鋅金屬,因此需要靠集電網收集鋅顆粒反應所釋放之電子,本研究使用不同集電網面積及形狀進行測試,結果由I-V曲線發現,增加集電網面積能增加電池整體效能但影響並不明顯。空氣陰極部分在增加導電片面積後能明顯提高電池電流密度,影響較顯著。
The zinc-air cells use a porous zinc plate as the anode, and the liquid KOH as the electrolyte. When the fuel cell is in a discharge process, the zinc plate will be oxidized into zinc oxide, and then zinc oxide will attach to surface of the anode. This situation will cause a reduction in the anodic reaction area of zinc, and discharge functioning become slowly, eventually, it will stop discharging power. At this time, you would have to change the zinc plate in order to keep the fuel cell operating. This research used zinc granules in place of the zinc plate, and used the feed method by adding zinc granules into the fuel cell to conduct the reaction. We utilized the property of anodic reaction that would dissolve zinc granules in the electrolyte, the reactant would be brought out of the fuel cell by adding fluid electrolyte. When the zinc granules were continuously added in order to supplement the dissolved reactant at the anode, it would allow the fuel cell to maintain operating under the condition of best reaction.
This experiment used 3W discharge of constant power to maintain the voltage above 0.7V. This could last for 230 minutes, with energy density 456Wh/kg and maximum power approximately 12W. The parameters of this experiment including the concentration, temperature, and velocity of the liquid electrolyte, experiment results revealed that when KOH electrolyte concentration was at 40wt%, it could have the highest current density output. The need of the electrolyte concentration for the cathode side and the anode side were simply just the opposite. Therefore, if the electrolyte were too high or too low, it would be detrimental to the operation of the cell. When the temperature of the electrolyte was higher, the functioning was better. However, when the temperature was higher than 45℃, the advancement of the performance would have a phenomenon of slowing down. The main function of the electrolyte velocity was to dissolve zinc granules’ reactant. The experiment of result revealed that if the electrolyte velocity were too fast, it would be detrimental to the cell’s reaction. The anode side needed to rely on the metal grid to collect the electrons released by the reaction of the zinc granules, because it used granular zinc. This research used metal grids with different sizes and shapes to conduct tests. The results were discovered through the I-V curve. When the sizes of the metal grids were increased, the overall efficiency of cell could be increased, but the effect was not very obvious. After increasing the size of the air cathode’s current-conducting plate, the current density of the cell was significantly increased, and the effect was more obvious.
目錄
摘 要 i
英文摘要 ii
誌 謝 iv
目錄 v
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 鋅顆粒金屬燃料電池基本原理 5
第二章 文獻回顧 9
2.1 鋅金屬燃料電池發展歷史 9
2.2 鋅金屬電池與燃料電池研究現況 10
2.2.1 一次鋅金屬電池 10
2.2.2 二次鋅金屬電池 13
2.2.3 鋅金屬燃料電池 15
2.3 鋅回收再生技術 21
第三章 實驗方法與步驟 23
3.1 實驗系統平臺及電池設計 23
3.2 實驗設備儀器及試藥 25
3.4 實驗方法 26
3.5 實驗參數與進行步驟 27
3.6 不準度分析 34
第四章 結果與討論 36
4.1 流動電解液參數 37
4.1.1 電解液濃度 37
4.1.2 電解液溫度 39
4.1.3 電解液流速 41
4.2 集電網與空陰氣極測試 42
4.2.1 集電網面積及形狀 42
4.2.2 陰極導電片測試 43
4.3 電池系統性能測試 44
第五章 結論 46
第六章 未來展望 48
參考文獻 49

表目錄
表1.1 各類燃料電池類型 2
表1.2 各種金屬電池特性比較 3
表1.3 各類能源能量密度比較 4
表1.4 鋅顆粒燃料電池優點 4
表2.1 鋅陽極最佳還原條件 22
表3.1 實驗設備及試藥 25


