跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許家榮
研究生(外文):Chia-Jung Hsu
論文名稱:酚-腙基配位子與其錯合物研究
論文名稱(外文):Studies of Catechol-Hydrazone Ligands and Their Metal Complexes
指導教授:王文竹
指導教授(外文):Wen-Jwu Wang
學位類別:博士
校院名稱:淡江大學
系所名稱:化學學系博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:318
中文關鍵詞:釕錯合物氟離子偵測器感測器半醌自由基聯吡啶
外文關鍵詞:Rutheniumfluoride sensorsemiquinoneradicalphenolbipyridine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文合成一系列含酚-腙基的多吡啶配位子,與[RuII(bp)2Cl2]反應後,可得錯合物1、2 及3 (1 = [RuII(bp)2(hzbp-m-cat)](PF6)2、2 = [RuII(bp)2(hzbp-o-cat)](PF6)2、3 = [RuII(bp)2(hzbp-p-OH)] (PF6)2),並對其特性進行研究。

經單晶X光繞射儀鑑定,配位子L2 (L2 = hzbp-o-cat)與L3 (L3 = hzbp-p-OH)均為平面分子,利用分子間氫鍵與π-π作用力支撐,以形成晶體結構。其中,L2具有兩組分子內氫鍵,分別為O-H…N 1.733 (46) Å與O-H…O 2.267 (44) Å。L3的酚與聯吡啶在晶體堆積中相互交疊,顯示配位子有良好的施體與受體,而利於電子傳遞。在三種釕錯合物的單晶結構中,釕與聯吡啶的氮原子形成六配位八面體形狀,兒茶酚或酚未參與配位;此外,聯吡啶與配位子之間具有NH…N分子間氫鍵。釕錯合物的電子吸收光譜中,有配位子、聯吡啶的π-π*電子躍遷及MLCT吸收峰。發射光譜中,600 nm有一放射峰,此為3MLCT磷光。電化學的氧化掃描,錯合物1及2均有一組可逆的釕(II/III)氧化還原峰,另有兒茶酚至半醌及半醌至醌的氧化峰;錯合物3除了可逆的釕(II/III)氧化還原峰外,亦有酚的逐步氧化峰。還原掃描中,錯合物1、2 及3有非配位子的聯吡啶各一個電子可逆氧化還原峰,而後為配位子不可逆或準可逆的還原峰。

此系列釕錯合物對氟離子具優異辨識性,用肉眼即可辨識顏色變化。錯合物1的氟離子滴定實驗發現,除了電子吸收光譜中MLCT吸收峰有顯著的變化外,於750 nm會生成一個寬廣吸收峰,半衰期估算為46秒。經ESR光譜印證,確認為有機自由基,錯合物2與錯合物3並無此現象產生。錯合物的酸鹼滴定實驗發現,[OH-]與氟離子的作用相似,顯示溶液顏色的變化,來自錯合物的去質子化。藉由核磁共振光譜的探討得知,加入氟離子後,釕錯合物的兒茶酚或酚基首先被去質子化。加入氟離子或提高pH值,可使錯合物的兒茶酚或酚轉變為半醌或醌,使整體電子組態改變,引發顏色變化,達到偵測氟離子的效果。
A series of new ruthenium(II) complexes, 1 = [RuII(bp)2(hzbp-m-cat)](PF6)2, 2 = [RuII(bp)2(hzbp-o-cat)](PF6)2 and 3 = [RuII(bp)2(hzbp-p-OH)] (PF6)2, were synthesized. The structures were confirmed by single crystal X-ray diffraction study. Characteristics of these compounds were investigated by EA, 1-D & COSY NMR, ESI-mass, UV-vis, phosphorescence, electrochemistry, and ESR spectra. In the absorption, emission, and 1H NMR titration spectra studies revealed that these complexes can be employed as a sensor for fluoride. A distinguishable deep color change in acetonitrile solution was observed. These phenomena were also appeared upon pH value changed. Furthermore, a broad band was appeared at 750 nm in UV-vis titration spectra which revealed the free radical generated from complex 1. The existence of free radical was confirmed by ESR spectra. The HOMO, LUMO of ruthenium complexes and relative binding affinity of fluoride anion toward ligands were evaluated and rationalized with quantum chemical calculations. Finally, we proposed sensing fluoride and deprotonation mechanism to explain the experiments in detail. The protons at catechol or phenol can be removed by additional fluoride or hydroxide.
目 錄

中文摘要………………………………………………………………i
英文摘要………………………………………………………………ii

第一章 緒論

1-1 多吡啶釕錯合物…………………………………………………1
1-2 兒茶酚與其金屬錯合物…………………………………………1
1-3 離子偵測器………………………………………………………2
1-4 研究動機與設計…………………………………………………3

第二章 文獻回顧

2-1 多吡啶釕錯合物…………………………………………………5
2-2 兒茶酚與其金屬錯合物…………………………………………6
2-3 釕錯合物的離子感測器…………………………………………10
2-4 氟離子感測………………………………………………………12

第三章 實驗部分

3-1 藥品………………………………………………………………19
3-2 儀器………………………………………………………………22
3-3 物理方法…………………………………………………………25
3-4 配位子的合成……………………………………………………26
3-5 錯合物的合成……………………………………………………32

第四章 合成與結構

4-1 配位子的合成……………………………………………………40
4-2 錯合物的合成……………………………………………………41
4-3 配位子晶體結構…………………………………………………42
4-4 錯合物晶體結構…………………………………………………56

第五章 酚-腙基-聯吡啶釕錯合物的化學性質

5-1 核磁共振圖譜……………………………………………………86
5-2 質譜及紅外光譜
5-2-1 質譜……………………………………………………………104
5-2-2 紅外光譜………………………………………………………110
5-3 電子吸收光譜……………………………………………………115
5-4 發射光譜
5-4-1 發射光譜………………………………………………………119
5-4-2 發射光譜的温度效應…………………………………………125
5-5 酸鹼性質
5-5-1電子吸收光譜 …………………………………………………129
5-5-2發射光譜 ………………………………………………………139
5-6 電化學性質………………………………………………………142
5-7 理論計算…………………………………………………………154

第六章 酚-腙基-聯吡啶釕錯合物的氟離子感測

6-1 離子滴定的電子吸收光譜………………………………………165
6-2 偵測檢量線………………………………………………………190
6-3 離子滴定的發射光譜……………………………………………196
6-4 生成常數…………………………………………………………198
6-5 離子滴定的核磁共振圖譜………………………………………236
6-6 電化學……………………………………………………………253
6-7 理論計算…………………………………………………………261
6-8 反應機制…………………………………………………………264

第七章 結論 …………………………………………………………270
參考文獻 ……………………………………………………………271
附錄 …………………………………………………………………281

Figure 1.2.1 Concept for anion sensor design................................................................ 2
Figure 2.1.1 [Ru(bp)3]2+ important properties in deaerated acetonitrile solution at 298 K. The potential values are referred to SCE................................................... 6
Figure 2.2.1 o-phenylene relative ligands coordinated to ruthenium bis-(bipyridine) system........................................................................................................ 7
Figure 2.2.2 Polynuclear complexes have semiquinonoid structures............................ 7
Figure 2.2.3 Structure of [RuII(phen-dione)(tpy)Cl]……………….…………………. 8
Figure 2.2.4 Structure of [RuII(phen-dione)(bp)2], 1,10-phenanthroline-5,6-dione coordinated to ruthenium using 1,10-phenanthroline part…………….… 8
Figure 2.2.5 Structure of [RuII(phen-dione)(bp)2](PF6) & [RuII(sq-py)(bp)2](PF6), 1,10-phenanthroline-5,6-dione coordinated to ruthenium using semiquinone part………………………………………………………… 9
Figure 2.2.6 Triazole relative ligand coordinated to ruthenium bis-(bipyridine) system………………………………………………………….………... 9
Figure 2.3.2 Ruthenium complexes had amine subtitled group for anion sensing…………………………………………………………….…….. 10
Figure 2.3.3 Cryptand type ruthenium complexes for anion sensing………………… 11
Figure 2.3.4 Ruthenium complexes had calix[4]arene subtitled group for anion sensing…………………………………………………………….…….. 12
Figure 2.4.1 Ruthenium complex had quinoxalinebis(sulfonamide) functionalized receptors for anion sensing……………………………………………… 13
Figure 2.4.2 Ruthenium complexes had singe quinoxalinebis(sulfonamide) functionalized receptors for anion sensing…………………...…………. 13
Figure 2.4.3 Ruthenium complex had cyclohexadiamine functionalized receptors for anion sensing……………………………………………………………. 14
Figure 2.4.4 Ruthenium complex had quinoxalinebis(sulfonamide) functionalized receptors for anion sensing……………………………………………… 14

