跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林凡立
研究生(外文):Fan-Li Lin
論文名稱:探討N-hydroxycinnamoylphenalkylamides衍生物抑制小膠質細胞活化之機轉及其於活體抗腦部發炎的效果
論文名稱(外文):Investigation of the inhibitory mechanisms of N-hydroxycinnamoylphenalkylamides analogue on microglia activation and its anti-neuroinflammatory effects in vivo
指導教授:蕭哲志蕭哲志引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:小膠質細胞星狀膠細胞一氧化氮合成酶腦發炎顱內出血脂多醣體膠原蛋白分解酶基質金屬蛋白分解酶自由基
外文關鍵詞:microgliaastrocyteiNOSbrain inflammationintracerebral hemorrhagelipopolysaccharidecollagenasematrix metalloproteinasefree radicals
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在各種腦神經疾病,例如中風後腦損傷或多發性硬化症、阿茲海默症、帕金森氏症、人類免疫缺乏病毒相關失憶症等神經退化性疾病中,神經膠細胞的活化及發炎反應扮演了疾病發展重要的角色。活化的神經膠細胞所分泌的各種前發炎細胞激素及神經致毒媒介會導致神經細胞的死亡,藉由抑制神經膠細胞的過度活化可以達到減緩神經退化性疾病的發展。本篇研究顯示,在脂多醣體刺激小膠質細胞實驗中,EK8 (20μM)可以抑制一氧化氮合成酶(iNOS)的蛋白表現,也可抑制IκB的分解而進一步抑制NF-κB的次單位p65進入細胞核內作用;另外尚能抑制mitogen-activated protein kinase訊息傳遞路徑之JNK及p38的磷酸化。離體實驗中,EK8明顯抑制腦脂質過氧化反應並具清除自由基之效能。另外EK8能減少腦部注射lipopolysaccharide (LPS)所誘發之星狀膠細胞(astrocyte)過度增生及硝基酪氨酸(nitrotyrosine)的生成。
因此,由上述這些結論指出在中樞神經系統中,EK8藉由調控神經膠細胞活性以及抗氧化能力,提供了神經細胞抗發炎及神經保護之特性。
Glial activation and neuroinflammatory processes play an important role in the pathogenesis of neurodegenerative diseases such as post-stroke brain injury, multiple sclerosis, Alzheimer''s disease, Parkinson''s disease, and HIV dementia. Activated glial cells can secrete various proinflammatory cytokines and neurotoxic mediators, which may contribute to neuronal cell death. Inhibition of glial activation may alleviate neurodegeneration under these conditions.
The results showed that EK8 (20μM) attenuated the expression of inducible nitric oxide synthase in the lipopolysaccharide-stimulated microglia cells. Moreover, EK8 inhibited IκB degradation, nuclear translocation of the p65 subunit of NF-κB, and phosphorylation of JNK and p38 in mitogen-activated protein kinase (MAPK) signaling. Ex vivo experiment suggested that EK8 inhibited lipid peroxidation and scavenged the free radicals significantly. In addition, EK8 decreased astrocyte hypertrophy and nitrotyrosine formation in LPS-injected brain.
Therefore, these results imply that EK8 have anti-inflammatory and neuroprotective effects in the central nervous system by modulating glial activation and anti-oxidation activity.
中文摘要……………………………………………………2
英文摘要……………………………………………………3
縮寫…………………………………………………………4
壹、緒論……………………………………………………5
貳、材料與方法
實驗材料…………………………………………………29
實驗方法…………………………………………………33
參、結果……………………………………………………45
肆、討論……………………………………………………55
伍、結論……………………………………………………63
陸、圖表……………………………………………………64
柒、參考文獻………………………………………………86
1.Wang, J. and S. Dore, Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab, 2007. 27(5): p. 894-908.
2.Baeuerle, P.A. and T. Henkel, Function and activation of NF-kappa B in the immune system. Annu Rev Immunol, 1994. 12: p. 141-79.
3.Iliev, A.I., et al., Neuronal injury mediated via stimulation of microglial toll-like receptor-9 (TLR9). FASEB J, 2004. 18(2): p. 412-4.
4.Campbell, A., Inflammation, neurodegenerative diseases, and environmental exposures. Ann N Y Acad Sci, 2004. 1035: p. 117-32.
5.Ronning, P., et al., Aspects of intracerebral hematomas--an update. Acta Neurol Scand, 2008. 118(6): p. 347-61.
6.Brott, T., et al., Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke, 1997. 28(1): p. 1-5.
7.Broderick, J.P., et al., Ultra-early evaluation of intracerebral hemorrhage. J Neurosurg, 1990. 72(2): p. 195-9.
8.Zazulia, A.R., et al., Progression of mass effect after intracerebral hemorrhage. Stroke, 1999. 30(6): p. 1167-73.
9.Zazulia, A.R., et al., Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J Cereb Blood Flow Metab, 2001. 21(7): p. 804-10.
10.Lee, K.R., et al., Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg, 1997. 86(2): p. 272-8.
11.Nishino, A., et al., Thrombin may contribute to the pathophysiology of central nervous system injury. J Neurotrauma, 1993. 10(2): p. 167-79.
12.Wu, J., et al., Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res, 2002. 953(1-2): p. 45-52.
13.Wang, J. and S.E. Tsirka, Contribution of extracellular proteolysis and microglia to intracerebral hemorrhage. Neurocrit Care, 2005. 3(1): p. 77-85.
14.Gong, Y., et al., Intracerebral hemorrhage: effects of aging on brain edema and neurological deficits. Stroke, 2004. 35(11): p. 2571-5.
