跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 02:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文隆
研究生(外文):Wen-Lung Huang
論文名稱:具有弦波電流注入與雙向功率流動控制之電梯用三相交流-直流轉換器研製
論文名稱(外文):Implementation of a Sinusoidal Current Injected Three-phase AC-DC Converter with Bi-direction Power Flow Control for an Elevator Traction System.
指導教授:黃明熙
指導教授(外文):Ming-Shi Huang
口試委員:歐勝源劉添華
口試委員(外文):Sheng-Yuan WoTian-Hua Liou
口試日期:2009-07-20
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:數位功率控制能量回生三相功率因數修正
外文關鍵詞:Digital power controlEnergy regenerationThree-phase power factor control
相關次數:
  • 被引用被引用:2
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是研製用於電梯之具有雙方向功率流動之三相交流-直流轉換器,除可提供電梯於減速時將動能轉換為電能送回供電端外,尚可確保用電之功率因素接近1以符合國際標準與法規之需求。本文所提之控制策略是以電流及電壓雙廻路達到使三相電流波形為正弦,功率因素近似1,直流鏈電壓為可控之穩定直流之目標。用同步框向量控制建構電流與電壓廻路,以提供控良好之電流命令追蹤特性及負載擾動之直流電壓控制特性,另外提出並聯式三相交流-直流轉換器之控制策略作為能量回生用,可有效降低裝置容量以因應不同之應用需求。
系統是以Renesas SH-7137作為控制核心來實現數位功率控制。為提高軟體之執行效率,所有控制策略將以組合語言撰寫。最後將研製之轉換器於電梯塔進行測試,以驗證所提控制策略之有效性。
The main purpose of this thesis focuses on implementation of a three-phase AC-DC converter with bi-directional power flow control for elevator’s traction system. The converter not only provides the power regeneration to grid when elevator breaking, but also ensures the power factor is near 1 to meet the international standards and regulations. The control strategy of this thesis is based on cascade control of current and voltage loop to force three-phase currents as sinusoidal, power factor near 1, and stable DC-link voltage. Good current command tracking and better load regulation of DC-link voltage are yielded using synchronous frame vector control. Moreover, a paralleled three-phase AC-DC converter for energy regeneration is developed to reduce power capacity of the converter and fulfill the requirements for different applications.
All the control schemes are full-digitally implemented using a RISC-based MCU - Renesas SH 7137. To achieve the purpose for increasing the software execution efficiency, the proposed control strategies are all coded by assembly language. Finally, the converter was fully tested on elevator tower to show the effectiveness of proposed control scheme.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1研究動機及目的 1
1.2研究方法 4
1.3論文內容概述 6
第二章 具雙方向功率流動之交流-直流轉換器工作原理 7
2.1前言 7
2.2功率因素的定義 7
2.3理想三相交流-直流轉換器數學模式 11
2.3.1 電感及電容動態方程式之推導 12
2.3.2 三相瞬時功率推導 14
2.3.3 同步旋轉座標系統分析 16
2.4能量回生三相直流-交流轉換器之數學模式 17
2.5正弦脈寬調變之過調變區 19
2.6三相交流-直流轉換器四象限操作 21
第三章 三相交流-直流轉換器系統建構 23
3.1前言 23
3.2電路硬體設計 23
3.2.1 系統規格 23
3.2.2 輸入濾波電感值設計 24
3.3微處理器SH7137 29
3.3.1 微處理器的選用原則 29
3.3.2 RENESAS SH7137 RISC CPU簡介 30
3.4外加周邊電路之設計 32
3.4.1 類比命令及數位輸入輸出介面 33
3.4.2 三相電流檢知及開關元件硬體保護介面 35
3.4.3 磁隔離零交越偵測電路 36
3.4.4 串列同步通訊介面與DAC 36
3.5系統軟體規劃與設計 37
3.5.1 系統主流程 37
3.5.2 比例積分控制器之設計 41
3.5.3 鎖相迴路的特性與運作 42
3.6系統模擬建構及結果 44
3.6.1 模擬環境建構 44
3.6.2 模擬結果 46
第四章 並聯式三相交流-直流轉換器之控制策略 49
4.1前言 49
4.2並聯式之三相交流-直流轉換器工作原理 49
4.2.1 串聯式之三相交流-直流轉換器 49
4.2.2 並聯式之三相交流-直流轉換器 49
4.3並聯式之三相交流-直流轉換器控制策略 51
4.4並聯式之三相交流-直流轉換器實驗結果 52
第五章 實驗結果與討論 55
5.1實驗系統設置 55
5.2實驗結果 57
5.3電梯塔之實機驗証 66
第六章 結論與未來展望 68
6.1結論 68
6.2未來研究方向 68
參考文獻 69
符號彙編 72
[1] A. B. Kulkarni, H. Nguyen, and E.W. Gaudet, “A comparative evaluation of fine regenerative and nonregenerative vector controlled drives for AC gearless elevators,” IEEE Conf. Ind. Appl., vol. 3, pp. 1431–1435, Oct. 2000
[2] H. Inaba, K. Hirasawa, T. Ando, M. Hombu, and M. Nakazato, “Development of a high-speed elevator controlled by current source inverter system with sinusoidal input and output,” IEEE Trans. Ind. Appl., vol. 28, no. 4, pp. 893–899, July 1992.