Figure 2.4.5 Ruthenium complex had urea functionalized receptors for anion sensing…………………………………………………………..……... 15
Figure 2.4.6 Ruthenium complex had bis-imidazole functionalized receptors for anion sensing…………………………………………………………..………. 16
Figure 2.4.7 Ruthenium complexes had hydrazone functionalized receptors for anion sensing………………………………………………………..…………. 16
Figure 2.4.8 Ruthenium complexes had bis-hydrazone functionalized receptors for anion sensing………………………………………………..….……….. 17
Figure 2.4.9 Ruthenium complex had hydrazone & naphthalene groups for anion sensing……………………………………………………...………….... 17
Figure 2.4.10 Ruthenium complexes had phenol or catechol group for anion sensing………………………………………………...……………..….. 18
Figure 4.3.1 Molecular structure of hzbp-o-cat (L2). Ellipsoids are drawn at the 50% probability level…………………………………………………………. 42
Figure 4.3.2 Intra-molecular and inter-molecular hydrogen bonds (yellow) of L2…... 43
Figure 4.3.3 Crystal packing diagram of L2 in parallel and perpendicular view. Hydrogen atoms are omitted for clarity…………………………………. 43
Figure 4.3.4 Crystal packing diagram of L2 showing the intra-molecular and inter-molecular hydrogen bonds (yellow)………………………………. 44
Figure 4.3.5 Molecular structure of hzbp-p-OH (L3). Ellipsoids are drawn at the 50% probability level, solvents are omitted for clarity……………….………. 45
Figure 4.3.6 Intra-molecular and inter-molecular hydrogen bonds (yellow) of L3...… 45
Figure 4.3.7 Crystal packing diagram of L3 in parallel and perpendicular view.......... 46
Figure 4.3.8 Crystal packing diagram of L3 showing the intra-molecular and inter- molecular hydrogen bonds (yellow)……..…….…………………...…… 47
Figure 4.3.9 C−H…pi interaction between dichloromethane and phenol group are 2.93 Å in L3……………………………………………………………...…… 47
Figure 4.4.1 Molecular structure of [RuII(bp)2(hzbp-m-cat)](PF6)2 (1). Ellipsoids are drawn at the 50% probability level. Hydrogen atoms, anions and solvents are omitted for clarity………………………………………………….. 56
Figure 4.4.2 Coordination sphere of complex 1, ellipsoids drawn at the 50% probability level……………………………………………………………………. 57
Figure 4.4.3 Intra-molecular and inter-molecular hydrogen bonds (yellow) of complex 1………………………………………………………………………... 58
Figure 4.4.4 Crystal packing diagram of L1 in complex 1, parallel and perpendicular view. Hydrogen atoms are omitted for clarity…………………………. 58
Figure 4.4.5 Crystal packing diagram of complex 1 showing the intra-molecular and inter-molecular hydrogen bonds (yellow)……………………………... 59
Figure 4.4.6 Molecular structure of [RuII(bp)2(hzbp-o-cat)](PF6)2 (2). Ellipsoids are drawn at the 50% probability level. Hydrogen atoms, anions and solvents are omitted for clarity………………………………………………..… 60
Figure 4.4.7 Coordination sphere of complex 2, ellipsoids drawn at the 50% probability level……………………………………………………………………. 61
Figure 4.4.8 Intra-molecular and inter-molecular hydrogen bonds (yellow) of complex 2……………………………………………………………………...…62
Figure 4.4.9 Crystal packing diagram of L2 in complex 2, parallel and perpendicular view. Hydrogen atoms are omitted for clarity……………………….... 62
Figure 4.4.10 Crystal packing diagram of complex 2 showing the intra-molecular and inter-molecular hydrogen bonds (yellow)…………………………….. 63
Figure 4.4.11 Molecular structure of [RuII(bp)2(hzbp-p-OH)](PF6)2 (3). Ellipsoids are drawn at the 50% probability level. Hydrogen atoms, anions and solvents are omitted for clarity………………………………………………….. 64
Figure 4.4.12 Coordination sphere of complex 3, ellipsoids drawn at the 50% probability level…………………………………………………......… 65
Figure 4.4.13 Intra-molecular and inter-molecular hydrogen bonds (yellow) of complex 3……………………………………………………………………….. 66
Figure 4.4.14 Crystal packing diagram of L3 in complex 3, parallel and perpendicular view. Hydrogen atoms are omitted for clarity………………………….66
Figure 5.1.1 1H-NMR spectrum (300 MHz) of L1 in CD3CN, from 9.0 ppm to 6.5 ppm…………………………………………………………………….. ...86
Figure 5.1.2 1H-NMR (300 MHz) spectrum of L1 in d6-DMSO, from 11.0 ppm to 6.0 ppm…………………………………………………………………..… 87
Figure 5.1.3 1H-NMR spectrum (300 MHz) of L2 in CD3CN, from 9.0 ppm to 6.5 ppm……………………………………………………………………..88
Figure 5.1.4 1H-NMR spectrum (300 MHz) of L2 in d6-DMSO, from 9.0 ppm to 6.5 ppm…………………………………………………………………….. 88
Figure 5.1.5 1H-NMR spectrum (300 MHz) of L3 in CD3CN, from 9.0 ppm to 6.5 ppm…………………………………………………………………..… 89
Figure 5.1.6 1H-NMR spectrum (300 MHz) of L3 in d6-DMSO, from 11.0 ppm to 6.0 ppm…………………………………………………………………..…90
Figure 5.1.7 1H-NMR spectrum (600 MHz) of complex 1 in CD3CN, from 8.7 ppm to 7.1 ppm. A to D were indicated four pyridine rings. (identity code: 961206_3)…………………………………………………………...… 94
Figure 5.1.8 1H-NMR spectrum (600 MHz) of complex 1 in CD3CN, from 7.1 ppm to 6.0 ppm. A to D were indicated four pyridine rings. (identity code: 961206_3)……………………………………………………………... 94
Figure 5.1.9 1H-NMR spectrum (600 MHz) of complex 2 in CD3CN, from 9.1 ppm to 7.0 ppm. A to D were indicated four pyridine rings. (identity code: 961206_1)……………………………………………………………... 95
Figure 5.1.10 1H-NMR spectrum (600 MHz) of complex 2 in CD3CN, from 7.0 ppm to 6.5 ppm. A to D were indicated four pyridine rings. (identity code: 961206_1)……………………………………………………………... 95
Figure 5.1.11 1H-NMR spectrum (600 MHz) of complex 3 in CD3CN, from 8.7 ppm to 7.1 ppm. A to D were indicated four pyridine rings. (identity code: 961206_5)……………………………………………………………... 96
Figure 5.1.12 1H-NMR spectrum (600 MHz) of complex 3 in CD3CN, from 7.1 ppm to 6.0 ppm. A to D were indicated four pyridine rings. (identity code: 961206_5)……………………………………………………………... 96
Figure 5.1.13 1H-1H COSY NMR spectrum (600 MHz) of complex 1 in CD3CN. A to D was indicated four pyridine rings. (identity code: 961206_4)……….... 97
Figure 5.1.14 1H-1H COSY NMR spectrum (600 MHz) of complex 1 in CD3CN. A to D was indicated four pyridine rings. (identity code: 961206_4)……….... 98
Figure 5.1.15 1H-1H COSY NMR spectrum (600 MHz) of complex 2 in CD3CN. A to D was indicated four pyridine rings. (identity code: 961206_2)……….... 99
Figure 5.1.16 1H-1H COSY NMR spectrum (600 MHz) of complex 2 in CD3CN. A to D was indicated four pyridine rings. (identity code: 961206_2)……….... 100
Figure 5.1.17 1H-1H COSY NMR spectrum (600 MHz) of complex 3 in CD3CN. A to D was indicated four pyridine rings. (identity code: 961206_6)……….... 101
Figure 5.1.18 1H-1H COSY NMR spectrum (600 MHz) of complex 3 in CD3CN. A to D was indicated four pyridine rings. (identity code: 961206_6)……….... 102
Figure 5.1.19 (a) 1H-NMR (600 MHz) and 1D-TOCSY spectra (600 MHz) obtained by selective excitation (arrow) of the signal at 7.01 ppm for complex 1 (CD3CN). All experiments were performed with different mixing time from (b) 10 ms, (c) 60 ms, (d) 120 ms and (e) 200 ms. (identity code: 961206_3, 961206_202 to 961206_205) ………………....................... 103
Figure 5.2.1 Electrospray mass spectrum of complex 1……………………………..104
Figure 5.2.2 Electrospray mass spectra of complex 1 at m/z = 719. The experimental (top) and calculated (bottom) isotopic distributions of the molecular ion are shown in the expanded region…………………………………………. 105
Figure 5.2.3 Electrospray mass spectrum of complex 2…………………………….. 106
Figure 5.2.4 Electrospray mass spectra of complex 2 at m/z = 719. The experimental (top) and calculated (bottom) isotopic distributions of the molecular ion are shown in the expanded region………………………………………….107
Figure 5.2.5 Electrospray mass spectrum of complex 3…………………………….. 108
Figure 5.2.6 Electrospray mass spectra of complex 3 at m/z = 702. The experimental (top) and calculated (bottom) isotopic distributions of the molecular ion are shown in the expanded region…………………………………………. 109
Figure 5.2.7 FT-IR spectra of L1 (L1 = hzbp-m-cat), L2 (L2 = hzbp-o-cat) and L3 (L3 = hzbp-p-OH). Expand region from 4000 cm-1 to 2000 cm-1.……………………………………………………………………. 110

