|
1. NASA Goddard Space Flight Center, “Ammonia-Charged Aluminum Heat Pipes with Extruded Wick,” Preferred Reliability Practices, No. PD-ED-1209, pp. 1-7, 1998. 2. F. Baehrle, H. Wulf, H. Kreeb, Heat Pipe of Aluminum, Steel or Gray Cast Iron, United States Patent, No. 4773476, September 27, 1988. 3. K. Take, Y. Furukawa, S. Ushioda, “Fundamental Investigation of Roll Bond Heat Pipe as Heat Spreader Plate for Notebook Computers,” IEEE Transactiona on Components and Packaging Technologies, Vol. 23, No. 1, pp. 80-85, 2000. 4. T. Shimura, H. Sho, Y. Nakamura, “The Aluminum Flat Heat Pipe Using Cyclopentane as Working Fluid,” Thermomechanical Phenomena in Electronic System – Proceedings of the Intersociety Conference, 2002, pp. 224-229. 5. Y. Cao, M. Cao, “Wickless Network Heat Pipes for High Heat Flux Spreading Applications,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 2539-2547, 2002. 6. L. F. Mondolfo, Aluminum Alloys: Structure & Properties, Butterworths, London, 1976. 7. S. W. Kang, S. H. Tsai, H. C. Chen, “Fabrication and Test of Radial Grooved Micro Heat Pipes,” Applied Thermal Engineering, Vol. 22, pp. 1559-1568, 2002. 8. S. W. Kang, S. H. Tsai, M. H. Ko, “Metallic Micro Heat Pipe Heat Spreader Fabrication,” Applied Thermal Engineering, Vol. 24, pp. 299-309, 2004. 9. M. Zhang, Z. Liu, G. Ma, “The Experimental and Numerical Investigation of a Grooved Vapor Chamber,” Applied Thermal Engineering, Vol. 29, pp. 422-430, 2009. 10. J. S. Go, “Quantitative Thermal Performance Evaluation of a Cost-Effective Vapor Chamber Heat Sink Containing a Metal-Etched Microwick Structure for Advanced Microprocessor Cooling,” Sensors and Actuators A: Physical, Vol. 121, pp. 549-556, 2005. 11. M. Lu, L. Mok, R. J. Bezama, “A Graphite Foams Based Vapor Chamber for Chip Heat Spreading,” Transactions-American Society of Mechanical Engineers Journal of Electronic Packaging, Vol. 128, No. 4, pp. 427-431, 2006. 12. D. T. Queheillalt, G. Carbajal, G. P. Peterson, H. N. G. Wadley, “A Multifunctional heat pipe sandwich panel structure,” International Journal of Heat and Mass Transfer. Vol. 51, No. 1-2, pp. 312-326, 2008. 13. A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, Washington DC, 1995. 14. K. C. Leong, C.Y. Liu, G. Q. Lu, “Characterization of Sintered Copper Wicks Used in Heat Pipes,” Journal of Porous Materials, Vol. 4, pp. 303-308, 1997. 15. Y. M. Chen, S. C. Wu, C. I. Chu, “Thermal Performance of Sintered Miniature Heat Pipes,” Heat and Mass Transfer, Vol. 37, pp. 611-616, 2001. 16. K. S. Udell, “Heat Transfer in Porous Media Heated from above with Evaporation, Condensation, and Capillary Effects,” Journal of Heat Transfer, Vol. 105, pp. 485-492, 1983. 17. K. S. Udell, “Heat Transfer in Porous Media Considering Phase Change and Capillary – the Heat Pipe Effect,” International Journal of Heat and Mass Transfer, Vol. 28, No. 2, pp. 485-495, 1985. 18. M. A. Hanlon, H. B. Ma, “Evaporation Heat Transfer in Sintered Porous Media,” Journal of Heat Transfer, Vol. 125, pp. 644-652, 2003. 19. D. A. Pruzan, L. K. Klingensmith, K. E. Torrance, C. T. Avedisian, “Design of High – Performance Sintered – Wick Heat Pipes,” International Journal of Heat and Mass Transfer, Vol. 34, No. 6, pp. 1417-1427, 1991. 20. Y. Koito, K. Motomatsu, H. Imura, M. Mochizuki, Y. Saito, “Fundamental Investigations on Heat Transfer Characteristics of Heat Sinks with a Vapor Chamber,” Proceeding of the 7th International Heat Pipe Symposium, pp. 247-251, 2003. 21. N. Popova, Ch. Schaeffer, Y. Avenas, G. Kapelski, “Fabrication and Thermal Performance of a Thin Flat Heat Pipe with Innovative Sintered Copper Wick Structure,” IAS Annual Meeting (IEEE Industry Applications Society), Vol. 2, Article No. 4025302, pp. 791-796, 2006. 22. J. E. Hatch, Aluminum: Properties and Physical Metallurgy, American Society for Metals, Metals Park, Ohio, 1984. 23. R. Chanchani, P. M. Hall, “Temperature Dependence of Thermal Expansion of Ceramics and Metals for Electronic Packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 4, December, 1990, pp. 743-750. 24. M. P. Rodriguez, N. Y. A. Shammas, “Finite Element Simulation of Thermal Fatigue in Multilayer Structures: Thermal and Mechanical Approach,” Microelectronics and Reliability, Vol. 41, No. 4, April, 2001, pp. 517-523. 25. T.-Y. Chiang, S. J. Souri, C. O. Chui, K. C. Saraswat, “Thermal Analysis of Heterogeneous 3-D ICs with Various Integration Scenarios,” Technical Digest-International Electron Devices Meeting, 2001, pp. 581-684. 26. M. Huja, M. Husak, “Thermal Microactuators for Optical Purpose,” Proceeding International Conference on Information Technology: Coding and Computing, 2001, pp. 137-142. 