跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林植南
研究生(外文):Chi-Nan, Lin
論文名稱:微波介電材料La2/3TiO3-LaAlO3聲子計算:密度泛函微擾理論之研究
論文名稱(外文):Phonon calculations on microwave dielectric material La2/3TiO3-LaAlO3: Density-Functional Perturbation Theory Study
指導教授:林諭男林諭男引用關係
學位類別:碩士
校院名稱:淡江大學
系所名稱:物理學系碩士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:97
中文關鍵詞:鑭鈦氧鋁酸鑭第一原理拉曼光譜紅外光光譜聲子
外文關鍵詞:La2/3TiO3-LaAlO3First PrinciplesRamanFTIRPhonon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近代固態物理的發展配合高速電腦的理論計算,已成為我們研究各式新穎樣品的重要途徑,本研究即以第一原理模擬計算微波介電材料(1-x)La2/3TiO3-xLaAlO3。首先我們從0.9La2/3TiO3 -0.1 LaAlO3的晶格結構中獲得純La2/3TiO3的原子位置,接著以密度泛函微擾理論來研究該材料在Γ點上之聲子行為。從聲子的計算結果輔以實驗量測獲得的拉曼光譜與紅外光光譜,藉此探討微觀下的聲子振動行為與介電機制的關係。
At the present, the combination of high performance computation and solid-state theory provides a promising methodology to elucidate the microscopic properties of versatile materials. We use the first-principles to start the simulation on the microwave dielectric material La2/3TiO3 - LaAlO3. At first, we get the La2/3TiO3 crystal structure from the atomic position of ceramic 0.9La2/3TiO3-0.1LaAlO3 , and then we use the Density - Functional Perturbation Theory to investigate the phonons at Γ point.
According to the phonon calculation, the calculated eigenvalues and the corresponding eigenvectors of each vibrational mode at Γ point provide a great help on our experimental observations. Comparing with Raman and FTIR spectrum, we can study the dielectric properties on the microwave dielectric material La2/3TiO3 - LaAlO3.
目 錄

第一章 導論 1
  § 1.1 研究動機 1
  § 1.2 第一原理計算簡介 3
  § 1.3 論文架構 5

第二章 理論及模擬方法 7
  § 2.1 前言 7
  § 2.2 密度泛函理論 7
    2.2.1 Hohenberg-Kohn 理論 8
    2.2.2 Kohn-Sham Equation 9
    2.2.3 交換相干能 11
    2.2.4 週期邊界條件 12
    2.2.5 k點取樣 12
    2.2.6 虛位勢 13
  § 2.3 密度泛函微擾理論 14
    2.3.1 線性響應及晶格動力學 14
    2.3.2 振動模式介電貢獻 16
  § 2.4 介電機制 17
  § 2.5 拉曼與傅力葉轉換紅外光吸收光譜 21
    2.5.1 拉曼光譜理論 21
    2.5.2 傅力葉轉換紅外光吸收光譜 23
    2.5.3 FTIR 光譜分析原理 24

第三章 材料特性與實驗分析 31
  § 3.1 前言 31
    3.1.1 鈣鈦礦結構 31
    3.1.2 La2/3TiO3-LaAlO3 材料簡介 31
  § 3.2 文獻回顧 34
    3.2.1 製程 34
    3.2.2 Series of the 18 Ceramics 36
  § 3.3 Raman 光譜分析 38
    3.3.1 A-Series 39
    3.3.2 B-Series & C-Series 40
    3.3.3 D-Series 42
    3.3.4 (1-x)LT-xLA-0.25 wt%Mn-180oC/hour 43
  § 3.4 FTIR 光譜分析 45

第四章 計算結果與討論 51
  § 4.1 簡介 51
  § 4.2 計算軟體 52
  § 4.3 流程 53
    4.3.1 La2/3TiO3 晶格結構介紹 56
    4.3.2 虛位勢選擇 58
    4.3.3 原子鬆弛計算 60
  § 4.4 DOS & Band Structure 61
  § 4.5 聲子 63
    4.5.1 G Mode 80
    4.5.2 U Mode 87
    4.5.3 介電常數 91

