跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/06 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪裕勛
研究生(外文):Yu-Hsun Hung
論文名稱:鋁質蒸汽腔體均熱片之製造與分析
論文名稱(外文):Fabrication and Analysis of Aluminum Vapor Chamber Heat Spreaders
指導教授:康尚文
指導教授(外文):Shung-Wen Kang
學位類別:博士
校院名稱:淡江大學
系所名稱:機械與機電工程學系博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:146
中文關鍵詞:蒸汽腔體鋁合金燒結二相流FluentVOF
外文關鍵詞:Vapor chamberAluminumAluminum alloySintered powdersTwo-phase flowFluentVOF
相關次數:
  • 被引用被引用:3
  • 點閱點閱:472
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要是針對鋁質蒸汽腔體均熱片之製造與分析,文中分為鋁質蒸汽腔體的實驗分析與二相流分析應用於蒸汽腔體。蒸汽腔體外觀尺寸58mmx58mmx6mm,使用鋁合金6061作為材料,毛細結構採用向中心傾斜的放射狀溝槽以及鋁粉燒結結構兩種設計。溝槽的尺寸分別是寬度0.4mm與深度0.65-0.91mm;鋁粉燒結毛細結構孔隙率為0.32,厚度為0.5mm,並設計八支直徑3mm燒結柱。工作流體採用丙酮充填兩種鋁質蒸汽腔體。
在鋁質蒸汽腔體的研究部分,實驗測試包含最佳充填量、隨著功率變化的整體熱阻值、以及散熱端表面溫度的量測。結果顯示放射狀溝槽式鋁質蒸汽腔體最佳充填率為25%,並藉由表面溫度的結果得知溝槽毛細結構可提升整體熱傳性能的特性。燒結式鋁質蒸汽腔體最佳充填率為55%;隨著功率的變動,整體熱阻值的變動(0.65-0.69℃/W)小於溝槽式的設計(0.72-0.91℃/W)。
本文第二部份為探討二相流分析應用於蒸汽腔體的研究。運算分析使用計算流體力學模擬軟體Fluent中的多相流模組-VOF來研究工作流體於蒸汽腔體中的作動情形。文中利用汽液相、溫度與速度分佈圖來進行分析與研究。蒸汽腔體尺寸比照文獻設計為46.5mmx4.6mm的二維軸對稱模型。結果探討包含啟動機制與達到穩態的工作流體汽相、液相、溫度場、速度場運作過程。另針對毛細結構支柱與多點熱源作模擬分析。
模擬分析比對文獻實驗數據與數值分析,結果顯示蒸汽腔體底部中心溫度略高於實驗與數值分析,與實驗數據僅差距1℃。並藉由啟動至穩態的模擬分析,探討工作流體汽相、液相、溫度場與速度場變化的現象。隨著功率的輸入,工作流體逐漸產生相變化傳熱機制,並生成汽泡、蒸汽膜。文中並探討毛細支柱的設計與多熱源的關係。透過模擬的結果顯示出,理想的狀況之下,毛細支柱的設計與否,對於蒸汽腔體熱傳效率影響並不明顯。
This study presents the fabrication and analysis of aluminum vapor chamber heat spreaders. It is divided into two main topics, fabrication and experiment of aluminum vapor chamber and the two-phase flow analysis inside the vapor chamber, respectively. Aluminum alloy 6061 as the container material is used to fabricate the aluminum vapor chamber with the radial grooved wick and sintered aluminum powders wick. Two kinds of aluminum vapor chambers are of the same dimension of 58mmx58mmx6mm. For radial grooved aluminum vapor chamber, the groove is dimension 0.4mm wide and 0.65-0.91mm deep due to an arc design and the radius of central pool is 10.16mm. For sintered aluminum powders vapor chamber, the sintered wick is 0.5mm thick and eight pillars with diameter of 3mm are inserted inside it. The porosity is 0.32. The working fluid is acetone charged with all aluminum vapor chambers.