Figure 5.2.8 FT-IR spectra of L1 , L2 and L3. Expand region from 2000 cm-1 to 400 cm-1…………………………………………………………………….. 111
Figure 5.2.9 FT-IR spectra of complex 1 (1 = [RuII(bp)2(hzbp-m-cat)](PF6)2), complex 2 (2 = [RuII(bp)2(hzbp-o-cat)](PF6)2), and complex 3 (3 = [RuII(bp)2(hzbp-p-OH)](PF6)2). Expand region from 4000 cm-1 to 2000 cm-1…..………………………………………………………………… 112
Figure 5.2.10 FT-IR spectra of complex 1, complex 2, and complex 3. Expand region from 2000 cm-1 to 400 cm-1……………………………………………. 112
Figure 5.2.11 Compared FT-IR spectra of L1 and complex 1, from 4000 cm-1 to 400 cm-1…………………………………………………………………….. 113
Figure 5.2.12 Compared FT-IR spectra of L2 and complex 2, from 4000 cm-1 to 400 cm-1…………………………………………………………………….. 113
Figure 5.2.13 Compared FT-IR spectra of L3 and complex 3, from 4000 cm-1 to 400 cm-1…………………………………………………………………….. 114
Figure 5.3.1 UV-vis spectra of hzbp-m-cat (L1) 6.80 x 10-5 M, hzbp-o-cat (L2) 4.71 x 10-5 M and hzbp-p-OH (L3) 4.08 x 10-5 M in CH3CN……………........ 115
Figure 5.3.2 UV-vis spectra of [RuII(hzbp-m-cat)(bp)2](PF6)2 (1) 1.98 x 10-5 M, [RuII(hzbp-o-cat)(bp)2](PF6)2 (2) 2.72 x 10-5 M, [RuII(hzbp-p-OH)(bp)2](PF6)2 (3) 2.72 x 10-5 M and [RuII(bp)3](PF6)2 9.30 x 10-5 M in CH3CN in CH3CN………………………………………...… 117
Figure 5.3.3 Normalized absorption intensity of UV-vis spectra of complex 1 4.55 x 10-5 M, complex 2 5.15 x 10-5 M, complex 3 3.52 x 10-5 M and [RuII(bp)3](PF6)2 9.30 x 10-5 M in CH3CN………………….…………………………… 117
Figure 5.4.1 UV-vis (black) & luminescence (red) spectra of L1 in degas & dry CH3CN 9.80 x 10-6 M. ( * was artificial peak )………………………………… 119
Figure 5.4.2 UV-vis (black) & luminescence (red) spectra of L2 in degas & dry CH3CN 1.29 x 10-5 M. ( * was artificial peak ) ………………………………... 120
Figure 5.4.3 UV-vis (black) & luminescence (red) spectra of L3 in degas & dry CH3CN 9.31 x 10-6 M. ( * was artificial peak ) ……………………………..…. 120
Figure 5.4.4 UV-vis (black) & luminescence (blue & red) spectra of complex l in degas & dry CH3CN 3.17 x 10-5 M.…………………………………………. 122
Figure 5.4.5 UV-vis (black) & luminescence (blue & red) spectra of complex 2 in degas & dry CH3CN 3.56 x 10-5 M..……………………………………….… 122
Figure 5.4.6 UV-vis (black) & luminescence (blue & red) spectra of complex 3 in degas & dry CH3CN 2.72 x 10-5 M. ( * was artificial peak ) .……………..… 123
Figure 5.4.7 Phosphorescence spectra of complex 1 in degas & dry MeOH 5.33 x 10-5 M, excited at 467 nm………………………………………………...… 125
Figure 5.4.8 Phosphorescence spectra complex 2 at different temperature in degas & dry EtOH : MeOH 1 : 4 glassy soln. 1.42 x 10-5 M, excited at 467 nm……………………………………………………………………… 126
Figure 5.4.9 Phosphorescence spectra complex 2 at different temperature in degas & dry EtOH : MeOH 1 : 4 glassy soln. 1.42 x 10-5 M, excited at 467 nm. ( * was Raman scattering )……………………………………………...… 127
Figure 5.4.10 Phosphorescence spectra complex 3 at different temperature in degas & dry EtOH : MeOH 1 : 4 glassy soln. 2.72 x 10-5 M, excited at 460 nm. ………………………………………………………………….… 127
Figure 5.5.1 Selective UV-vis spectra for complex 1 4.55 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAOH : 1 from 0.00 to 0.65. Inset: absorption intensity changes at 750 nm.…..…………………………... 129
Figure 5.5.2 Selective UV-vis spectra for complex 1 4.55 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAOH : 1 from 0.82 to 1.14, with isosbestic point at 384 nm. Inset: absorption intensity changes at 750 nm…………………….……………………………………………….. 130
Figure 5.5.3 Selective UV-vis spectra for complex 1 4.55 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAOH : 1 from 1.31 to 2.45. Inset: absorption intensity changes at 750 nm..…………………………..….. 130
Figure 5.5.4 TBAOH titration data showing absorbance changes at 800 nm for complex 1……………………………………….……………………………….. 131

Figure 5.5.5 Selective UV-vis spectra for complex 2 2.47 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAOH : 2 from 0.00 to 0.55, with isosbestic point at 355 nm、420 nm and 455nm.……………………... 132
Figure 5.5.6 Selective UV-vis spectra for complex 2 2.47 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAOH : 2 from 0.65 to 1.11, with isosbestic point at 368 nm.……………………...……………………... 133
Figure 5.5.7 Selective UV-vis spectra for complex 2 2.47 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAOH : 2 from 1.20 to 2.49... 133
Figure 5.5.8 TBAOH titration data showing delta absorbance changes at selective wavelength for complex 2……………….…………………………….. 134
Figure 5.5.9 Selective UV-vis spectra for complex 3 1.69 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAOH : 3 from 0 to 2.86, with isosbestic point at 363 nm………...………………………………….... 134
Figure 5.5.10 TBAOH titration data showing delta absorbance changes at selective wavelength for complex 3…………………….……………………….. 135
Figure 5.5.11 Phosphorescence spectra for complex 1 4.55 x 10-5 M in acetonitrile solutions at 25℃, varied concentration of TBAOH from 0 to 5.96 x 10-5 M. ( * was Raman scattering ) ……………………………………………... 140
Figure 5.5.12 Phosphorescence spectra for complex 1 4.55 x 10-5 M in acetonitrile solutions at 25℃, varied concentration of TBAOH from 5.96 x 10-5 to 11.16 x 10-5 M. ( * was Raman scattering ) ………………..…………. 140
Figure 5.5.13 Titration data showing phosphorescence intensity changes at 610 nm for complex 1.……………………………………………………………... 141
Figure 5.6.1 Cyclic voltammograms of hzbp-m-cat (L1) 1.19 x 10-4 M (red), hzbp-o-cat (L2) 7.13 x 10-4 M (blue), hzbp-p-OH (L3) 7.04 x 10-4 M (black) in 0.1 M TBAPF6 or TBAP / CH3CN under Ar atmosphere, cathodic scan; scan rate 100 mV/s, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod…..................................................................... 142


Figure 5.6.2 Cyclic voltammogram (red) & differential pulse voltammogram (black) of L1 1.19 x 10-4 M in 0.1 M TBAP / CH3CN under N2 atmosphere, anodic scan; scan rate 100 mV/s, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod……….…………..…….. 143
Figure 5.6.3 Cyclic voltammograms of L1 before (black) and after (red) added 1 drop of HClO4 70 % in 0.1 M TBAP / CH3CN under N2 atmosphere, cathodic scan; working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod......................................................................... 144
Figure 5.6.4 Cyclic voltammogram (red) & differential pulse voltammogram (black) of L2 7.13 x 10-4 M in 0.1 M TBAP / CH3CN under N2 atmosphere, anodic scan; scan rate 100 mV/s, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod..…................................... 145
Figure 5.6.5 Cyclic voltammogram (red) & differential pulse voltammogram (black) of L3 7.04 x 10-4 M in 0.1 M TBAP / CH3CN under N2 atmosphere, anodic scan; scan rate 100 mV/s, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod.….................................... 145
Figure 5.6.6 Cyclic voltammograms of RuII[(hzbp-m-cat)(bp)2](PF6)2 (1) 9.5 x 10-4 M (red), RuII[(hzbp-o-cat)(bp)2](PF6)2 (2) 9.3 x 10-4 M (blue), RuII[(hzbp-p-OH)(bp)2](PF6)2 (3) 7.4 x 10-4 M (black) in 0.1 M TBAPF6 or TBAP / CH3CN under Ar atmosphere, cathodic scan; scan rate 100 mV/s, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod.…................................................................................. 147
Figure 5.6.7 Cyclic voltammograms of complex 1 in 9.5 x 10-4 M (red), complex 2 in 9.3 x 10-4 M (blue), complex 3 in 7.4 x 10-4 M (black) in 0.1 M TBAPF6 or TBAP / CH3CN under Ar atmosphere, anodic scan; scan rate 100 mV/s, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod.…................................................................................. 149



Figure 5.6.8 Cyclic voltammogram (red) & differential pulse voltammogram (black) of complex 2 9.3 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, anodic scan; scan rate 100 mV/s, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod......................... 150
Figure 5.6.9 Cyclic voltammogram (red) & differential pulse voltammogram (black) of complex 3 7.40 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, anodic scan; scan rate 100 mV/s, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod.….................... 151
Figure 5.7.1 Geometry optimized structure of L1, which obtained by MOPAC MM3/PM3 parameters. Final heat of formation was 156.164 KJ, point group C1, dihedral angle between two pyridines was 34°….................. 154
Figure 5.7.2 Geometry optimized structure of L2, which obtained by MOPAC MM3/PM3 parameters. Final heat of formation was 150.395 KJ, point group C1, dihedral angle between two pyridines was 34°….................. 154
Figure 5.7.3 Geometry optimized structure of L3, which obtained by MOPAC MM3/PM3 parameters. Final heat of formation was 338.282 KJ, point group C1, dihedral angle between two pyridines was 32°.….................155
Figure 5.7.4 Energy diagrams of (a) L1 (b) L2 and (c) L3 obtained by MOPAC ZINDO parameter…............................................................................................. 155
Figure 5.7.5 HOMO-1, HOMO (upper) and LUMO, LUMO+1 (lower) of (a) L1 (b) L2 and (c) L3 after geometry optimized by MOPAC MM3/ PM3 parameters.….......................................................................................... 156
Figure 5.7.6 UV-vis spectra of (a) L1 (b) L2 and (c) L3 calculated by CaChe 4.4 ZINDO parameters.…............................................................................. 157
Figure 5.7.7 UV-vis spectra of L1 by experiment (black) compared with calculation result (red). The calculation was performed by MOPAC ZINDO parameters.….......................................................................................... 158
Figure 5.7.8 UV-vis spectra of L2 by experiment (black) compared with calculation result (red). The calculation was performed by MOPAC ZINDO parameters…........................................................................................... 158
Figure 5.7.9 UV-vis spectra of L3 by experiment (black) compared with calculation result (red). The calculation was performed by MOPAC ZINDO parameters…........................................................................................... 159
Figure 5.7.10 Energy diagrams of (a) complex 1 (b) complex 2 and (c) complex 3 at solid state. The calculations were performed using the Gaussian 03 program suite. The DFT were employed the B3LYP function and the standard LANL2DZ, basis set along with the corresponding pseudopotential for ruthenium, 6-31G(d) basis set for other elements... 163
Figure 5.7.11 HOMO (upper), LUMO (lower) of (a) complex 1 (b) complex 2 and (c) complex 3 at solid state. The calculations were performed using the Gaussian 03 program suite. The DFT were employed the B3LYP function and the standard LANL2DZ, basis set along with the corresponding pseudopotential for ruthenium, 6-31G(d) basis set for other elements... 164
Figure 6.1.1 Selective UV-vis spectra of L1 6.80 x 10-5 M in acetonitrile solutions at 25℃, varied concentration of TBAF from 0 to 2.53 x 10-5 M……….... 166
Figure 6.1.2 Selective UV-vis spectra of L1 6.80 x 10-5 M in acetonitrile solutions at 25℃, varied concentration of TBAF from 3.38 x 10-5 to 10.12 x 10-5 M. …………………………………………………………………....... 166
Figure 6.1.3 Selective UV-vis spectra of L1 6.80 x 10-5 M in acetonitrile solutions at 25℃, varied concentration of TBAF from 11.79 x 10-5 to 26.02 x 10-5 M……………………………………………………………………..... 167
Figure 6.1.4 TBAF titration data showing delta absorbance changes at selective wavelength for L1……………………………………………………... 167
Figure 6.1.5 Selective UV-vis spectra of L2 (L2 = hzbp-o-cat) 4.71 x 10-5 M in acetonitrile solutions at 25℃, varied concentration of TBAF from 0 to 4.72 x 10-5 M…............................................................................................... 168
Figure 6.1.6 Selective UV-vis spectra of L2 4.71 x 10-5 M in acetonitrile solutions at 25℃, varied concentration of TBAF from 4.72 x 10-5 to 16.50 x 10-5 M…......................................................................................................... 169