[3] S. Saha, T. Kosaka, N. Matsui, and V. P. Sundarsingh, “Regenerative braking in a low power lift drive system,” in Proc. IEEE PEDES, 1998, vol. 2, pp. 827–832, Dec. 1998.
[4] D.W. Chung, H.M. Ryu, Y.M. Lee, L.W. Kang, S.K. Sul, S.J. Kang, J.H. Song, J.S. Toon, K.H. Lee, and J.H. Suh, “Drive systems for high-speed gearless elevators,” IEEE Ind. Appl. Mag., vol. 7, no. 5, pp. 52–56, Sept. 2001.
[5] C. Attaianese, V. Nardi, and G. Tomasso, “A high efficiency conversion system for elevators,” IEEE Conf. ICCEP, 2007, pp. 236–242, 2007.
[6] C. Attaianese, V. Nardi, F. Parillo, and G. Tomasso, “High performances supercapacitor recovery system including power factor correction,” Elect. Power Appl, pp. 1–10, Sept. 2007.
[7] J.R. Rodriguez, J.W. Dixon, J.R. Espinoza, J. Pontt, and P. Lezana, “PWM regenerative rectifiers: state of the art,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 5–22, Feb. 2005.
[8] N. R. Zargari, S. C. Rizzo, Y. Xiao, H. Iwamoto, K. Satoh, and J. F. Donlon, “A new current-source converter using a symmetric gate-commutated thyristor (SGCT),” IEEE Trans. Ind. Electron., vol. 37, no. 3, pp. 896–903, May 2001.
[9] J.C. Wiseman and B. Wu, “Active damping control of a high-power PWM current-source rectifier for line-current THD reduction” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 758–764, June 2005.


[10] L. Tan, Y. Li, W. Xu, P. Wang, and C. Liu, “An improved control method for PWM current source rectifier with active damping function,” IEEE Int. Conf., pp. 1–6, Feb. 2009.
[11] J.R. Espinoza, G. Joos, and A. Bakhshai, “Non-linear control and stabilization of PWM current source rectifiers in the regeneration mode,” in Proc. IEEE APEC, 1997, vol. 2, pp. 902–908, Feb. 1997.
[12] M. Pande and S.B. Dewan, “Modeling and dynamic analysis of a fast response three phase PWM voltage source rectifier,’’ IEEE Canadian. Conf., vol. 2, pp. 677–680, May 1998.
[13] J. Rodriguez, J. Pontt, and N. Becker, “Regenerative drives in the megawatt range for high-performance downhill belt conveyors,” IEEE Trans. Ind. Appl, vol. 38, no. 1, pp. 03–210, Jan. 2002.
[14] J.R. Espinoza, G. Joos, M. Perez, and T.L.A. Moran, “Stability issues in three-phase PWM current voltage source rectifiers in the regeneration mode,” in Proc IEEE ISIE 2000., vol. 2, pp. 453– 468, Dec. 2000.
[15] R.Wu, S.B. Dewan, and G.R. Slemon, “A PWM AC-to-DC converter with Fixed switching frequency,” IEEE Trans. Ind. Appl., vol. 26, no. 5, pp. 880–885, Sept. 1990.
[16] T.G. Habetler, “A space vector-based rectifier,” IEEE Trans. Power Electron., vol. 8, no. 1, pp. 30–36, Jan. 1993.
[17] R-J Tu and C-L Chen, “A new three-phase space-vector-modulated power factor corrector” in Proc. IEEE APEC, 1994, vol. 2, pp. 725–730, Feb. 1994.
[18] J.W. Dixon and B.T. Ooi, “Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier” IEEE Trans. Ind. Electron., vol. 35, no. 4, pp. 508–515, Nov. 1988.
[19] A.W. Green and J.T. Boys, “Hysteresis current-forced three-phase voltage-sourced reversible rectifier ” in Proc. IEE EPA 1989, vol. 136, no. 3, pp. 113–120, May. 1989.
[20] O. Stihi and B.T. Ooi, “A single-phase controlled-current PWM rectifier ” IEEE Trans. Power Electron., vol. 3, no. 4, pp. 453–459, Oct. 1988.
[21] J.T. Boys and A.W. Green, “Current-forced single-phase reversible rectifier” in Proc. IEE EPA, 1989, vol. 136, no. 5, pp. 205– 211, Sept. 1989.

[22] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics, 2nd ed., Boston, MA: Kluwer, pp. 685–687, 2000.
[23] Renesas Technology, SH7137 Group Hardware Manual, Rev 1.0, Tokyo, September 21, 2007.
[24] Renesas Technology, SH-1/SH-2/SH-DSP Software Manual, Rev 5.0, Tokyo, June 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top