圖目錄
圖1.1 鋅金屬電池反應示意圖 6
圖2.1 鋅金屬空氣電池示意圖 10
圖2.2 DURACELL鋅金屬電池 11
圖2.3 DURACELL鋅金屬電池結構圖 11
圖2.4 SEM顯微鏡下之PVA/PAA聚合物膜 12
圖2.5 使用不同比例PVA/PAA之聚合物電解質膜對電池性能影響 13
圖2.6 鋅金屬充電電池基本原理 14
圖2.7 鋅金屬充電電池示意圖 14
圖2.8 鋅板可更換式鋅金屬電池 15
圖2.9 不規則、針狀和球狀鋅粉之比較 16
圖2.10 空氣極示意圖 17
圖2.11 SEM下之微米纖維空氣電極片 17
圖2.12 電解液碳酸化對電池性能之影響 18
圖2.13 電池與溫度關係圖 19
圖2.14 SEM下觀察之鋅金屬纖維 20
圖2.15 多孔性材質導電度隨孔隙度增加而降低 20
圖2.16 傳統氧化鋅回收步驟 21
圖2.17 太陽能鋅還原系統 22
圖3.1 實驗平臺系統架構 23
圖3.2 鋅顆粒燃料電池結構爆炸圖 24
圖3.3 實驗步驟流程 27
圖3.4 電解液濃度實驗步驟 28
圖3.5 電解液溫度實驗系統 29
圖3.6 電解液溫度實驗步驟 30
圖3.7 電解液流速量測步驟 31
圖3.8 集電網面積與形狀改變 32
圖3.9 集電網面積測試流程 32
圖3.10 使用不同材質及面積之陰極導電片 33
圖3. 11 空氣極導電片實驗流程圖 33
圖4. 1 隔離膜潤時間對電壓影響 36
圖4.2 不同電解液濃度之放電曲線圖 37
圖4.3 電解液濃度對放電電流之影響圖 38
圖4. 4 不同電解液溫度對40wt%電解液濃度之影響 40
圖4.5 溫度對不同濃度電解液在10A放電之影響 40
圖4.6 不同電解液流速I-V曲線 41
圖4.7 電解液速度對不同電流密度之影響 42
圖4.8 不同鋅陽極集電網面積及形狀I-V曲線 43
圖4.9 不同材質及面積空氣電極片之I-V曲線 44
圖4.10 3W定功率放電 45
圖4.11 電池power曲線 45
圖6.1 永續利用之潔淨動力源 48
參考文獻

[1]洪梓垣,鋅空氣電池的空氣流管理之研究,碩士論文,大葉大學,彰化,2005。
[2]曲新生,陳發林,氫能技術,台灣:五南圖書出版(股)公司,2006。
[3]D. Linden, "Handbook of Batteries," New York: McGraw-Hill, 1994.
[4]S. I. Smedley, "A regenerative zinc–air fuel cell," Journal of power sources, vol.165, 2007, pp.897-904.
[5]http://www.poweraircorp.com/technology/
[6]萬其超,電化學,臺灣商務印書館出版,1992。
[7]黃鎮江,燃料電池,全華科技圖書股份有限公司,2005。
[8]J. R. Michael, "Metal Fuel Cell," IEEE Spectrum, 2001, 55-59.
[9]G.M. Wu, S.J. Lin, C.C. Yang, "Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes," Journal of Membrane Science, vol.280, 2006, pp.802-808.
[10]A. Karpinski, "Advanced development of Program for a Lightweight Rechargeable “AA” Zinc-Air Battery," Proc. 5th Workshop for Battery Exploratory Development, Burlington VT, 1997.
[11]碇真一,空氣-鋅電極,臺北:復漢出版,1981。
[12]汪繼強譯,電池手冊,北京:化學工業出版社,2007。
[13]賴耿陽,最新電池工學,臺北:復漢出版社,1990。
[14]蔣巍,梁廣川,鹼性鋅空氣電池陽極材料研究進展,材料導報, 2005。
[15]F. R. Mclarnon, E. J. Cairn, "The secondary alkaline zinc electrode," Journal of Electrochem, Soc, vol.138, 1991, PP.645.
[16]S. Siu, j. w. evans, "Flow and transport due to natural convection in an electrolytic cell," Journal of Electrochem, Soc, vol.144, 1997.
[17]陳陵援,林修正,燃料電池中的觸媒,科學發展,2003。
[18]W.H. Zhu, B.A. Poole, D.R. Cahela, B.J. Tatarchuk, "New structures of thin air cathodes for zinc–air batteries," Journal of Applied Electrochemistry, vol.33, 2003, pp.29-36.
[19]E. Brillas, F. Alcaide, P. L. Cabot, "A Small-Scale Flow Alkaline Fuel Cell For On-Site Production of Hydrogen Peroxide," Electrochimica Acta, vol.48, 2002, pp.331-340.
[20]X. G. Zhang, "Fibrous zinc anodes for high power batteries," Journal of Power Sources, vol.163, 2006, pp.591-597.
[21]J. R. Goldstein, I. Gektin, B. Koretz, Electric FuelTM Zinc-Air Battery Regeneration Technology, in The 1995 Annual Meeting of the Applied Electrochemistry Division of the German Chemical Society, 1995. McBreen, E. Gannon, J Power Sources, vol.15, 1985, pp.169.
[22]W. Tahil, The zinc air battery and zinc economy: a virtuous cycle, meridian international research, 2007, pp.7-8.
[23]E. B. Yeager, J. Kuta, Techniques for the Study of Electrode Processes. in Physical Chemistry, New York, 1970, pp.346.
[24]W. Glenn, H. W. Coleman, Experimentation and Uncertainty Analysis for Engineers, Wiley, 1995, pp.40-74.
[25]張衛東等人,普通物理實驗中不確定度的討論,渤海大學學報(自然科學版), 2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top