|
[1] George E. Andrews, Richard Askey and Ranjan Roy, Special Functions, Cambridge Univ. Press, 1999. [2] L.C. Andrews, Special Functions for Engineers and Applied Mathematicians. Macmillan Company, New York, 1985. [3] P. Appell, J. Kamp´e de F´eriet, Fonctions Hyperg´eom´etriques et Hyperg´eom´etriques: Polynˆomes d’Hermite, Gauthier-Villars, Paris, 1926. [4] R. Askey, A look at the Bateman project, Contemp. Math. 169 (1994), pp.29-43. [5] W.N.Bailey, Products of generalized hypergeometric series, Proc. London Math. Soc. (2) 28 (1928), pp.242-254. [6] W.N.Bailey, Generalized Hypergeometric series, Cambridge: Cambridge Univ. Press, 1935. [7] W.N.Bailey, Transformations of generalized hypergeometric series, Proc. London Math. Soc. (2) 29 (1929), pp.495-502. [8] H.Bavinck, A new result for Laguerre polynomials, J. Phys. A: Math. Gen. 29 (1996), L277-L279. [9] H.Bavinck, A direct approach to Koekoek’s differential equation for generalized Laguerre polynomials, Acta Math. Hungar. 66 (3) (1995), pp.247-253. [10] R.G. Buschman and H. M. Srivastava, Series identities and reducibility of Kamp´e de F´eriet functions,Math. Proc. Cambridge Philos. Soc. 91(1982), pp.435-440. [11] J. L. Burchnall and T. W. Chaundy, Expansions of Appell’s double hyper-geometric functions (II). Quart. J. Math. Oxford Ser.12 (1941), pp.112-128. [12] W.-Ch.C.Chan, Ch.-J.Chyan and H.M. Srivastava, The Lagrange polynomials in several variables, Integral Transform. Spec. Funct., 12 (2001), pp.139-148. [13] K.Y. Chen, A new summation identity for the Srivastava-Singhal polynomials, J. Math. Anal. Appl. 298 (2004), no. 2, pp.411-417. [14] K.Y. Chen, S.J. Liu and H.M. Srivastava, Some double-series identities and associated generating-function relationships, Applied Mathematics Letters 19 (2006), pp.887-893. [15] K.Y. Chen, S.J. Liu and H.M. Srivastava, Some new results for the Lagrange polynomials in several variables, ANZIAM J. 49 (2007), pp.243-258. [16] K.Y. Chen, H.M. Srivastava, A new result for hypergeometric polynomials, Proceedings of the American Mathematical Society 133 (2005), pp.3295-3302. [17] K.Y. Chen, H.M. Srivastava, Series identities and associated families of generating functions, J. Math. Anal. Appl. 311 (2005), pp.582-599. [18] G. Dattoli, P.E. Ricci and C. Cesarano, The Lagrange polynomials, the associated generalizations, and the umbral calculus, Integral Transform. Spec. Funct., 14(2) (2003), pp.181-186. [19] A. Erd´elyi, W. Magnus, F. Oberhettinger and F. G.Tricomi, Higher Transcendental Functions, Vol.I, McGraw-Hill Book Company, New York, Toronto and London, 1953. [20] A. Erd´elyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. III, McGraw-Hill Book Company, New York, Toronto and London, 1955. [21] Esra Erku¸s ; Abdullah Altın, A note on the Lagrange polynomials in several variables, J. Math. Anal. Appl. 310 (2005), no. 2, pp.338-341. [22] Esra Erku¸s, Oktay Duman, H. M. Srivastava, tatistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput. 182 (2006), pp.213-222. [23] Esra Erku¸s , H. M. Srivastava, A unified presentation of some families of multivariable polynomials, Integral Transform. Spec. Funct. 17 (2006), pp.315-320. [24] H. Exton, Multiple Hypergeometric Functions and Applications. John Wiley and Sons (Halsted Press), New York; Ellis Horwood, Chichester (1976). [25] H. Exton, On two Multiple Hypergeometric Functions Related to Lauricella’s F^(n)_D , Jnanabha Sect. A 2 (1972), pp.59-73. [26] B. Gonz´alez, J. Matera, H.M. Srivastava, Some q-generating functions and associated families of generalized hypergeometric polynomials, Math. Comput. Modelling 34 (1- 2) (2001), pp.133-175. [27] J. Kamp´e de F´eriet, Les fonctions hyperg´eom´etriques d’ordre sup´erieur `a deux variables, C.R. Acad. Sci. Paris, 173 (1921), pp.401-404. [28] M. A. Khan; A. K. Shukla ; On Lagrange’s polynomials of three variables. Proyecciones 17 (1998), no. 2, pp.227–235. [29] J. Koekoek, R. Koekoek and H.Bavinck, On differential equations for Sobolev-type Laguerre polynomials, Trans. Amer. Math. Soc. 350 (1998), no. 1, pp.347-393. [30] G. Lauricella, Sulle funzioni ipergeometriche a pi`u variabili, Rend. Circ. Mat. Palermo, 7 (1893), pp.111-158. [31] S.J. Liu, Bilateral generating functions for the Lagrange polynomials and the Lauricella functions, Integral Transform. Spec. Funct., 20 (7) (2009), pp.519-527. [32] Qureshi, M. I.; Khan, M. Sadiq; Pathan, M. A. Some multiple Gaussian hypergeometric generalizations of Buschman-Srivastava theorem. Int. J. Math. Math. Sci. 2005 (2005), no. 1, pp.143–153. [33] E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971. [34] G. Szeg¨o, Orthogonal Polynomials, Fourth Edition, American Mathematical Society Colloquium Publications, Vol.23, American Mathematical Society, Providence, Rhode Island (1975). [35] H. M. Srivastava and M. C. Daoust, Certain generalized Neumann expansions associated with the Kamp´e de F´eriet function, Nederl. Akad. Wetensch. Indag. Math. 31 (1969), pp.449-457. [36] H.M. Srivastava and J.-L. Lavoie, A certain method of obtaining bilateral generating functions. Nederl. Akad. Wetensch. Proc. Ser. A 78=Indag. Math. 37 (1975), no. 4, pp.304–320. [37] H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1984. [38] H. M. Srivastava and M. C. Daoust, On Eularian integrals associated with Kamp´e de F´eriet’s function, Publ. Inst. Math. (Beograd) (Nouvelle s´er.) 9 (23) (1969), pp.199-202. [39] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985. [40] H.M. Srivastava and R. Panda, An integral representation for the product of two Jacobi polynomials, J. London Math. Soc. (2) 12 (1976), pp. 419-425. [41] H.M. Srivastava, Certain double integrals involving hypergeometric functions, J˜n¯an¯abha Sect. A 1 (1971), pp.1-10. [42] I.Tomescu, Problems in Combinatoriecs and Graph Theory (Translated from the Romanian by R.A.Melter), Wiley-Interscience Series in Discrete Mathematics, A Wiley- Interscience Publication, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
|