27. D. Y. R. Chong, R. Kapoor, A. Y. S. Sun, “Reliability Assessment of a High Performance Flip-Chip BGA Package (Organic Substrate Based) Using Finite Element Analysis,” Electronic Components and Technology Conference, May 27-30, 2003, pp. 1425-1430. 28. X. Zhang, E. H. Wong, C. Lee, T.-C. Chai, Y. Ma, P.-S. Teo, D. Pinjala, S. Sampath, “Thermo-Mechanical Finite Element Analysis in a Multichip Build up Substrate Based Package Design,” Microelectronics Reliability, Vol. 44, No. 4, April, 2004, pp. 611-619. 29. U. Vadakkan, G. M. Chrysler, S. Sane, “Silicon/Water Vapor Chamber as Heat Spreaders for Microelectronic Packages,” 21st IEEE Semi-Therm Symposium, 2005, pp. 182-186. 30. W. S. Chang, G. T. Colwell, “Mathematical Modeling of the Transient Operating characteristis of a Low-Temperature Heat Pipe,” Numerical Heat Transfer, Vol. 8, pp. 169-186, 1985. 31. J. M. Tournier, M. S. EL-Genk, “A Heat Pipe Transient Analysis Model,” International Journal of Heat and Mass Transfer, Vol. 37, No. 5, pp. 753-762, 1994. 32. J.-M. Tournier, M. S. El-Genk, “Transient Analysis of the Start-Up of a Water Heat Pipe from a Frozen State,” Numerical Heat Transfer, Part A, Vol. 28, pp. 461-486, 1995. 33. Z. J. Zuo, A. Faghri, “A Network Thermodynamic analysis of the Het Pipe,” International Journal of Heat and Mass Transfer, Vol. 41, No. 11, pp. 1473-1484, 1998. 34. K. Vafai, W. Wang, “Analysis of Flow and Heat Transfer Characteristics of an Asymmetrical Flat Plate Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 35, No. 9, pp. 2087-2099, 1992. 35. N. Zhu, K. Vafai, “Vapor and Liquid Flow in an Asymmetrical Flat Plate Heat Pipe: a Three-Dimensional Analytical and Numerical Investigation,” International Journal of Heat and Mass Transfer, Vol. 41, No. 1, pp. 159-174, 1998. 36. N. Zhu, K. Vafai, “Analytical Modeling of the Startup Characteristics of Asymmetrical Flat-Plate and Disk-Shaped Heat Pipes,” International Journal of Heat and Mass Transfer, Vol. 41, No. 17, pp. 2619-2637, 1998. 37. Y. Wang, K. Vafai, “Transient Characterization of Flat Plate Heat Pipes During Startup and Shutdown Operations,” International Journal of Heat and Mass Transfer, Vol. 43, pp. 2641-2655, 2000. 38. X. Y. Huang, C. Y. Liu, “The Pressure and Velocity Fields in the Wick Structure of a Localized Heated Flat Plate Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 39, No. 6, pp. 1325-1330, 1996. 39. U. Vadakkan, S. V. Garimella, J. Y. Murthy, “Transport in Flat Heat Pipes at High Heat Fluxes from Multiple Discrete Sources,” Journal of Heat Transfer, Vol. 126, pp. 347-354, 2004. 40. Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Numerical Analysis on Thermal Transport Phenomena in Plate-Type Heat Pipes,” The 10th APCChE Congress, 3I-06, 2004. 41. Y. Koito, H. Imura, M. Mochizuki, S. Torii, “Numerical Analysis on Fluid Flow and Heat Transfer in a Vapor Chamber,” The 1st International Symposium on Micro & Nano Technology, XXII-C-02, 2004. 42. Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Numerical Analysis and Experimental Verification on Thermal Fluid Phenomena in a Vapor Chamber,” Applied Thermal Engineering, Vol. 26, No. 14-15, pp. 1669-1676, 2006. 43. Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Heat Transfer Analysis of a Vapor Chamber,” Proceedings of the 1st International Forum on Heat Transfer, GS1-08, pp. 35-36, 2004. 44. Y. Koito, H. Imura, M. Mochizuki, Y. Saito, S. Torii, “Theoretical Study on Heat Transfer Characteristics of a Vapor Chamber,” Thermal Science and Engineering, Vol. 13, No. 1, pp. 23-30, 2005. 45. M. Zhang, Z. Liu, G. Ma, “The Experimental and Numerical Investigation of a Grooved Vapor Chamber,” Applied Thermal Engineering, Vol. 29, pp. 422-430, 2009. 46. Fluent Inc., FLUENT 6.3 User’s Guide, September, 2006. 47. Fluent Inc., FLUENT 6.3 UDF Manual, September, 2006. 48. J. P. Van Doormaal, G. D. Raithby, “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984. 49. J. U. Brackbill, D. B. Kothe, C. Zemach, “A Continuum Method for Modeling Surface Tension,” Journal of Computational Physics, Vol. 100, pp. 335-354, 1992. 50. S. W. J. Welch, J. Wilson, “A Volume of Fluid Based Method for Fluid Flows with Phase Change,” Journal of computational Physics, Vol. 160, pp. 662-682, 2000. 51. G. P. Peterson, An Introduction to Heat Pipes: Modeling, Testing, and Applications, John Wiley & Sons, INC., 1994. 52. G. S. Hwang, M. Kaviany, W. G. Anderson, J. Zuo, “Modulated Wick Heat Pipe,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 1420-1434, 2007.
|