Figure 6.1.7 TBAF titration data showing delta absorbance changes at selective wavelength for L2…............................................................................... 169
Figure 6.1.8 Selective UV-vis spectra of L3 (L3 = hzbp-p-OH) 4.08 x 10-5 M in acetonitrile solutions at 25℃, varied concentration of TBAF from 0 to 28.24 x 10-5 M…..................................................................................... 170
Figure 6.1.9 TBAF titration data showing delta absorbance changes at selective wavelength for L3…............................................................................... 171
Figure 6.1.10 Selective UV-vis spectra of complex 1 (1 = [RuII(hzbp-m-cat)(bp)2](PF6)2) 3.17 x 10-5 M in dry & degas ( N2 ) acetonitrile solutions at 25℃ under argon, varied concentration of TBAF from 0 to 1.72 x 10-4 M. Inset: absorption intensity changes at 750 nm……………………………...... 173
Figure 6.1.11 Selective UV-vis spectra of complex 1 3.17 x 10-5 M in dry & degas ( N2 ) acetonitrile solutions at 25℃ under argon, varied mole ratio of TBAF : 1 from 2.41 to 3.45. Inset: absorption intensity changes at 750 nm…...... 174
Figure 6.1.12 Selective UV-vis spectra of complex 1 3.17 x 10-5 M in dry & degas ( N2 ) acetonitrile solutions at 25℃ under argon, varied mole ratio of TBAF : 1 from 3.79 to 4.48. Inset: absorption intensity changes at 750 nm…...... 174
Figure 6.1.13 UV-vis spectra of complex 1 3.17 x 10-5 M in dry & degas ( N2 ) acetonitrile solutions at 25℃ under argon, after added 4.48 eq. of TBAF (black), than stood for 5 min (red) , finally passed oxygen for 1 min (blue) ….................................................................................................. 175
Figure 6.1.14 TBAF titration data showing delta absorbance changes at selective wavelength for complex 1 under argon................................................ 175
Figure 6.1.15 UV-vis spectra for 1 in 1.98 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 1 from 0.00 to 1.34………………..…….. 177
Figure 6.1.16 UV-vis spectra for 1 in 1.98 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 1 from 1.46 to 2.56.................................... 177
Figure 6.1.17 UV-vis spectra for 1 in 1.98 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 1 from 2.68 to 3.66.................................... 178

Figure 6.1.18 UV-vis spectra for 1 in 1.98 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 1 from 2.68 to 3.66.…............................... 178
Figure 6.1.19 TBAF titration data showing delta absorbance changes at selective wavelength for complex 1 under air.……………….………….............. 179
Figure 6.1.20 (a) ESR spectra for complex 1 4.36 x 10-5 M in CH2Cl2 solutions at 25℃, and (b) after added excess mole ratio of TBAF, the g value was 2.01.... 180
Figure 6.1.21 TBAF titration data showing delta absorbance changed at 800 nm for complex 1 under argon (black),which compared to complex 1 under air (blue)……………................................................................................... 181
Figure 6.1.22 UV-vis spectra for 2 in 3.27 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 2 from 0.00 to 0.79.................................... 182
Figure 6.1.23 UV-vis spectra for 2 in 3.27 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 2 from 0.99 to 5.20….............................. 182
Figure 6.1.24 TBAF titration data showing delta absorbance changes at selective wavelength for complex 2……………………...…................................ 183
Figure 6.1.25 UV-vis spectra for 3 in 2.72 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 3 from 0.00 to 0.95.…............................... 184
Figure 6.1.26 UV-vis spectra for 3 in 2.72 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 3 from 0.95 to 1.90.…............................... 184
Figure 6.1.27 UV-vis spectra for 3 in 2.72 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 3 from 2.14 to 2.85…................................ 185
Figure 6.1.28 UV-vis spectra for 3 in 2.72 x 10-5 M in acetonitrile solutions at 25℃, varied mole ratio of TBAF : 3 from 3.09 to 7.44……............................ 185
Figure 6.1.29 TBAF titration data showing delta absorbance changes at 240 nm and 500 nm for complex 3…………………………………................................ 186
Figure 6.1.30 TBAF titration data showing delta absorbance changes at 330 nm and 400 nm for complex 3.…............................................................................... 186
Figure 6.2.1 TBAF titration data showing absorbance changes at selective wavelength for complex 1 3.17 x 10-5 M………..………………………………….. 190

Figure 6.2.2 Calibration curve for complex 1 3.17 x 10-5 M, varied concentration of TBAF from 0.0 μM to 24.1 μM………..…...................................... 191
Figure 6.2.3 Calibration curve for complex 1 in 3.17 x 10-5 M varied concentration of TBAF from 0.0 μM to 19.3 μM………..………………………...... 191
Figure 6.2.4 TBAF titration data showing absorbance changes at selective wavelength for complex 2 3.26 x 10-5 M………..………………………………..... 192
Figure 6.2.5 Calibration curve for complex 2 in 3.26 x 10-5 M varied concentration of TBAF from 0.0 μM to 25.8 μM………………………………….... 193
Figure 6.2.6 Calibration curve for complex 2 in 3.26 x 10-5 M varied concentration of TBAF from 0.0 μM to 25.8 μM………..………………………...... 193
Figure 6.2.7 TBAF titration data showing absorbance changes at selective wavelength for complex 3 2.71 x 10-5 M………..….................................................. 194
Figure 6.2.8 Calibration curve for complex 3 in 2.71 x 10-5 M varied concentration of TBAF from 25.8 μM to 58.0 μM………..….................................... 195
Figure 6.2.9 Calibration curve for complex 3 in 2.71 x 10-5 M varied concentration of TBAF from 25.8 μM to 58.0 μM………..….................................... 195
Figure 6.3.1 Phosphorescence spectra (excited at 450 nm) of complex 1 before (black) and after (red) a added excess of TBAF..................................................196
Figure 6.3.2 Excited spectra (emission at 610 nm) of complex 1 before (black) and after (red) a added excess of TBAF. ...............................................................197
Figure 6.4.1 Selected 800 nm for calculated dissociation constant of complex 1, pKD = 3.76. Condition: UV-vis Spectrum of complex 1 4.55 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 200
Figure 6.4.2 Selected 500 nm for calculated dissociation constant of complex 2, pKD = 4.68. Condition: UV-vis Spectrum of complex 2 2.47 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 201
Figure 6.4.3 Selected 400 nm for calculated dissociation constant of complex 2, pKD = 4.50. Condition: UV-vis Spectrum of complex 2 2.47 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 201