The results of all aluminum vapor chambers present the optimum charging amounts of the working fluid and the overall thermal resistance with heat input power 20-80W in increment of 20W, as well as the temperature at the bottom of heat sink. According to measuring the charging amounts of the working fluid, the fill ratios of grooved and sintered vapor chamber are 25%(1.02g) and 55%(2.69g) respectively. These results show that the radial grooved wick structures enhance the heat transfer coefficient of vapor chamber due to heat conduction and phase change. Compared with two kinds of wick designs, the overall thermal resistance of sintered aluminum powders vapor chamber (0.65-0.69℃/W) is changed and less than one of radial grooved vapor chamber (0.72-0.91℃/W) after steady state with heat input power 20-80W in increments of 20W.
The second topic of this study is the two-phase flow analysis inside the vapor chamber. The two-phase flow analysis is done by Volume of Fluid (VOF) multi-flow method of CFD simulation software Fluent. The simulation model of vapor chamber is axisymmetrically two-dimensional model of 46.5mmx4.6mm followed Y. Koito’s literatures. The start-up operation of vapor chamber for the two-phase flow analysis and three kinds of Types for vapor chamber subjected to multiple discrete heat sources and effect of pillar design are discussed. The phase, temperature, velocity distributions are investigated.
The temperature at the center of the bottom of the vapor chamber for simulation result is in good agreement with the experimental and numerical of literature result, although the temperature of numerical result is slightly lower than simulation result. The start-up operation of vapor chamber is illustrated and discussed until steady state or dry out by the phase, temperature, and velocity distribution. With heat input power, the liquid phase is transferred to the vapor phase, and the bubbles or vapor films are formed. The phase change causes the significant temperature difference. The bubble growing leads to the velocity vortex. The velocity at the wick region is slighter than it at the vapor core. Vapor chamber with pillar design and subjected to multiple discrete heat sources are simulated and discussed with respect to different the phase, temperature, and velocity distribution. From simulation results, the top surface temperature distributions at the top wall with pillar design are somewhat the same as the temperature field with none pillar design. The pillar design does not affect the heat transfer efficiency of vapor chamber for ideal heat transfer of phase change.
Contents

Acknowledgments…………………………………………………. I
Chinese Abstract…………………………………………………... II
English Abstract…………………………………………………… IV
List of Contents……………………………………………………. VI
List of Figures……………………………………………………… X
List of Tables……………………………………………………….. XVIII
Nomenclature……………………………………………………… XIX


Chapter 1 Introduction…………………………………………. 1
1.1 Background………………………………………………………….. 1
1.2 Literature Review……………………………………………………. 2
1.3 Motivation…………………………………………………………… 5
Chapter 2 Aluminum Vapor Chamber with Radial Grooved Wick Structures……………………………………... 7
2.1 Introduction of Aluminum and Aluminum Alloy……………..……... 7
2.2 Design and Experiment……………………..……………………….. 10
2.2.1 Introduction of Radial Grooves…………………………………... 10
2.2.2 Design of Aluminum Vapor Chamber with Radial Grooved Wick…………………………………………………………........ 11
2.2.3 Experimental Setup and Procedure…………………………......... 13
2.3 Results and Discussion………………………………………………. 16
2.3.1 Effect of Charging Amounts of the Working Fluid…………......... 17
2.3.2 Effect of Temperatures at the Bottom of the Heat Sink………….. 20
2.4 Preliminary Conclusion……………………………………………… 23
Chapter 3 Aluminum Vapor Chamber with Sintered Aluminum Powders Wick Structures……………… 25
3.1 Introduction………………………………………………………….. 25
3.2 Sintered Powders Wick Structure……………………………………. 29
3.3 Design and Experiment……..……………………………………….. 31
3.3.1 Introduction of Aluminum Powder Application………………….. 31
3.3.2 Strain Analysis of Vapor Chamber with and without Pillars……... 31
