|
1.Wang, J. and S. Dore, Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab, 2007. 27(5): p. 894-908. 2.Baeuerle, P.A. and T. Henkel, Function and activation of NF-kappa B in the immune system. Annu Rev Immunol, 1994. 12: p. 141-79. 3.Iliev, A.I., et al., Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). FASEB J, 2004. 18(2): p. 412-4. 4.Campbell, A., Inflammation, neurodegenerative diseases, and environmental exposures. Ann N Y Acad Sci, 2004. 1035: p. 117-32. 5.Ronning, P., et al., Aspects of intracerebral hematomas--an update. Acta Neurol Scand, 2008. 118(6): p. 347-61. 6.Brott, T., et al., Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke, 1997. 28(1): p. 1-5. 7.Broderick, J.P., et al., Ultra-early evaluation of intracerebral hemorrhage. J Neurosurg, 1990. 72(2): p. 195-9. 8.Zazulia, A.R., et al., Progression of mass effect after intracerebral hemorrhage. Stroke, 1999. 30(6): p. 1167-73. 9.Zazulia, A.R., et al., Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab, 2001. 21(7): p. 804-10. 10.Lee, K.R., et al., Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg, 1997. 86(2): p. 272-8. 11.Nishino, A., et al., Thrombin may contribute to the pathophysiology of central nervous system injury. J Neurotrauma, 1993. 10(2): p. 167-79. 12.Wu, J., et al., Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res, 2002. 953(1-2): p. 45-52. 13.Wang, J. and S.E. Tsirka, Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care, 2005. 3(1): p. 77-85. 14.Gong, Y., et al., Intracerebral hemorrhage: effects of aging on brain edema and neurological deficits. Stroke, 2004. 35(11): p. 2571-5. 15.Hickenbottom, S.L., et al., Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats. Stroke, 1999. 30(11): p. 2472-7; discussion 2477-8. 16.Matsushita, K., et al., Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab, 2000. 20(2): p. 396-404. 17.Hwang, J., et al., Inhibition of glial inflammatory activation and neurotoxicity by tricyclic antidepressants. Neuropharmacology, 2008. 55(5): p. 826-34. 18.Tower, D.B. and O.M. Young, The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem, 1973. 20(2): p. 269-78. 19.Hawrylak, N. and W.T. Greenough, Monocular deprivation alters the morphology of glial fibrillary acidic protein-immunoreactive astrocytes in the rat visual cortex. Brain Res, 1995. 683(2): p. 187-99. 20.Ludwin, S.K., J.C. Kosek, and L.F. Eng, The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol, 1976. 165(2): p. 197-207. 21.Xue, M., M.D. Hollenberg, and V.W. Yong, Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci, 2006. 26(40): p. 10281-91. 22.Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980. 288(5789): p. 373-6. 23.Garthwaite, J., S.L. Charles, and R. Chess-Williams, Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature, 1988. 336(6197): p. 385-8. 24.Beckman, J.S., et al., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A, 1990. 87(4): p. 1620-4. 25.Betarbet, R., et al., Chronic systemic pesticide exposure reproduces features of Parkinson''s disease. Nat Neurosci, 2000. 3(12): p. 1301-6. 26.Stuehr, D.J., Mammalian nitric oxide synthases. Biochim Biophys Acta, 1999. 1411(2-3): p. 217-30. 27.Nathan, C. and Q.W. Xie, Regulation of biosynthesis of nitric oxide. J Biol Chem, 1994. 269(19): p. 13725-8. 28.Kleinert, H., et al., Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol, 2004. 500(1-3): p. 255-66. 29.Pannu, R. and I. Singh, Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem Int, 2006. 49(2): p. 170-82. 30.Kavya, R., et al., Nitric oxide synthase regulation and diversity: implications in Parkinson''s disease. Nitric Oxide, 2006. 15(4): p. 280-94. 31.Bhat, N.R., et al., p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem, 2002. 277(33): p. 29584-92. 32.Vodovotz, Y., et al., Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer''s disease. J Exp Med, 1996. 184(4): p. 1425-33. 33.Bazan, N.G., V. Colangelo, and W.J. Lukiw, Prostaglandins and other lipid mediators in Alzheimer''s disease. Prostaglandins Other Lipid Mediat, 2002. 68-69: p. 197-210. 34.Colangelo, V., et al., Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res, 2002. 70(3): p. 462-73. 35.Ho, L., et al., Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer''s disease. J Neurosci Res, 1999. 57(3): p. 295-303. 36.Robertson, R.P., Molecular regulation of prostaglandin synthesis Implications for endocrine systems. Trends Endocrinol Metab, 1995. 6(9-10): p. 293-7. 37.DeWitt, D.L., Prostaglandin endoperoxide synthase: regulation of enzyme expression. Biochim Biophys Acta, 1991. 1083(2): p. 121-34. 38.Jakobsson, P.J., et al., Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A, 1999. 96(13): p. 7220-5. 39.Tanioka, T., et al., Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem, 2000. 275(42): p. 32775-82. 