Figure 6.4.4 Selected 320 nm for calculated dissociation constant of complex 2, pKD = 4.47. Condition: UV-vis Spectrum of complex 2 2.47 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 202
Figure 6.4.5 Selected 545 nm for calculated dissociation constant of complex 3, pKD1 = 4.99. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 203
Figure 6.4.6 Selected 500 nm for calculated dissociation constant of complex 3, pKD1 = 4.98. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 204
Figure 6.4.7 Selected 400 nm for calculated dissociation constant of complex 3, pKD1 = 4.96. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 204
Figure 6.4.8 Selected 245 nm for calculated dissociation constant of complex 3, pKD1 = 4.95. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 205
Figure 6.4.9 Selected 545 nm for calculated dissociation constant of complex 3, pKD2 = 5.09. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 205
Figure 6.4.10 Selected 500 nm for calculated dissociation constant of complex 3, pKD2 = 5.16. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 206
Figure 6.4.11 Selected 400 nm for calculated dissociation constant of complex 3, pKD2 = 5.36. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 206
Figure 6.4.12 Selected 330 nm for calculated dissociation constant of complex 3, pKD2 = 5.33. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 207
Figure 6.4.13 Selected 290 nm for calculated dissociation constant of complex 3, pKD2 = 5.20. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 207
Figure 6.4.14 Selected 245 nm for calculated dissociation constant of complex 3, pKD2 = 5.37. Condition: UV-vis Spectrum of complex 3 1.69 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAOH.......... 208
Figure 6.4.15 Selected 350 nm for calculated association constant of complex 1, pKA = 5.04. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 212
Figure 6.4.16 Selected 360 nm for calculated association constant of complex 1, pKA = 4.90. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 212
Figure 6.4.17 Selected 370 nm for calculated association constant of complex 1, pKA = 4.78. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 213
Figure 6.4.18 Selected 380 nm for calculated association constant of complex 1, pKA = 4.78. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 213
Figure 6.4.19 Selected 390 nm for calculated association constant of complex 1, pKA = 4.87. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 214
Figure 6.4.20 Selected 400 nm for calculated association constant of complex 1, pKA = 4.91. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 214
Figure 6.4.21 Selected 350 nm for calculated equilibrium constant of complex 1, pKA+pKD = 9.88. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF……. 216
Figure 6.4.22 Selected 360 nm for calculated equilibrium constant of complex 1, pKA+pKD = 9.53. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF…….. 216
Figure 6.4.23 Selected 370 nm for calculated equilibrium constant of complex 1, pKA+pKD = 9.28. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.......... 217
Figure 6.4.24 Selected 380 nm for calculated equilibrium constant of complex 1, pKA+pKD = 9.21. Condition: UV-vis Spectrum of complex 1 2.77 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.......... 217
Figure 6.4.25 Selected 400 nm for calculated association constant of complex 1, pKA = 4.64. Condition: UV-vis Spectrum of complex 1 1.98 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 218
Figure 6.4.26 Selected 350 nm for calculated association constant of complex 1, pKA = 4.88. Condition: UV-vis Spectrum of complex 1 1.98 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 219
Figure 6.4.27 Selected 500 nm for calculated association constant of complex 2, pKA = 4.32. Condition: UV-vis Spectrum of complex 2 3.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 220
Figure 6.4.28 Selected 400 nm for calculated association constant of complex 2, pKA = 4.30. Condition: UV-vis Spectrum of complex 2 3.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 221
Figure 6.4.29 Selected 320 nm for calculated association constant of complex 2, pKA = 4.14. Condition: UV-vis Spectrum of complex 2 3.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 221
Figure 6.4.30 Selected 240 nm for calculated association constant of complex 2, pKA = 4.88. Condition: UV-vis Spectrum of complex 2 3.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 222
Figure 6.4.31 Selected 500 nm for calculated dissociation constant of complex 2, pKD = 4.88. Condition: UV-vis Spectrum of complex 2 3.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 222
Figure 6.4.32 Selected 400 nm for calculated dissociation constant of complex 2, pKD = 5.14. Condition: UV-vis Spectrum of complex 2 3.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 223
Figure 6.4.33 Selected 320 nm for calculated dissociation constant of complex 2, pKD = 5.13. Condition: UV-vis Spectrum of complex 2 3.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 223
Figure 6.4.34 Selected 240 nm for calculated dissociation constant of complex 2, pKD = 5.27. Condition: UV-vis Spectrum of complex 2 3.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 224
Figure 6.4.35 Selected 320 nm for calculated association constant of complex 3, pKA1 = 4.68. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 227
Figure 6.4.36 Selected 330 nm for calculated association constant of complex 3, pKA1 = 4.68. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 227
Figure 6.4.37 Selected 340 nm for calculated association constant of complex 3, pKA1 = 4.68. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 228
Figure 6.4.38 Selected 350 nm for calculated association constant of complex 3, pKA1 = 4.70. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 228
Figure 6.4.39 Selected 360 nm for calculated association constant of complex 3, pKA1 = 4.63. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 229
Figure 6.4.40 Selected 330 nm for calculated equilibrium constant of complex 3, pKA2+pKD1 = 9.22. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF..... 229
Figure 6.4.41 Selected 400 nm for calculated equilibrium constant of complex 3, pKA2+pKD1 = 9.22. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF..... 230
Figure 6.4.42 Selected 420 nm for calculated equilibrium constant of complex 3, pKA2+pKD1 = 9.22. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF..... 230
Figure 6.4.43 Selected 440 nm for calculated equilibrium constant of complex 3, pKA2+pKD1 = 9.18. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF…. 231
Figure 6.4.44 Selected 380 nm for calculated equilibrium constant of complex 3, pKD1+pKD2 = 9.34. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF…. 231
Figure 6.4.45 Selected 400 nm for calculated equilibrium constant of complex 3, pKD1+pKD2 = 9.35. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF..... 232
Figure 6.4.46 Selected 420 nm for calculated equilibrium constant of complex 3, pKD1+pKD2 = 9.42. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF..... 232
Figure 6.4.47 Selected 500 nm for calculated equilibrium constant of complex 3, pKD1+pKD2 = 9.17. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF..... 333
Figure 6.4.48 Selected 380 nm for calculated dissociation constant of complex 3, pKD2 = 4.76. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 233
Figure 6.4.49 Selected 400 nm for calculated dissociation constant of complex 3, pKD2 = 4.92. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 234
Figure 6.4.50 Selected 420 nm for calculated dissociation constant of complex 3, pKD2 = 5.02. Condition: UV-vis Spectrum of complex 3 2.27 x 10-5 M in acetonitrile solution at 25℃, for different mole ratio of TBAF.............. 234
Figure 6.5.1 1H-NMR titration spectra for L1 1.05 x 10-2 M in DMSO solutions at 25℃, from 9.00 ppm to 6.00 ppm, varied concentration TBAF from 0 to 3.19 x 10-2 M………………………………………………………………….. 236
Figure 6.5.2 NMR titration mole ratio vs. delta chemical shift for L1 1.05 x 10-2 M in DMSO-d6 solutions at 25℃, varied concentration TBAF from 0 to 3.19 x 10-2 M………………………………………………………………….. 237



Figure 6.5.3 (a) 1H-NMR titration spectra for L2 1.96 x 10-2 M in DMSO solutions at 25℃, from 9.00 ppm to 6.00 ppm, varied concentration TBAF from 0 to 4.86 x 10-2 M. (b) The 1H-NMR titration spectra for L2 showed HF2- signal at 16.0 ppm…………………………………………………………….. 238
Figure 6.5.4 NMR titration mole ratio vs. delta chemical shift for L2 1.96 x 10-2 M in DMSO-d6 solutions at 25℃, varied concentration TBAF from 0 to 4.86 x 10-2 M………………………………………………………………….. 239
Figure 6.5.5 (a) 1H-NMR titration spectra for L3 1.03 x 10-2 M in DMSO solutions at 25℃, from 9.00 ppm to 6.00 ppm, varied concentration TBAF from 0 to 4.85 x 10-2 M. (b) The 1H-NMR titration spectra for L2 showed HF2- signal at 16.0 ppm……………………………………………………………. 240
Figure 6.5.6 NMR titration mole ratio vs. delta chemical shift for L3 1.03 x 10-2 M in DMSO-d6 solutions at 25℃, varied concentration TBAF from 0 to 4.85 x 10-2 M………………………………………………………………….. 241
Figure 6.5.7 1H-NMR titration spectra for complex 1 1.73 x 10-2 M in DMSO-d6 solutions at 25℃, from 9.10 ppm to 7.00 ppm, varied concentration TBAF from 0 to 5.36 x 10-2 M........................................................................... 243
Figure 6.5.8 1H-NMR titration spectra for complex 1 1.73 x 10-2 M in DMSO-d6 solutions at 25℃, from 7.00 ppm to 6.10 ppm, varied concentration TBAF from 0 to 5.36 x 10-2 M........................................................................... 244
Figure 6.5.9 NMR titration mole ratio vs. delta chemical shift for complex 1 1.73 x 10-2 M in DMSO-d6 solutions at 25℃, varied concentration TBAF from 0 to 5.36 x 10-2 M........................................................................................... 245
Figure 6.5.10 1H-NMR titration spectra for complex 2 1.20 x 10-2 M in CD3CN at 25℃ from 9.10 ppm to 7.00 ppm, varied concentration TBAF concentrations in acetonitrile solutions from 0 to 3.48 x 10-2 M.........................................246
Figure 6.5.11 1H-NMR titration spectra for complex 2 1.73 x 10-2 M in CD3CN solutions at 25℃, from 7.0 ppm to 6.50 ppm, varied concentration TBAF from 0 to 5.36 x 10-2 M........................................................................... 247

Figure 6.5.12 NMR titration mole ratio vs. delta chemical shift for complex 2 1.20 x 10-2 M in acetonitrile solutions at 25℃, varied concentration TBAF concentrations from 0 to 3.48 x 10-2 M................................................... 248
Figure 6.5.13 1H-NMR titration spectra for complex 3 9.46 x 10-3 M in CD3CN solutions at 25℃, from 8.7 ppm to 6.10 ppm, varied concentration TBAF from 0 to 4.73 x 10-2 M........................................................................... 250
Figure 6.5.14 NMR titration mole ratio vs. delta chemical shift for complex 3 9.46 x 10-3 M in acetonitrile solutions at 25℃, varied concentration TBAF concentrations from 0 to 4.73 x 10-2 M................................................... 251
Figure 6.5.15 1H-NMR spectra for complex 1 1.73 x 10-2 M in DMSO-d6 solutions at 25℃, from 9.10 ppm to 6.10 ppm, (a) before and (b) after added TBAF 5.36 x 10-2 M................................................................................................... 252
Figure 6.5.16 1H-NMR spectra for complex 2 1.20 x 10-2 M in CD3CN solutions at 25℃, from 9.10 ppm to 6.10 ppm, (a) before and (b) after added TBAF 3.48 x 10-2 M...................................................................................................... 252
Figure 6.5.17 1H-NMR spectra for complex 3 9.46 x 10-3 M in CD3CN solutions at 25℃, from 9.10 ppm to 6.10 ppm, (a) before and (b) after added TBAF 4.72 x 10-2 M...................................................................................................... 252
Figure 6.6.1 Differential pulse voltammograms of complex 1 4.2 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, varied mole ratio of TBAF from 0 to 0.83, cathodic scan. All data treated by baseline correction, modulation time 100 ms, interval time 500 ms, modulation amplitude 40 mV, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod....................................................................................................... 254
Figure 6.6.2 Differential pulse voltammograms of complex 1 4.2 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, varied mole ratio of TBAF from 1.38 to 3.04, cathodic scan. All data treated by baseline correction, modulation time 100 ms, interval time 500 ms, modulation amplitude 40 mV, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod......................................................................... 254
Figure 6.6.3 Differential pulse voltammograms of complex 1 4.2 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, varied mole ratio of TBAF from 3.59 to 4.70, cathodic scan. All data treated by baseline correction, modulation time 100 ms, interval time 500 ms, modulation amplitude 40 mV, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod......................................................................... 255
Figure 6.6.4 Mole ratio vs. arbitrarily unit plot for complex 1 4.2 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, cathodic scan, for varied concentration of TBAF from 0 to 1.9 x 10-3 M....................................... 255
Figure 6.6.5 Differential pulse voltammograms of complex 1 4.2 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, varied mole ratio of TBAF from 0 to 0.83, anodic scan. All data treated by baseline correction, modulation time 100 ms, interval time 500 ms, modulation amplitude 40 mV, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod....................................................................................................... 256
Figure 6.6.6 Differential pulse voltammograms of complex 1 4.2 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, varied mole ratio of TBAF from 1.38 to 1.93, anodic scan. All data treated by baseline correction, modulation time 100 ms, interval time 500 ms, modulation amplitude 40 mV, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod......................................................................... 257
Figure 6.6.7 Differential pulse voltammograms of complex 1 4.2 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, varied mole ratio of TBAF from 2.49 to 3.04, anodic scan. All data treated by baseline correction, modulation time 100 ms, interval time 500 ms, modulation amplitude 40 mV, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod......................................................................... 257
Figure 6.6.8 Differential pulse voltammograms of complex 1 4.2 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, varied mole ratio of TBAF from 3.59 to 4.15, anodic scan. All data treated by baseline correction, modulation time 100 ms, interval time 500 ms, modulation amplitude 40 mV, working electrode, glassy carbon; reference electrode Ag/AgCl; counter electrode, Pt rod......................................................................... 258
Figure 6.6.9 Mole ratio vs. arbitrarily unit plot for complex 1 4.2 x 10-4 M in 0.1 M TBAP / CH3CN under Ar atmosphere, anodic scan, for varied concentration of TBAF from 0 to 1.9 x 10-3 M.......................................258
Figure 6.7.1 Modeled the interaction of fluoride anion with L1 by restrained the fluoride anion at a distance between 1.5 Å to 1.6 Å from (a), (b) catechol OH or (c) NH group, than optimized geometry by MOPAC PM3 parameter................................................................................................. 261
Figure 6.7.2 Modeled the interaction of fluoride anion with L2 by restrained the fluoride anion at a distance between 1.5 Å to 1.6 Å from (a), (b) catechol OH or (c) NH group, than optimized geometry by MOPAC PM3 parameter................................................................................................. 262
Figure 6.7.3 Modeled the interaction of fluoride anion with L3 by restrained the fluoride anion at a distance between 1.5 Å to 1.6 Å from (a), (b) phenol OH or (c) NH group, than optimized geometry by MOPAC PM3 parameter................................................................................................. 263
Figure 6.8.1 IR spectra of complex 1 in KBr platelet, before (red) and after (black) added NaOH............................................................................................ 269