第五章 結論 92

參考文獻 94


圖 目 錄

Fig.1-1 立方晶系鈣鈦礦結構的氧化物陶瓷材料結構圖 6
Fig.1-2 Ion positions in cubic perovskite structure 6
Fig.2-1 k-point sampling 28
Fig.2-2 虛位勢示意圖 28
Fig.2-3 物質中常見之四種極化 29
Fig.2-4 介電常數實部對頻率之頻譜圖 30
Fig.2-5 史托克斯散射、反史托克斯散射及瑞立散射 30
Fig.3-1 立方晶系鈣鈦礦結構的BaTiO3結構圖 32
Fig.3-2 Ion substitutions in perovskite structure 33
Fig.3-3 Layered structure of La2/3TiO3 33
Fig.3-4 La2/3TiO3-LaAlO3製程流程圖 35
Fig.3-5 Raman spectra for A-Series 39
Fig.3-6 Raman spectra for A-Series 40
Fig.3-7 Raman spectra for B-Series 41
Fig.3-8 Raman spectra for C-Series 41
Fig.3-9 Raman spectra for D-Series 42
Fig.3-10 Summary of Raman spectra 44
Fig.3-11 FTIR spectra of A-Series 46
Fig.3-12 FTIR spectra of B-Series 46
Fig.3-13 FTIR spectra of 0.9LT-0.1LA-1 oC/hour 47
Fig.3-14 FTIR spectra of 0.9LT-0.1LA-3 oC/hour 47
Fig.3-15 FTIR spectra of 0.9LT-0.1LA-180 oC/hour 48
Fig.3-16 FTIR spectra of 0.9LT-0.1LA-900 oC/hour 48
Fig.3-17 A-Series介電常數虛部圖 49
Fig.3-18 B-Series介電常數虛部圖 49
Fig.3-19 A-Series品質因子 50
Fig.3-20 B-Series品質因子 50
Fig.4-1 Crystal structure of La2/3TiO3 54
Fig.4-2 第一原理計算流程圖 55
Fig.4-3 La2/3TiO3晶格結構 57
Fig.4-4 La2/3TiO3晶格結構 57
Fig.4-5 E-Cut對系統總能的收斂計算(for FHI) 59
Fig.4-6 E-Cut對系統總能的收斂計算(for PSPNC) 59
Fig.4-7 Crystal structure of La2/3TiO3 60
Fig.4-8 Electronic DOS of La2/3TiO3 61
Fig.4-9 Brillouin zone path 62
Fig.4-10 Energy band structure 62
Fig.4-11 Rigid layer shift 83
Fig.4-12 Compression 83
Fig.4-13 756 cm-1 84
Fig.4-14 Raman spectra of 0.9LT-0.1LA-1 oC/hour 84
Fig.4-15 Raman spectra of 0.8LT-0.2LA-1 oC/hour 85
Fig.4-16 Raman spectra of 0.6LT-0.4LA-1 oC/hour 85
Fig.4-17 Rotation of O atom 86
Fig.4-18 292 cm-1 系統形變示意圖 86

表 目 錄

Table.3-1 Change of crystal structure symmetry with oxygen
deficiency in the ceramic La2/3TiO3-λ 34
Table.3-2 A-Series:0.6LT-0.4LA-X wt%Mn-180oC/hour 37
Table.3-3 B-Series:0.9LT-0.1LA-0.25 wt%Mn-R oC/hour 37
Table.3-4 C-Series:0.6LT-0.4LA-0.25 wt%Mn-R oC/hour 37
Table.3-5 D-Series:0.8LT-0.2LA-0.25 wt%Mn-R oC/hour 38
Table.3-6 0.4LT-0.6LA-0.25 wt%Mn-180 oC/hour 38
Table.3-7 Lattice parameters of La2/3TiO3-LaAlO3 44
Table.4-1 Atom positions of ceramic 0.9LT-0.1LA 52
Table.4-2 Crystal data for La2/3TiO3 56
Table.4-3 計算所得之55個聲子振動模式 64
Table.4-4 Mode effective charge 78
Table.4-5 計算得到之G Mode v.s. Raman spectra 82
Table.4-6 U Mode v.s. FTIR 與相對介電貢獻 90
Table.4-7 Dielectric constant of B Series 91
References