3.3.2.1 Deformation of Vapor Chamber……………………………... 35
3.3.2.2 Finite Element Model and Boundary Conditions…………… 36
3.3.2.3 Thermal Analysis of Vapor Chamber………………………... 40
3.3.2.4 Conclusion of Strain Analysis of Vapor Chamber…………... 49
3.3.3 Design of Aluminum Vapor Chamber with Sintered Aluminum Powders Wick Structures………………………………………… 50
3.3.4 Porosity Measurement Experimental Procedure……………...….. 52
3.4 Results and Discussions……………………………………………... 54
3.4.1 Effect of Porosity of Sintered Aluminum Powders………………. 54
3.4.2 Effect of Charging Amounts of the Working Fluid………………. 56
3.4.3 Effect of Temperatures at the Bottom of the Heat Sink………….. 59
3.5 Preliminary Conclusion……………………………………………… 61
Chapter 4 Two Phase Flow Analysis of Vapor Chamber Heat Spreaders……………………………………………. 63
4.1 Introduction to Analysis of Vapor Chamber…………………………. 63
4.2 Simulation Analysis of Vapor Chamber……………………………... 79
4.2.1 CFD Simulation Model of Vapor Chamber……………………… 79
4.2.2 Introduction and Basic Theory of Fluent………………………… 84
4.2.3 Introduction and Theory of Volume of Fluid (VOF)……………... 90
4.2.4 Boundary Condition……………………………………………… 94
4.3 Numerical Simulation Results and Discussions……………………... 97
4.3.1 Comparison of Single- and Two-Phase Flow Analysis…………. 97
4.3.2 Start-Up Operation of Vapor Chamber………………………….. 100
4.3.3 Effect of Variation of Heat Input to the Multiple Heat Sources… 106
4.3.3.1 Effect of Type II and Type IV to the Two Heat Sources…….. 106
4.3.3.1.1 Start-Up Operation of Type II to the Two Heat Sources….. 106
4.3.3.1.2 Start-Up Operation of Type IV to the Two Heat Sources… 112
4.3.3.2 Effect of Type III and Type IV to the Three Heat Sources…... 116
4.3.3.2.1 Start-Up Operation of Type III to the Three Heat Sources.. 116
4.3.3.2.2 Start-Up Operation of Type IV to the Three Heat Sources.. 122
4.3.3.3 Comparison of Three Types to the Multiple Discrete Heat Sources………………………………………………………. 125
4.4 Preliminary Conclusion……………………………………………… 127
Chapter 5 Summary…………………………………………….. 128
5.1 Summary…………………………………………………………….. 128
5.2 Conclusion…………………………………………………………... 129
5.3 Future Work………………………………………………………….. 130


Reference…………………………………………………………… 134

Appendix A Uncertainty Analysis……………………………… 140
Appendix B Experimental Data of Aluminum Vapor Chamber with Radial Grooved Wick Structures.. 141
Appendix C Experimental Data of Aluminum Vapor Chamber with Sintered Aluminum Powders Wick Structures…………………………………… 142
Appendix D Material Property of Simulation Analysis………. 143
Appendix E User-Defined Function Source Code…………….. 144

Publication List ……………………………………………………… 146

List of Figures

Figure 1-1 Illustration of vapor chamber………………………………….. 2
Figure 1-2 Roll bonding fabrication process……………............................. 4
Figure 1-3 Schematic and design of an arch-shaped channel……………... 5
Figure 1-4 The heat spreaders with network design of wicks……………... 5
Figure 2-1 The radial grooved micro heat pipe heat spreaders: (a) A three-layer silicon structure. (b) Three copper foil layers……... 11
Figure 2-2 Schematic of the radial grooved vapor chamber………………. 12
Figure 2-3 Photograph of the radial grooved vapor chamber……………... 12
Figure 2-4 A scheme of experimental apparatus of CPU cooler…………... 15
Figure 2-5 Measuring the temperatures at the bottom of the heat sink……. 15
Figure 2-6 Schematic of the experimental apparatus……………………… 16
Figure 2-7 Comparison of charging amounts of acetone and thermal resistance of the aluminum vapor chamber with radial grooved wick structures…………………………………………………. 18
Figure 2-8 Comparison of thermal resistance and filling ratios of acetone for aluminum vapor chamber with radial grooved wick structures……………………………………………………….. 19
Figure 2-9 Comparison of temperature difference (Tc-Ta) and filling ratios of acetone for aluminum vapor chamber with radial grooved wick structures…………………………………………………. 19



Figure 2-10 Distributions of the contact temperature, ambient temperature, and overall thermal resistance at the charging amount of 1.02g (filling ratio of 25%) with time for aluminum radial grooved vapor chamber…………………………………………………. 20