40.Watanabe, K., K. Kurihara, and T. Suzuki, Purification and characterization of membrane-bound prostaglandin E synthase from bovine heart. Biochim Biophys Acta, 1999. 1439(3): p. 406-14. 41.Owen, C.A. and E.J. Campbell, The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol, 1999. 65(2): p. 137-50. 42.Sternlicht, M.D. and Z. Werb, How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001. 17: p. 463-516. 43.Hooper, N.M., Families of zinc metalloproteases. FEBS Lett, 1994. 354(1): p. 1-6. 44.Stocker, W., et al., The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci, 1995. 4(5): p. 823-40. 45.Lee, S.R. and E.H. Lo, Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation. J Cereb Blood Flow Metab, 2004. 24(7): p. 720-7. 46.Liu, B., et al., Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci, 2002. 962: p. 318-31. 47.Lipton, S.A., Neuronal injury associated with HIV-1 and potential treatment with calcium-channel and NMDA antagonists. Dev Neurosci, 1994. 16(3-4): p. 145-51. 48.Qin, L., et al., Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem, 2002. 83(4): p. 973-83. 49.Konishi, H., et al., Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci U S A, 1997. 94(21): p. 11233-7. 50.Guyton, K.Z., et al., Mitogen-activated protein kinase (MAPK) activation by butylated hydroxytoluene hydroperoxide: implications for cellular survival and tumor promotion. Cancer Res, 1996. 56(15): p. 3480-5. 51.Schreck, R., P. Rieber, and P.A. Baeuerle, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J, 1991. 10(8): p. 2247-58. 52.Forman, H.J. and M. Torres, Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med, 2002. 166(12 Pt 2): p. S4-8. 53.Kang, J., et al., Reactive oxygen species mediate A beta(25-35)-induced activation of BV-2 microglia. Neuroreport, 2001. 12(7): p. 1449-52. 54.Wang, X., et al., Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med, 2006. 11(5): p. 343-53. 55.Wada, T. and J.M. Penninger, Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004. 23(16): p. 2838-49. 56.Tibbles, L.A. and J.R. Woodgett, The stress-activated protein kinase pathways. Cell Mol Life Sci, 1999. 55(10): p. 1230-54. 57.Ivanov, V.N. and Z. Ronai, p38 protects human melanoma cells from UV-induced apoptosis through down-regulation of NF-kappaB activity and Fas expression. Oncogene, 2000. 19(26): p. 3003-12. 58.Yang, S.H., A.D. Sharrocks, and A.J. Whitmarsh, Transcriptional regulation by the MAP kinase signaling cascades. Gene, 2003. 320: p. 3-21. 59.Sen, R. and D. Baltimore, Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986. 46(5): p. 705-16. 60.Chen, L.F. and W.C. Greene, Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol, 2004. 5(5): p. 392-401. 61.Ghosh, S. and M. Karin, Missing pieces in the NF-kappaB puzzle. Cell, 2002. 109 Suppl: p. S81-96. 62.Xie, Q.W., Y. Kashiwabara, and C. Nathan, Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem, 1994. 269(7): p. 4705-8. 63.Okombi, S., et al., Analogues of N-hydroxycinnamoylphenalkylamides as inhibitors of human melanocyte-tyrosinase. Bioorg Med Chem Lett, 2006. 16(8): p. 2252-5. 64.Park, J.B. and N. Schoene, N-Caffeoyltyramine arrests growth of U937 and Jurkat cells by inhibiting protein tyrosine phosphorylation and inducing caspase-3. Cancer Lett, 2003. 202(2): p. 161-71. 65.Nesterenko, V., K.S. Putt, and P.J. Hergenrother, Identification from a combinatorial library of a small molecule that selectively induces apoptosis in cancer cells. J Am Chem Soc, 2003. 125(48): p. 14672-3. 66.Son, S. and B.A. Lewis, Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J Agric Food Chem, 2002. 50(3): p. 468-72. 67.Tamiz, A.P., et al., Structure-activity relationship of N-(phenylalkyl)cinnamides as novel NR2B subtype-selective NMDA receptor antagonists. J Med Chem, 1999. 42(17): p. 3412-20. 68.Mohanakumar, K.P., et al., Nitric oxide: an antioxidant and neuroprotector. Ann N Y Acad Sci, 2002. 962: p. 389-401. 69.Bredt, D.S. and S.H. Snyder, Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A, 1990. 87(2): p. 682-5. 70.Taylor, B.S., et al., Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem, 1998. 273(24): p. 15148-56. 71.Wang, D. and A.S. Baldwin, Jr., Activation of nuclear factor-kappaB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J Biol Chem, 1998. 273(45): p. 29411-6. 72.Liu, B. and J.S. Hong, Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther, 2003. 304(1): p. 1-7. 73.Qin, L., et al., NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem, 2004. 279(2): p. 1415-21. 74.Gloire, G., S. Legrand-Poels, and J. Piette, NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol, 2006. 72(11): p. 1493-505. 75.Tang, J., et al., Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab, 2004. 24(10): p. 1133-45. 76.Zhao, B.Q., E. Tejima, and E.H. Lo, Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke, 2007. 38(2 Suppl): p. 748-52.
|