1.R.D. Richtmyer.; Dielectric Resonators, J. Appl. Phys. 10 (1039) 391-398
2.Suvorov, D., Valant, M., Skapin, S., and Kolar, D.; Microwave Dielectric Properties of Ceramics with Compositions along the La2/3TiO3-LaAlO3 Tie Line. Journal of Materials Science 33, 85-89 (1998)
3.Kim, I. S., Jung, W. H., Inaguma, Y., Nakamura, T., and Itoh, M.; Dielectric Properties of A-site Deficient Perovskite-Type Lanthanum-Calcium-Titanium Oxide Solid Solution System [(1-x)La2/3TiO3-xCaTi03 (0.1≤x≤0.96)]. Materials Research Bulletin 30, 307-316 (1995)
4.Cho, S. Y., Kim, I. T., and Hong, K. S.; Microwave Dielectric Properties and Applications of Rare-earth Aluminates. Journal of Materials Research 14, 114-119 (1999)
5.李言榮, 惲正中, ''材料物理學概論'', 五南出版社, chapter 1 (2003)
6.Herbert, J. M.; Ceramic Dielectrics and Capacitors, Gordon and Breach, New York (1985)
7.P. Hohenbergand W. Kohn," Inhomogeneous Electron Gas ", Phys. Rev.B136, 864 (1964)
8.W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects“ , Phys. Rev. 140, 1133 (1965)
9.John P. Perdew and Wang Yue, ’Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation’, Phys. Rev. B 33, 8800 (1986)
10.M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D.Joannopouios, “ Iterative minimization techniques for ab initio total energy calculations molecular dynamics and conjugate gradients ” Phys. Rev. Mod. 64: 1045, (1992)
11.Kittel, ‘Introduction to Solid State Physics’ ,John Wiely & sons 7th ed. (1996)
12.P.Giannozzi, S. de Gironcoli, P. Pavone, and S. Baroni ''Ab initio calculation of phonon''
13.E.Cockayne ,and B. P. Burton, '' Phonons and static dielectric constant in CaTiO3 from first principles '', Phy. Rev. B62, 3735 (2000)
14.Eric Cockayne, '' First-principles calculations of the dielectric properties of perovskite-type materials '' ,J. Eur. Ceram. Soc. 23,2375-2379 (2003)
15.M. Born and K. Huang, ’Dynamical Theory of Crystal Lattices’, Oxford University Press, Oxford (1954)
16.A. V. Hipple, '' Dielectrics and waves, 2nd edition '', Atrech House,London, 1-86 (1996)
17.G. Burns, '' Solid state physics, Academic press '', Florida, 450-486 (1985)
18.羅吉宗, ''薄膜科技與應用'', 全華科技圖書, chapter 8, (2004)
19.李匡邦,許東明,何東英, ''光譜化學分析'', 揚智文化事業, chapter 11, (1997)
20.Roy, R.; Multiple ion Substitution in the Perovskite Lattice. Journal of the American Ceramic Society 37, 581-588 (1954)
21.MacChesney, J. B., and Sauer, H. A.; The system La2O3-TiO2: Phase Equilibrium and Electrical Properties. Journal of the American Ceramic Society 45, 416-422 (1962)
22.Abe, M., and Uchino, K.; X-Ray Study of the Deficient Perovskite La2/3TiO3. Materials Research Bulletin 9, 147-156 (1974)
23.Wenjin Wang.; La2/3TiO3 and Li1/2Nd1/2TiO3 Based Microwave Dielectric Ceramics. (2008)
24.W.G. Spitzer,R.C. Miller,D.A. Kleinman and L.E. Howarth , "Farinfrared dielectric dispersion in BaTiO3,SrTiO3,and TiO2" ,Phys. Rev. 126,1710-1721 (1962)
25.http://cms.mpi.univie.ac.at/vasp/
26.http://www.pwscf.org/home.htm
27.http://www.abinit.org
28.http://opium.sourceforge.net/
29.M. J. MacEachern, H. Dabkowska, J. D. Garrett, G. Amow, Wenhe Gong, Guo Liu, and J. E. Greedan.; Metal-Insulator Transitions in La1-xTiO3, 0.0 ≤ x ≤ 0.33. Structure-Property Correlations. Chem. Mater. 1994,6, 2092-2102
30.J. W. Bennett, I. Grinberg,and A. M. Rappe,''Effect of symmetrylowering on the dielectric response of BaZrO3'', Phy. Rev. B73,180102 (2006)
31.Hans Kuzmany ,''Solid-State Spectroscopy An Introdution'', (1998)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