Figure 2-11 Distributions of the temperatures at the bottom of heat sink with time for the aluminum radial grooved vapor chamber…… 21
Figure 2-12 Distributions of the temperatures at the bottom of heat sink with position…………………………………………………… 22
Figure 2-13 Schematic of the vapor flow and heat paths on the condensation surface…………………………………………… 22
Figure 2-14 Comparison of the contact temperature and temperatures at the bottom of heat sink with heat input power…………………….. 23
Figure 3-1 (a) Effect of powder diameter and wick thickness on the heat transfer rate. (b) Effect of porosity on the heat transfer rate…... 30
Figure 3-2 Typical aluminum powder metallurgy parts…………………… 31
Figure 3-3 Deformation of vapor chamber………………………………... 34
Figure 3-4 Deformation of vapor chamber after welding…………………. 36
Figure 3-5 Dimension of vapor chamber for strain analysis………………. 36
Figure 3-6 Symmetrically quartered finite element model………………... 38
Figure 3-7 Case I for heater size of 14x14mm2…………………………… 38
Figure 3-8 Case I for heater size of 30x30mm2…………………………… 39
Figure 3-9 Case II for heater size of 14x14mm2…………………………... 39
Figure 3-10 Case II for heater size of 30x30mm2…………………………... 39
Figure 3-11 The stress distribution of vapor chamber with a pillar of Case I distance from the center of mm for heater size of 14x14mm2……………………………………………………… 41
Figure 3-12 The stress distribution of vapor chamber without a pillar distance from the center of mm for heater size of 14x14mm2…………………………………………………........ 41
Figure 3-13 Strains of vapor chamber on the x-directional line and diagonal………………………………………………………... 42
Figure 3-14 Strain distributions of Case I along x-directional line for heater size 14x14mm2………………………………………………… 42
Figure 3-15 Strain distributions of Case I along x-direction for heater size 30x30mm2……………………………………………………… 42
Figure 3-16 Strain distributions of Case I along a diagonal for heater size 14x14mm2……………………………………………………… 43
Figure 3-17 Strain distributions of Case I along a diagonal for heater size 30x30mm2……………………………………………………… 43
Figure 3-18 Stress distribution with pillars of Case II distance from the center of mm for heater size of 14x14mm2……………………………………………………… 44
Figure 3-19 Strain distributions of Case II along x-directional line for heater size 14x14mm2………………………………………… 44
Figure 3-20 Strain distributions Case II along x-directional line for heater size 30x30mm2.………………………………………………... 45
Figure 3-21 Strain distributions Case II along a diagonal for heater size 14x14mm2…………………………………………………….... 45
Figure 3-22 Strain distributions Case II along a diagonal for heater size 30x30mm2……………………………………………………… 45
Figure 3-23 The average of strains along the x-directional line and diagonal within the heater area of 14x14mm2 and vapor core for Case I.. 47
Figure 3-24 The average of strains along the x-directional line and diagonal within the heater area of 30x30mm2 and vapor core for Case I.. 47
Figure 3-25 The average of strains along the x-directional line and diagonal within the heater area of 14x14mm2 and vapor core for Case II. 48
Figure 3-26 The average of strains along the x-directional line and diagonal within the heater area of 30x30mm2 and vapor core for Case II. 48
Figure 3-27 Effect of wall thickness on strain of vapor chamber…………... 48
Figure 3-28 (a) Dimension of the bottom and top aluminum plates. (b) Dimension of the sintered aluminum powders wicks. (c) Combination of plates, wicks, and a feeding tube and Photograph of the sintered aluminum powder vapor chamber… 52
Figure 3-29 Porosity measurement apparatus………………………………. 53
Figure 3-30 The sample of sintered aluminum powders……………………. 55
Figure 3-31 SEM photographs of sintered aluminum powders of samples (a) on the pillar (zoom = 500X). (b) on the pillar (zoom = 1000X). (c) on the surface (zoom = 500X). (d) on the surface (zoom = 1000X). 55
Figure 3-32 Comparison of charging amounts of acetone and thermal resistance of the aluminum vapor chamber with sintered aluminum powers wick structures……………………………... 57