Table 4.3.1 Crystal data and structure refinement for L2............................................ 48
Table 4.3.2 Analysis of Potential Hydrogen Bonds for L2.......................................... 49
Table 4.3.3 Bond lengths for L2.................................................................................. 49
Table 4.3.4 Bond angles for L2................................................................................... 50
Table 4.3.5 Crystal data and structure refinement for L3............................................ 51
Table 4.3.6 Analysis of Potential Hydrogen Bonds for L3......................................... 52
Table 4.3.7 Bond lengths for L3.................................................................................. 53
Table 4.3.8 Bond angles for L3................................................................................... 54
Table 4.4.1 Crystal data and structure refinement for 1.............................................. 67
Table 4.4.2 Analysis of Potential Hydrogen Bonds for 1............................................ 68
Table 4.4.3 Bond lengths for 1..................................................................................... 69
Table 4.4.4 Bond angles for 1..................................................................................... 70
Table 4.4.5 Crystal data and structure refinement for 2.............................................. 73
Table 4.4.6 Analysis of Potential Hydrogen Bonds for 2............................................ 74
Table 4.4.7 Bond lengths for 2..................................................................................... 75
Table 4.4.8 Bond angles for 2..................................................................................... 76
Table 4.4.9 Crystal data and structure refinement for 3.............................................. 79
Table 4.4.10 Analysis of Potential Hydrogen Bonds for 3.......................................... 80
Table 4.4.7 Bond lengths for 3..................................................................................... 81
Table 4.4.8 Bond angles for 3..................................................................................... 82
Table 5.1 Selected 1H-NMR Shifts for Ligands and Complexes................................ 93
Table 5.3.1 Selected UV-vis spectroscopic data for ligands and ruthenium complexes in acetonitrile............................................................................................... 118
Table 5.4.1 Selective luminescence spectroscopic data for ligands and ruthenium complexes in acetonitrile........................................................................ 124
Table 5.6.1 Electrochemical data for ruthenium complexes........................................ 153
Table 5.7.1 Wavelengths (nm) of absorption spectrum of L1 cacualted by MOPAC ZINDO parameter................................................................................... 160
Table 5.8.2 Wavelengths (nm) of absorption spectrum of L2 caculated by MOPAC ZINDO parameter................................................................................... 161
Table 5.8.3 Wavelengths (nm) of absorption spectrum of L3 caculated by MOPAC ZINDO parameter................................................................................... 162
Table 4.4.1 Association constant and dissociation constant for Ruthenium Complexes............................................................................................... 235
1. (a) Murphy, C. J.; Arkin, M. R.; Jenkins, Y.; Ghatlia, N. D.; Bossmann, S. H.; Turro, N. J.; Barton, J. K. Science 1993, 262, 1025-1029. (b) Gray, H. B.; Winkler, J. R. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3534-3539. (c) Huynh, M. H. V.; Dattelbaum, D. M.; Meyer, T. J. Coord. Chem. Rev. 2005, 249, 457-483. (d) Baranoff, E.; Collin, J. P.; Flamigni, L.; Sauvage, J. P. Chem. Soc. Rev. 2004, 33, 147-155. (e) Gao, F.; Chao, H.; Ji, L. N. Chem. Biodivers. 2008, 5, 1962-1979. (f) Rose, M. J.; Mascharak, P. K. Coord. Chem. Rev. 2008, 252, 2093-2114. (g) Ronconi, L.; Sadler, P. J. Coord. Chem. Rev. 2007, 251, 1633-1648. (h) Wouters, K. L.; De Tacconi, N. R.; Konduri, R.; Lezna, R. O.; MacDonnell, F. M. Photosyn. Res. 2006, 87, 41-55. (i) Wang, X. Y.; Del Guerzo, A.; Baitalik, S.; Simon, G.; Shaw, G. B.; Chen, L. X.; Schmehl, R. Photosyn. Res. 2006, 87, 83-103. (j) Tfouni, E.; Ferreira, K. Q.; Doro, F. G.; Silva, R. S. D.; Rocha, Z. N. D. Coord. Chem. Rev. 2005, 249, 405-418. (k) Medlycott, E. A.; Hanan, G. S. Chem. Soc. Rev. 2005, 34, 133-142. (l) Martino, D. M.; Kleverlaan, C. J.; Van Slageren, J.; Bussandri, A.; Van Willigen, H.; Kiarie, C. Appl. Magn. Reson. 2004, 26, 489-519. (m) Polo, A. S.; Itokazu, M. K.; Murakami-Iha, N. Y. Coord. Chem. Rev. 2004, 248, 1343-1361. (n) Tfouni, E.; Krieger, M.; McGarvey, B. R.; Franco, D. W. Coord. Chem. Rev. 2003, 236, 57-69. (o) Balzani, V.; Ceroni, P.; Juris, A.; Venturi, M.; Campagna, S.; Puntoriero, F.; Serroni, S. Coord. Chem. Rev. 2001, 219-221, 545-572. (p) Hammarström, L.; Sun, L.; Åkermark, B.; Styring, S. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2001, 57, 2145-2160. (q) Turki, M.; Daniel, C. Coord. Chem. Rev. 2001, 216-217, 31-43. (r) Ward, M. D.; Barigelletti, F. Coord. Chem. Rev. 2001, 216-217, 127-154. (s) Vlček Jr., A. Coord. Chem. Rev. 2000, 200-202, 933-977. (t) Bitterwolf, T. E. Coord. Chem. Rev. 2000, 206-207, 419-450. (u) Sobolev, A. S.; Jans, D. A.; Rosenkranz, A. A. Prog. Biophys. Mol. Biol. 2000, 73, 51-90.
2. (a) Rubinstein, I.; Bard, A. J. J. Am. Chem. Soc. 1981, 103, 512-516. (b) Reisner, E.; Arion, V. B.; Keppler, B. K.; Pombeiro, A. J. L. Inorganica Chim. Acta 2008, 361, 1569-1583. (c) Distefano, A. J.; Wishart, J. F.; Isied, S. S. Coord. Chem. Rev. 2005, 249, 507-516. (d) Bennett, M. A.; Byrnes, M. J.; Kovàčik, I. J. Organomet. Chem. 2004, 4463-4474. (e) Hurst, S. K.; Humphrey, M. G.; Morrall, J. P.; Cifuentes, M. P.; Samoc, M.; Luther- Davies, B.; Heath, G. A.; Willis, A. C. J. Organomet. Chem. 2003, 670, 56-65. (f) Soukharev, V. S.; Ryabov, A. D.; Csöregi, E. J. Organomet. Chem. 2003, 668, 75-81. (g) Goh, L. Y.; Teo, M. E.; Khoo, S. B.; Leong, W. K.; Vittal, J. J. J. Organomet. Chem. 2002, 664, 161-169. (h) Crutchley, R. J.; Lever, A. B. P. Inorg. Chem. 1982, 21, 2276-2282.
3. Paris, J. P.; Brandt, W. W. J. Am. Chem. Soc. 1959, 81, 5001-5002.
4. (a) Crosby, G. A.; Perkins, W. G.; Klassen, D. M. J. Chem. Phys. 1965, 43, 1498-1503. (b) Fabian, R. H.; Klassen, D. M.; Sonntag, R. W. Inorg. Chem. 1980, 19, 1977-1982.
5. (a) Wherland, S. Coord. Chem. Rev. 1993, 123, 169-199. (b) Meyer, T. J.; Taube, H. In Comprehensive Coordination Chemistry; Wilkinson, G., Ed.; Pergamon: New York, 1987; Vol. 1, pp 331-384.
6. (a) Chang, I. J.; Lee, J. C.; Winkler, J. R.; Gray, H. B. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3838-3840. (b) Liu, F.; Concepcion, J. J.; Jurss, J. W.; Cardolaccia, T.; Templeton, J. L.; Meyer, T. J. Inorg. Chem. 2008, 47, 1727-1752. (c) Wenger, O. S. Coord. Chem. Rev. 2009, 253, 1439-1457.
7. (a) Gräetzel, M. J. Photochem. Photobiol., C: Chem. 2003, 4, 145-153. (b) Nazeeruddin, M. K.; Zakeeruddin, S. M.; Lagref, J. J.; Liska, P.; Comte, P.; Barolo, C.; Viscardi, G.; Schenk, K.; Gräetzel, M. Coord. Chem. Rev. 2004, 248, 1317-1328.
8. for anti-cancer see: (a) Nagy, L.; Csintalan, G.; Kálmán, E.; Sipos, P.; Szvetnik, A. Acta Pharm. Hung. 2003, 73, 221-236. (b) Manzano, B. R.; Jalón, F. A.; Espino, G.; Guerrero, A.; Claramunt, R. M.; Escolástico, C.; Elguero, J.; Heras, M. A. Polyhedron 2007, 26, 4373-4382. (c) Mazumder, U. K.; Gupta, M.; Bhattacharya, S.; Karki, S. S.; Rathinasamy, S.; Thangavel, S. J. Enzyme Inhib. Med. Chem. 2004, 19, 185-192. (d) Mazumder, U. K.; Gupta, M.; Karki, S. S.; Bhattacharya, S.; Rathinasamy, S.; Thangavel, S. Chem. Pharm. Bull. 2004, 52, 178-185.
9. Pierpont, C. G.; Lange, C. W. Prog. Inorg. Chem. 1994, 41, 331-442.
10. (a) Guillen, F.; Martinez, M. J.; Munez, C.; Martinez, A. T. Arch. Biochem. Biophys. 1997, 339, 190-199. (b) Baez, S.; Sequra-agular, J.; Wildersten, M.; Johansson, A.; Mannervik, B. Biochem. J. 1997, 324, 25-28. (c) Fate, R.; Di Bernardo, S.; Estornell, E.; Castelli, G.; Lenaz, G. Mol. Aspects Med. 1997, s269-s273. (d) Muratalie, M.; Klein, M.; Fulco, A.; Feyereisen, R. Biochemistry 1997, 36, 8401-8412.
11. (a) Golbeck, J. H. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 1642-1646. (b) Krauß, N. Curr. Opin. Chem. Biol. 2003, 7, 540-550.
12. (a) Keyes, T. E.; Forster, R. J.; Jayaweera, P. M.; Coates, C. G.; McGarvey, J. J.; Vos, J. G. Inorg. Chem. 1998, 37, 5925-5932. (b) Opperman, K. A.; Mecklenburg, S. L.; Meyer, T. J. Inorg. Chem. 1994, 33, 5295-5301.
13. Pierpont, C. G.; Lange, C. W. In Progress in Inorgic Chemistry; Karin, K. D., Ed.; Johy Wiley & Sons, Inc.: New York, 1994; Vol. 41, pp 331-443.
14. O''Brien, L.; Duati, M.; Rau, S.; Guckian, A. L.; Keyes, T. E.; O''Boyle, N. M.; Serr, A.; Görls, H.; Vos, J. G. Dalton Trans. 2004, 514-522.
15. Sjödin, M.; Styring, S.; Wolpher, H.; Xu, Y.; Sun, L.; Hammarström, L. J. Am. Chem. Soc. 2005, 127, 3855-3863. For PCET see: Huynh, M. H. V.; Meyer, T. J. Chem. Rev. 2007, 107, 5004-5064.
16. Evangelio, E.; Hernando, J.; Imaz, I.; Bardají, G. G.; Alibés, R.; Busqué, F.; Ruiz-Molina, D. Chem. Eur. J. 2008, 14, 9754-9763.
17. (a) Winstanley, K. J.; Sayer, A. M.; Smith, D. K. Org. Biomol. Chem. 2006, 4, 1760-1767. (b) Winstanley, K. J.; Smith, D. K. J. Org. Chem. 2007, 72, 2803-2815. (c) Han, M. S.; Kim, D. H. Angew. Chem., Int. Ed. 2002, 41, 3809-3811.
18. Ayoob, S.; Gupta, A. K. Crit. Rev. Environ. Sci. Technol. 2006, 36, 433-487.
19. (a) Sauer, M. Angew. Chem., Int. Ed. 2003, 42, 1790-1793. (b) James, T. D.; Linnane, P.; Shinkai, S. Chem. Commun. 1996, 281-288.
20. Basu, B.; Das, P.; Das, S. Curr. Org. Chem. 2008, 12, 141-158.