Figure 3-33 Comparison of thermal resistance and filling ratios of acetone for aluminum vapor chamber with sintered aluminum powers wick structures…………………………………………………. 57
Figure 3-34 Comparison of temperature difference (Tc-Ta) and filling ratios of acetone for aluminum vapor chamber with sintered aluminum powers wick structures……………………………... 58
Figure 3-35 Distributions of the contact temperature, ambient temperature, and overall thermal resistance at the charging amount of 2.69g (filling ratio of 55%) with time for vapor chamber with sintered aluminum powers wick structures…………………….. 58
Figure 3-36 Distributions of the temperatures at the bottom of heat sink with time for the aluminum vapor chamber with sintered aluminum powers wick structures……………………………... 60
Figure 3-37 Distributions of the temperatures at the bottom of heat sink with position…………………………..……………………….. 60
Figure 3-38 Comparison of the thermal resistances of aluminum vapor chamber with radial grooves and sintered aluminum powders wicks with heat input power.…………………………………... 61
Figure 4-1 The numerical model of transient analysis for heat pipe………. 71
Figure 4-2 The numerical model of the frozen state analysis for heat pipe.. 71
Figure 4-3 A network system for the heat pipe operation. (a) A sketch of the heat pipe heat transfer. (b) A network analogy of the heat pipe heat transfer……………………………………………….. 72
Figure 4-4 Schematic of (a) the disk-shaped heat pipe. (b) the flat-plate heat pipe………………………………………………………... 73
Figure 4-5 A schematic illustration of the flat plate heat pipe under three typical geometries and locations of the heat zone……………... 73
Figure 4-6 Pressure contours and the flow velocity fields to three typical heaters………………………………………………………….. 74
Figure 4-7 Schematic numerical model of vapor chamber………………... 75
Figure 4-8 Temperature distributions in silicon vapor chamber…………... 75
Figure 4-9 (a) Flip chip package with traditional copper IHS (integral heat spreader) and silicon vapor chamber. (b) Comparison on die stresses with copper IHS and vapor chamber………………….. 76
Figure 4-10 Mathematical model of the vapor chamber by H. Imura et al…. 76
Figure 4-11 Temperature distribution inside the vapor chamber…………… 77
Figure 4-12 Comparison between the numerical results and experimental results for Y. Koito’s…………………………………….……... 77
Figure 4-13 Physical model and liquid film distribution model……………. 78
Figure 4-14 Temperature distribution of the vapor chamber………………... 78
Figure 4-15 Liquid film thickness distribution in the groove at different heat fluxes……………………………………………………… 78
Figure 4-16 Schematic of the mesh model………………………………….. 80
Figure 4-17 Schematic and parameters of simulation model Type I………... 81
Figure 4-18 Schematic and parameters of simulation model Type II.…......... 82
Figure 4-19 Schematic and parameters of simulation model Type III……… 82
Figure 4-20 Schematic and parameters of simulation model Type IV for multiple discrete heat sources.…………………………………. 83
Figure 4-21 The flowchart of solution……………………………………… 90

Figure 4-22 The free surface among the computational cells by VOF method…………………………………………………………. 93
Figure 4-23 The mass and energy jump conditions in the interface between vapor phase and liquid phase…………………………………... 93
Figure 4-24 Vapor bubbles periodically form (red) along a heater surface and rise through the liquid (yellow)……………………………. 94
Figure 4-25 Vapor forms in the wick………………………………………... 97
Figure 4-26 Effect of the simulation result on the (a) temperature distribution and (b) velocity vector inside the vapor chamber.……………………………………………..…………. 99
Figure 4-27 Figure. 4-27 Effect of the numerical result on the (a) temperature distribution and (b) velocity vector inside the vapor chamber…………………………………………………. 99
Figure 4-28 Phase distribution inside the vapor chamber…………………... 103
Figure 4-29 Temperature distribution inside the vapor chamber…………… 104
Figure 4-30 Distribution of velocity vector inside the vapor chamber……... 106
Figure 4-31 Phase distribution inside the Type II vapor chamber…………... 109
Figure 4-32 Temperature distribution inside the Type II vapor chamber…… 110
Figure 4-33 Distribution of velocity vector inside the Type II vapor chamber………………………………………………………... 112
Figure 4-34 Phase distribution inside the Type IV for two heat sources……. 114
Figure 4-35 Temperature distribution inside the Type IV for two heat sources…………………………………………………………. 115
Figure 4-36 Distribution of velocity vector inside the Type IV for two heat sources…………………………………………………………. 115
Figure 4-37 Phase distribution inside the Type III vapor chamber…………. 119
Figure 4-38 Temperature distribution inside the Type III vapor chamber….. 120
Figure 4-39 Distribution of velocity vector inside the Type III vapor chamber………………………………………………………... 122
Figure 4-40 Phase distribution inside the Type IV for three heat sources…... 123
Figure 4-41 Temperature distribution inside the Type IV for three heat sources…………………………………………………………. 124
Figure 4-42 Distribution of velocity vector inside the Type IV for three heat sources…………………………………………………………. 125
Figure 4-43 Comparison of the top surface temperature distribution of Type II and Type IV at the top wall………………………………….. 126
Figure 4-44 Comparison of the top surface temperature distribution of Type III and Type IV at the top wall…………………………………. 126
Figure 5-1 Schematic of composed wick and the liquid/vapor flow paths... 131
Figure 5-2 Scheme of the simulation model in the evaporator……………. 133
Figure 5-3 Scheme of the simulation model in the condenser…………….. 133

List of Tables

Table 1-1 Material compatibility for container and fluid combinations…..... 4
Table 3-1 Typical wick designs…………………………………………….. 28
Table 3-2 The physical property of copper for strain analysis simulation…. 38
Table 3-3 Occupation area of pillar and strain decrease……………………. 49
Table 3-4 The physical property of aluminum……………………………... 49
Table 4-1 The geometric parameters of the vapor chamber………………... 81
Table 4-2 The boundary conditions in the heat sources……………………. 97
Table 4-3 Comparison of the simulation, numerical, and experimental results at the center of the bottom of the vapor chamber………... 98
1. NASA Goddard Space Flight Center, “Ammonia-Charged Aluminum Heat Pipes with Extruded Wick,” Preferred Reliability Practices, No. PD-ED-1209, pp. 1-7, 1998.
2. F. Baehrle, H. Wulf, H. Kreeb, Heat Pipe of Aluminum, Steel or Gray Cast Iron, United States Patent, No. 4773476, September 27, 1988.
3. K. Take, Y. Furukawa, S. Ushioda, “Fundamental Investigation of Roll Bond Heat Pipe as Heat Spreader Plate for Notebook Computers,” IEEE Transactiona on Components and Packaging Technologies, Vol. 23, No. 1, pp. 80-85, 2000.
4. T. Shimura, H. Sho, Y. Nakamura, “The Aluminum Flat Heat Pipe Using Cyclopentane as Working Fluid,” Thermomechanical Phenomena in Electronic System – Proceedings of the Intersociety Conference, 2002, pp. 224-229.
5. Y. Cao, M. Cao, “Wickless Network Heat Pipes for High Heat Flux Spreading Applications,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 2539-2547, 2002.
6. L. F. Mondolfo, Aluminum Alloys: Structure & Properties, Butterworths, London, 1976.
7. S. W. Kang, S. H. Tsai, H. C. Chen, “Fabrication and Test of Radial Grooved Micro Heat Pipes,” Applied Thermal Engineering, Vol. 22, pp. 1559-1568, 2002.
8. S. W. Kang, S. H. Tsai, M. H. Ko, “Metallic Micro Heat Pipe Heat Spreader Fabrication,” Applied Thermal Engineering, Vol. 24, pp. 299-309, 2004.
9. M. Zhang, Z. Liu, G. Ma, “The Experimental and Numerical Investigation of a Grooved Vapor Chamber,” Applied Thermal Engineering, Vol. 29, pp. 422-430, 2009.
10. J. S. Go, “Quantitative Thermal Performance Evaluation of a Cost-Effective Vapor Chamber Heat Sink Containing a Metal-Etched Microwick Structure for Advanced Microprocessor Cooling,” Sensors and Actuators A: Physical, Vol. 121, pp. 549-556, 2005.
11. M. Lu, L. Mok, R. J. Bezama, “A Graphite Foams Based Vapor Chamber for Chip Heat Spreading,” Transactions-American Society of Mechanical Engineers Journal of Electronic Packaging, Vol. 128, No. 4, pp. 427-431, 2006.