21. Ten Gate, J. M. Eur. J. Oral Sci. 1997, 105, 461-465.
22. Rich, C.; Ensinck, J. Nature 1961, 191, 184-185.
23. Freemantle, M. Chem. Eng. News 2006, 84, 83-85.
24. Jose, D. A.; Kar, P.; Koley, D.; Ganguly, B.; Thiel, W.; Ghosh, H. N.; Das, A. Inorg. Chem. 2007, 46, 5576-5584.
25. Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev. 2000, 100, 3553-3590.
26. Lever, A. B. P.; Gorelsky, S. I. Coord. Chem. Rev. 2000, 208, 153-167.
27. (a) Ernst, S.; Hänel, P.; Jordanov, J.; Kaim, W.; Kasack, V.; Roth, E. J. Am. Chem. Soc. 1989, 111, 1733-1738. (b) Haga, M.; Dodsworth, E. S.; Lever, A. B. P. Inorg. Chem. 1986, 25, 447-453. (c) Dei, A.; Gatteschi, D.; Pardi, L. Inorg. Chem. 1990, 29, 1442-1444. (e) Patra, S.; Sarkar, B.; Ghumaan, S.; Fiedler, J.; Zalis, S.; Kaim, W.; Lahiri, G. K. Dalton Trans. 2004, 750-753.
28. Kaim, W. Coord. Chem. Rev. 2001, 219-221, 463-488.
29. Kaim, W. Coord. Chem. Rev. 1987, 76, 187-235.
30. (a) Kaim, W.; Lahiri, G. K. Angew. Chem., Int. Ed. 2007, 46, 1778-1796. (b) Heilmann, M.; Frantz, S.; Kaim, W.; Fiedler, J.; Duboc, C. Inorg. Chim. Acta 2006, 359, 821-829. (c) Maji, S.; Sarkar, B.; Patra, S.; Fiedler, J.; Mobin, S. M.; Puranik, V. G.; Kaim, W.; Lahiri, G. K. Inorg. Chem. 2006, 45, 1316-1325.
31. (a) Ramakrishna, G.; Jose, D. A.; Kumar, D. K.; Das, A.; Palit, D. K.; Ghosh, H. N. J Phys. Chem. B 2005, 109, 15445-15453. (b) Johansson, O.; Wolpher, H.; Borgström, M.; Hammarström, L.; Bergquist, J.; Sun, L.; Åkermark, B. Chem. Commun. 2004, 10, 194-195.
32. Zhao, Y. G.; Lin, Z. H.; Ou, S. J.; Duan, C. Y.; Liao, H. P.; Bai, Z. P. Inorg. Chem. Commun. 2006, 9, 802-805.
33. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85-277.
34. Creutz, C.; Sutin, N. Proc. Natl. Acad. Sci. U.S.A. 1975, 72, 2858-2862.
35. (a) DeArmond, M. K.; Carlin, C. M. Coord. Chem. Rev. 1981, 36, 325-355. (b) Vlček, A. A. Coord. Chem. Rev. 1982, 43, 39-62.
36. Balzani, V.; Bergamini, G.; Marchioni, F.; Ceroni, P. Coord. Chem. Rev. 2006, 250, 1254-1266.
37. Weldon, F. M.; Vos, J. G. Inorganica Chim. Acta 2000, 307, 13-19.
38. (a) Masui, H.; Lever. A. B. P.; Auburn, P. A. Inorg. Chem. 1991, 30, 2402-2410. (b) Carugo, O.; Djinovic, K.; Rizzi, M.; Castellani, C. B. Dalton Trans. 1991, 1551-1555.
39. Whittle, B.; Everest, N. S.; Howard, C.; Ward, M. D. Inorg. Chem. 1995, 34, 2025-2032.
40. Fujihara, T.; Okamura, R.; Wada, T.; Tanaka, K. Dalton Trans 2003, 3221-3226.
41. Goss, C. A.; Abruña, H. D. Inorg. Chem. 1985, 24, 4263-4267.
42. Ghosh, T.; Maiya, B. G.; Samanta, A.; Shukla, A. D.; Jose, D. A.; Kumar, D. K.; Das, A. J. Biol. Inorg. Chem. 2005, 10, 496-508.
43. (a) Beer, P. D.; Fletcher N. C.; Wear. T. Polyhedron 1996, 15, 1339-1347. (b) Beer, P. D.; Dickson, C. A. P.; Fletcher, N.; Goulden, A. J.; Grieve, A.; Hodacova J.; Wear, T. Chem. Commun. 1993, 10, 828-830.
44. (a) Beer, P. D.; Szemes, F.; Balzani, V.; Sala, C. M.; Drew, M. G. B.; Dent, S. W.; Maestri, M. J. Am. Chem. Soc. 1997, 119, 11864-11875.
45. (a) Szemes, F.; Hesek, D.; Chen, Z.; Dent, S.W.; Drew, M. G. B.; Goulden, A. J.; Graydon, A. R.; Grieve, A.; Mortimer, R. J. Inorg. Chem. 1996, 35, 5868-5879. (b) Beer, P. D.; Chen, Z.; Goulden, A. J.; Grieve, A.; Hesek, D.; Szemes, F.; Wear, T. Chem. Commun. 1994, 1269-1271.
46. Lin, T. P.; Chen, C. Y.; Wen, Y. S.; Sun, S. S. Inorg. Chem. 2007, 46, 9201-9212.
47. Shanga, X. F.; Li, J. W.; Lin, H.; Jiang, P.; Cai, Z. S.; Lin, H. K. Dalton Trans. 2009, 2096-2102.
48. Shang, X. F.; Lin, H. K.; Lin, H. Transition Met. Chem. 2007, 32, 430-433.
49. Shang, X. F.; Lin, H. K.; Lin, H. Transition Met. Chem. 2007, 32, 38-41.
50. Gunnlaugsson, T.; Glynn, M.; Tocci (née Hussey), G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094-3117.
51. Ghosh, A.; Ganguly, B.; Das, A. Inorg. Chem. 2007, 46, 9912-9918.
52. Ough, E. A.; Stillman, M. J. Inorg. Chem. 1994, 33, 573-583.
53. (a) Smith, P. J.; Reddington, M. V.; Wilcox, C. S. Tetrahedron Lett. 1992, 41, 6085-6088. (b) Fan, E.; van Arman, S. A.; Kincaid, S.; Hamilton, A. D. J. Am. Chem. Soc. 1993, 115, 369-370. (c) Boiocchi, M.; Boca, L. D.; Go′mez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E. J. Am. Chem. Soc. 2004, 126, 16507-16514.
54. (a) Cui, Y.; Niu, Y. L.; Cao, M. L.; Wang, K.; Mo, H. J.; Zhong, Y. R.; Ye, B. H. Inorg. Chem. 2008, 47, 5616-5624. (b) Cui, Y.; Mo, H. J.; Chen, J. C.; Niu, Y. L.; Zhong, Y. R.; Zheng, K. C.; Ye, B. H. Inorg. Chem. 2007, 46, 6427-6436.
55. (a) Lin, Z. H.; Ou, S. J.; Duan, C. Y.; Zhang, B. G.; Bai, Z. P. Chem. Commun. 2006, 6, 624-626. (b) Lin, Z. H.; Zhao, Y. G.; Duan, C. Y.; Zhang, B. G.; Bai, Z. P. Dalton Trans. 2006, 3678-3684.
56. Yu, X.; Lin, H.; Lin, H. Transition Met. Chem. 2008, 33, 829-834.
57. Gokel, G. W. ; Barbour, L. J. ; Ferdani, R.; Hu, J. Acc. Chem. Res. 2002, 35, 878-886.
58. Detail see: Purification of laboratory chemicals, 4th ed.; Armarego, W. L. F., Perrin, D. D., Eds.; Butterworth-Heinemann: Oxford, 1996.
59. Detail see: Fry, A. J. In Laboratory Techniques in Electroanalytical Chemistry, 2nd ed.; Kissinger, P. T., Heineman, W. R. Eds.; Marcel Dekker Inc.: New York, 1996; p 481-482.
60. (a) SHELXTL Program System, version 6.10; Bruker Analytical X-ray Instruments Inc.: Madison, WI, 2000. (b) Sheldrick, G. M. Acta Crystallogr. A 2008, 64, 112-122. (c) WinGX, version 1.70.01; University Of Glasgow: Scotland, UK, 2005. (d) Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837-838.
61. (a) Su, C. H.; Chang, I. J. J. Chin. Chem. Soc. 1998, 45, 361-365. (b) Su, C. H. Photophysical Properties Of Ruthenium(II) Polypyridyl Complexes. Ph.D. Thesis, National Taiwan Normal University, May 2000.
62. Cache, version 4.4; Fujitsu, Inc.: Tokyo, Japan, 2000.
63. Stewart, J. J. P. MOPAC, version 6.0; Frank J. Seiler Research Laboratory: Air Force Academy, CO, 1990.
64. (a) Ridley, J.; Zerner., M. C. Theor. Chim. Acta 1973, 32, 111-134. (b) Ridley, J.; Zerner, M. C. Theor. Chim. Acta 1976, 42, 223-236. (c) Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff, U. T. J. Am. Chem. Soc. 1980, 102, 589-599. For semi-empirical method ZINDO compared with ab initio DFT UV-vis spectrum, see: Gorelsky, S. I.; Lever, A. B. P.; Ebadi, M. Coord. Chem. Rev. 2002, 230, 97-105.
65. (a) Frisch, M. J. Gaussian03; Gaussian, Inc.: Pittsburgh, PA, 2003. (b) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454-464.
66. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
67. (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 284-298.
68. (a) For 6-31G(d) basis set: Chass, G. A.; Lovas, S.; Murphy, R. F.; Csizmadia, I. G. Eur. Phys. J. D 2002, 20, 481-497. (b) for hybrid basis sets: Li, J.; Xu, L. C.; Chen, J. C.; Zheng, K. C.; Ji, L. N. J. Phys. Chem. A 2006, 110, 8174-8180.
69. (a) Gorelsky, S. I. SWizard program, version 4.5; University of Ottawa: Ottawa, Canada, 2009. (b) Gorelsky, S. I.; Lever, A. B. P. J. Organomet. Chem. 2001, 635, 187-196.
70. (a) VMD, version 1.8.6; University of Illinois: Champaign, IL, 2009. (b) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33-38. (c) Rousay, E. R.; Hongchen, F. U.; Robinson, J. M.; Essex, J. W.; Frey, J. G. Philos. Transact. A Math. Phys. Eng. Sci. 2005, 363, 2075-2095.
71. Lay, P. A.; Sargenson, A. M.; Taube, H. In Inorganic Syntheses; Shreeve, J. M., Ed.; John Wiley & Sons: New York, 1984; Vol. 24, pp 291-299.
72. (a) Tamasi, G.; Chiasserini, L.; Savini, L.; Sega, A.; Cini, R. J. Inorg. Biochem. 2005, 99, 1347-1359. (b) Tunc, T.; Sari, M.; Yagbasan, R.; Tezcan, H.; Sahin, E. Acta Crystallogr. C 2003, 59, o192-o193. (d) Skene, W. G.; Berl, V.; Risler, H.; Khoury, R.; Lehn, J. M. Org. Biomol. Chem. 2006, 4, 3652-3663.
73. (a) Chisholm, M. H.; Huffman, J. C.; Rothwell, I. P.; Bradley, P. G.; Kress, N.; Woodruff, W. H. J. Am. Chem. Soc. 1981, 103, 4945-4947. (b) Kuhn, F. E.; Groarke, M.; Bencze, E.; Herdtweck, E.; Prazeres, A.; Santos, A. M.; Calhorda, M. J.; Romao, C. C.; Goncalves, I. S.; Lopes, A. D.; Pillinger, M. Chem. Eur. J. 2002, 8, 2370-2383.
74. (a) Lavender, E. S.; Glidewell, C.; Ferguson, G. Acta Crystallogr. C 1998, 54, 1637-1639. (b) Lavender, E. S.; Glidewell, C.; Ferguson, G. Acta Crystallogr. C 1998, 54, 1639-1642. (c) Cowan, J. A.; Howard, J. A. K.; Leech, M. A.; Puschmann, H.; Williams, I. D. Acta Crystallogr. C 2001, 57, 1194-1195.
75. Sun, Y. F.; Zheng, Z. B.; Wang, H. C.; Gao, H. Y. X-Ray Struct. Anal. Online 2007, 23, x11-x12.
76. Unver, H.; Yildiz, M.; Ocak, N.; Durlu, T. N. J. Chem. Cryst. 2008, 38, 103-108.
77. Albrecht, M.; Janser, I.; Kamptmann, S.; Weis, P.; Wibbeling, B.; Fröhlich, R. Dalton Trans. 2004, 1, 37-43.
78. Suezawa, H.; Yoshida, T.; Umezawa, Y.; Tsuboyama, S.; Nishio, M. Eur. J. Inorg. Chem. 2002, 12, 3148-3155.
79. (a) PLATON - A Multipurpose Crystallographic Tool, version 100209; Utrecht University: Utrecht, Netherlands, 2009. (b) Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.
80. Rillema, D. P.; Jones, D. S.; Woods, C.; Levy, H. A. Inorg. Chem. 1992, 31, 2935-2938.
81. Araki, K.; Fuse, M.; Kishii, N.; Shiraishi, S.; Kodama, T.; Uchida, Y. Bull. Chem. Soc. Jpn. 1990, 63, 1299-1304.
82. Webb, K. S.; Ruszkay, S. J. Tetrahedron 1998, 54, 401-410.
83. Wu, X.; Gorden, A. E. V.; Tonks, S. A.; Vilseck, J. Z. J. Org. Chem. 2007, 72, 8691-8699.
84. Bradamante, S.; Pagani, G. A. J. Org. Chem. 1980, 45, 114-122.
85. (a) Y, Gondo. J. Chem. Phys. 1964, 41, 3928-3938. (b) Badger, G. M.; Walker, I. S. J. Chem. Soc. 1956, 122-126.
86. Calzaferri, G.; Rytz, R. J. Phys. Chem. 1995, 99, 32, 12141-12150.
87. (a) Lachaud, F.; Quaranta, A.; Pellegrin, Y.; Dorlet, P.; Charlot, M. F.; Un, S.; Leibl, W.; Aukauloo, A. Angew. Chem. Int. Ed. 2005, 44, 1536-1540. (b) Mecklenburg, S. L.; Peek, B. M.; Schoonover, J. R.; McCafferty, D. G.; Wall, C. G.; Erickson, B. W.; Meyer, T. J. J. Am. Chem. Soc. 1993, 115, 5479-5495. (c) Kalyanasundaram, K. Coord. Chem. Rev. 1982, 46, 159-244.