12. D. T. Queheillalt, G. Carbajal, G. P. Peterson, H. N. G. Wadley, “A Multifunctional heat pipe sandwich panel structure,” International Journal of Heat and Mass Transfer. Vol. 51, No. 1-2, pp. 312-326, 2008.
13. A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, Washington DC, 1995.
14. K. C. Leong, C.Y. Liu, G. Q. Lu, “Characterization of Sintered Copper Wicks Used in Heat Pipes,” Journal of Porous Materials, Vol. 4, pp. 303-308, 1997.
15. Y. M. Chen, S. C. Wu, C. I. Chu, “Thermal Performance of Sintered Miniature Heat Pipes,” Heat and Mass Transfer, Vol. 37, pp. 611-616, 2001.
16. K. S. Udell, “Heat Transfer in Porous Media Heated from above with Evaporation, Condensation, and Capillary Effects,” Journal of Heat Transfer, Vol. 105, pp. 485-492, 1983.
17. K. S. Udell, “Heat Transfer in Porous Media Considering Phase Change and Capillary – the Heat Pipe Effect,” International Journal of Heat and Mass Transfer, Vol. 28, No. 2, pp. 485-495, 1985.
18. M. A. Hanlon, H. B. Ma, “Evaporation Heat Transfer in Sintered Porous Media,” Journal of Heat Transfer, Vol. 125, pp. 644-652, 2003.
19. D. A. Pruzan, L. K. Klingensmith, K. E. Torrance, C. T. Avedisian, “Design of High – Performance Sintered – Wick Heat Pipes,” International Journal of Heat and Mass Transfer, Vol. 34, No. 6, pp. 1417-1427, 1991.
20. Y. Koito, K. Motomatsu, H. Imura, M. Mochizuki, Y. Saito, “Fundamental Investigations on Heat Transfer Characteristics of Heat Sinks with a Vapor Chamber,” Proceeding of the 7th International Heat Pipe Symposium, pp. 247-251, 2003.
21. N. Popova, Ch. Schaeffer, Y. Avenas, G. Kapelski, “Fabrication and Thermal Performance of a Thin Flat Heat Pipe with Innovative Sintered Copper Wick Structure,” IAS Annual Meeting (IEEE Industry Applications Society), Vol. 2, Article No. 4025302, pp. 791-796, 2006.
22. J. E. Hatch, Aluminum: Properties and Physical Metallurgy, American Society for Metals, Metals Park, Ohio, 1984.
23. R. Chanchani, P. M. Hall, “Temperature Dependence of Thermal Expansion of Ceramics and Metals for Electronic Packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 4, December, 1990, pp. 743-750.
24. M. P. Rodriguez, N. Y. A. Shammas, “Finite Element Simulation of Thermal Fatigue in Multilayer Structures: Thermal and Mechanical Approach,” Microelectronics and Reliability, Vol. 41, No. 4, April, 2001, pp. 517-523.
25. T.-Y. Chiang, S. J. Souri, C. O. Chui, K. C. Saraswat, “Thermal Analysis of Heterogeneous 3-D ICs with Various Integration Scenarios,” Technical Digest-International Electron Devices Meeting, 2001, pp. 581-684.
26. M. Huja, M. Husak, “Thermal Microactuators for Optical Purpose,” Proceeding International Conference on Information Technology: Coding and Computing, 2001, pp. 137-142.
27. D. Y. R. Chong, R. Kapoor, A. Y. S. Sun, “Reliability Assessment of a High Performance Flip-Chip BGA Package (Organic Substrate Based) Using Finite Element Analysis,” Electronic Components and Technology Conference, May 27-30, 2003, pp. 1425-1430.
28. X. Zhang, E. H. Wong, C. Lee, T.-C. Chai, Y. Ma, P.-S. Teo, D. Pinjala, S. Sampath, “Thermo-Mechanical Finite Element Analysis in a Multichip Build up Substrate Based Package Design,” Microelectronics Reliability, Vol. 44, No. 4, April, 2004, pp. 611-619.
29. U. Vadakkan, G. M. Chrysler, S. Sane, “Silicon/Water Vapor Chamber as Heat Spreaders for Microelectronic Packages,” 21st IEEE Semi-Therm Symposium, 2005, pp. 182-186.