88. Batey, H. D.; Whitwood, A. C.; Duhme-Klair, A. K. Inorg. Chem. 2007, 46, 6516-6528.
89. Haddour, N.; Chauvin, J.; Gondran, C.; Cosnier, S. J. Am. Chem. Soc. 2006, 128, 30, 9693-9698.
90. Caspar J. V.; Meyer, T. J. J. Am. Chem. Soc. 1983, 105, 5583-5590.
91. Henry, M. S.; Hoffman, M. Z. J. Am. Chem. Soc. 1977, 99, 5201-5203.
92. Peard, W. J.; Pflaum, R. T. J. Am. Chem. Soc. 1958, 80, 1593-1596.
93. (a) for catechol dissociation const. : Sever, M. J.; Wilker, J. J. Dalton. Trans. 2006, 6, 813-822. (b) for dimethylamine dissociation const. : Bruice, P. Y. J. Am. Chem. Soc. 1984, 106, 5959-5964.
94. Kriegisch, V.; Lambert, C. Eur. J. Inorg. Chem. 2005, 22, 4509-4515.
95. Aït-Haddou, H.; Bejan, E.; Daran, J. C.; Balavoine, G. G. A.; Berruyer-Penaud, F.; Bonazzola, L.; Smaoui-Chaabouni, H.; Amouyal, E. Dalton. Trans. 1999, 17, 3095-3101.
96. Nematollahi, D.; Dehdashtian, S. Tetrahedron Lett. 2008, 49, 645-649.
97. Fieser, L. F. J. Am. Chem. Soc. 1930, 52, 5204-5241.
98. Tokel-Takvoryan, N. E.; Hemingway, R. E.; Bard, A. J. J. Am. Chem. Soc. 1973, 95, 20, 6582-6589.
99. Norrby, T.; Börje, A.; Åkermark, B.; Hammarström, L.; Alsins, J.; Lashgari, K.; Norrestam, R.; Mårtensson, J. D.; Stenhagen, G. Inorg. Chem. 1997, 36, 25, 5850-5858.
100. Hage, R.; Haasnoot, J. G.; Nieuwenhuis, H. A.; Reedijk, J.; De Ridder, D. J. A.; Vos, J. G. J. Am. Chem. Soc. 1990, 112, 25, 9245-9251.
101. (a) Amendola, V.; Bonizzoni, M.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M.; Sancenón, F.; Taglietti, A. Coord. Chem. Rev. 2006, 250, 1451-1470. (b) Amendola, V.; Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M. Acc. Chem. Res. 2006, 39, 343-353.
102. Ghosh, T.; Maiya, B. G.; Wong, M. W. J. Phys. Chem. A 2004, 108, 11249-11259.
103. (a) Tzeng, B. C.; Chen, Y. F.; Wu, C. C.; Hu, C. C.; Chang, Y. T.; Chen, C. K. New J. Chem. 2007, 31, 202-209. (b) Wu, C. Y.; Chen, M. S.; Lin, C. A.; Lin, S. C.; Sun, S. S. Chem. Eur. J. 2006, 12, 2263-2269.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