30. W. S. Chang, G. T. Colwell, “Mathematical Modeling of the Transient Operating characteristis of a Low-Temperature Heat Pipe,” Numerical Heat Transfer, Vol. 8, pp. 169-186, 1985.
31. J. M. Tournier, M. S. EL-Genk, “A Heat Pipe Transient Analysis Model,” International Journal of Heat and Mass Transfer, Vol. 37, No. 5, pp. 753-762, 1994.
32. J.-M. Tournier, M. S. El-Genk, “Transient Analysis of the Start-Up of a Water Heat Pipe from a Frozen State,” Numerical Heat Transfer, Part A, Vol. 28, pp. 461-486, 1995.
33. Z. J. Zuo, A. Faghri, “A Network Thermodynamic analysis of the Het Pipe,” International Journal of Heat and Mass Transfer, Vol. 41, No. 11, pp. 1473-1484, 1998.
34. K. Vafai, W. Wang, “Analysis of Flow and Heat Transfer Characteristics of an Asymmetrical Flat Plate Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 35, No. 9, pp. 2087-2099, 1992.
35. N. Zhu, K. Vafai, “Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe: a Three-Dimensional Analytical and Numerical Investigation,” International Journal of Heat and Mass Transfer, Vol. 41, No. 1, pp. 159-174, 1998.
36. N. Zhu, K. Vafai, “Analytical Modeling of the Startup Characteristics of Asymmetrical Flat-Plate and Disk-Shaped Heat Pipes,” International Journal of Heat and Mass Transfer, Vol. 41, No. 17, pp. 2619-2637, 1998.
37. Y. Wang, K. Vafai, “Transient Characterization of Flat Plate Heat Pipes During Startup and Shutdown Operations,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 2641-2655, 2000.
38. X. Y. Huang, C. Y. Liu, “The Pressure and Velocity Fields in the Wick Structure of a Localized Heated Flat Plate Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 39, No. 6, pp. 1325-1330, 1996.
39. U. Vadakkan, S. V. Garimella, J. Y. Murthy, “Transport in Flat Heat Pipes at High Heat Fluxes from Multiple Discrete Sources,” Journal of Heat Transfer, Vol. 126, pp. 347-354, 2004.
40. Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Numerical Analysis on Thermal Transport Phenomena in Plate-Type Heat Pipes,” The 10th APCChE Congress, 3I-06, 2004.
41. Y. Koito, H. Imura, M. Mochizuki, S. Torii, “Numerical Analysis on Fluid Flow and Heat Transfer in a Vapor Chamber,” The 1st International Symposium on Micro & Nano Technology, XXII-C-02, 2004.
42. Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Numerical Analysis and Experimental Verification on Thermal Fluid Phenomena in a Vapor Chamber,” Applied Thermal Engineering, Vol. 26, No. 14-15, pp. 1669-1676, 2006.
43. Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Heat Transfer Analysis of a Vapor Chamber,” Proceedings of the 1st International Forum on Heat Transfer, GS1-08, pp. 35-36, 2004.
44. Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Theoretical Study on Heat Transfer Characteristics of a Vapor Chamber,” Thermal Science and Engineering, Vol. 13, No. 1, pp. 23-30, 2005.
45. M. Zhang, Z. Liu, G. Ma, “The Experimental and Numerical Investigation of a Grooved Vapor Chamber,” Applied Thermal Engineering, Vol. 29, pp. 422-430, 2009.
46. Fluent Inc., FLUENT 6.3 User’s Guide, September, 2006.
47. Fluent Inc., FLUENT 6.3 UDF Manual, September, 2006.
48. J. P. Van Doormaal, G. D. Raithby, “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
49. J. U. Brackbill, D. B. Kothe, C. Zemach, “A Continuum Method for Modeling Surface Tension,” Journal of Computational Physics, Vol. 100, pp. 335-354, 1992.
50. S. W. J. Welch, J. Wilson, “A Volume of Fluid Based Method for Fluid Flows with Phase Change,” Journal of computational Physics, Vol. 160, pp. 662-682, 2000.
51. G. P. Peterson, An Introduction to Heat Pipes: Modeling, Testing, and Applications, John Wiley & Sons, INC., 1994.
52. G. S. Hwang, M. Kaviany, W. G. Anderson, J. Zuo, “Modulated Wick Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 1420-1434, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