15.Hickenbottom, S.L., et al., Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats. Stroke, 1999. 30(11): p. 2472-7; discussion 2477-8.
16.Matsushita, K., et al., Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab, 2000. 20(2): p. 396-404.
17.Hwang, J., et al., Inhibition of glial inflammatory activation and neurotoxicity by tricyclic antidepressants. Neuropharmacology, 2008. 55(5): p. 826-34.
18.Tower, D.B. and O.M. Young, The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. J Neurochem, 1973. 20(2): p. 269-78.
19.Hawrylak, N. and W.T. Greenough, Monocular deprivation alters the morphology of glial fibrillary acidic protein-immunoreactive astrocytes in the rat visual cortex. Brain Res, 1995. 683(2): p. 187-99.
20.Ludwin, S.K., J.C. Kosek, and L.F. Eng, The topographical distribution of S-100 and GFA proteins in the adult rat brain: an immunohistochemical study using horseradish peroxidase-labelled antibodies. J Comp Neurol, 1976. 165(2): p. 197-207.
21.Xue, M., M.D. Hollenberg, and V.W. Yong, Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci, 2006. 26(40): p. 10281-91.
22.Furchgott, R.F. and J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 1980. 288(5789): p. 373-6.
23.Garthwaite, J., S.L. Charles, and R. Chess-Williams, Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature, 1988. 336(6197): p. 385-8.
24.Beckman, J.S., et al., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A, 1990. 87(4): p. 1620-4.
25.Betarbet, R., et al., Chronic systemic pesticide exposure reproduces features of Parkinson''s disease. Nat Neurosci, 2000. 3(12): p. 1301-6.
26.Stuehr, D.J., Mammalian nitric oxide synthases. Biochim Biophys Acta, 1999. 1411(2-3): p. 217-30.
27.Nathan, C. and Q.W. Xie, Regulation of biosynthesis of nitric oxide. J Biol Chem, 1994. 269(19): p. 13725-8.
28.Kleinert, H., et al., Regulation of the expression of inducible nitric oxide synthase. Eur J Pharmacol, 2004. 500(1-3): p. 255-66.
29.Pannu, R. and I. Singh, Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem Int, 2006. 49(2): p. 170-82.
30.Kavya, R., et al., Nitric oxide synthase regulation and diversity: implications in Parkinson''s disease. Nitric Oxide, 2006. 15(4): p. 280-94.
31.Bhat, N.R., et al., p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells. Roles of nuclear factors, nuclear factor kappa B, cAMP response element-binding protein, CCAAT/enhancer-binding protein-beta, and activating transcription factor-2. J Biol Chem, 2002. 277(33): p. 29584-92.
32.Vodovotz, Y., et al., Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimer''s disease. J Exp Med, 1996. 184(4): p. 1425-33.
33.Bazan, N.G., V. Colangelo, and W.J. Lukiw, Prostaglandins and other lipid mediators in Alzheimer''s disease. Prostaglandins Other Lipid Mediat, 2002. 68-69: p. 197-210.
34.Colangelo, V., et al., Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res, 2002. 70(3): p. 462-73.
35.Ho, L., et al., Regional distribution of cyclooxygenase-2 in the hippocampal formation in Alzheimer''s disease. J Neurosci Res, 1999. 57(3): p. 295-303.
36.Robertson, R.P., Molecular regulation of prostaglandin synthesis Implications for endocrine systems. Trends Endocrinol Metab, 1995. 6(9-10): p. 293-7.
37.DeWitt, D.L., Prostaglandin endoperoxide synthase: regulation of enzyme expression. Biochim Biophys Acta, 1991. 1083(2): p. 121-34.
38.Jakobsson, P.J., et al., Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A, 1999. 96(13): p. 7220-5.
39.Tanioka, T., et al., Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem, 2000. 275(42): p. 32775-82.
40.Watanabe, K., K. Kurihara, and T. Suzuki, Purification and characterization of membrane-bound prostaglandin E synthase from bovine heart. Biochim Biophys Acta, 1999. 1439(3): p. 406-14.
41.Owen, C.A. and E.J. Campbell, The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol, 1999. 65(2): p. 137-50.
42.Sternlicht, M.D. and Z. Werb, How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol, 2001. 17: p. 463-516.
43.Hooper, N.M., Families of zinc metalloproteases. FEBS Lett, 1994. 354(1): p. 1-6.
44.Stocker, W., et al., The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci, 1995. 4(5): p. 823-40.
45.Lee, S.R. and E.H. Lo, Induction of caspase-mediated cell death by matrix metalloproteinases in cerebral endothelial cells after hypoxia-reoxygenation. J Cereb Blood Flow Metab, 2004. 24(7): p. 720-7.
46.Liu, B., et al., Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci, 2002. 962: p. 318-31.
47.Lipton, S.A., Neuronal injury associated with HIV-1 and potential treatment with calcium-channel and NMDA antagonists. Dev Neurosci, 1994. 16(3-4): p. 145-51.
48.Qin, L., et al., Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem, 2002. 83(4): p. 973-83.
49.Konishi, H., et al., Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci U S A, 1997. 94(21): p. 11233-7.
50.Guyton, K.Z., et al., Mitogen-activated protein kinase (MAPK) activation by butylated hydroxytoluene hydroperoxide: implications for cellular survival and tumor promotion. Cancer Res, 1996. 56(15): p. 3480-5.
51.Schreck, R., P. Rieber, and P.A. Baeuerle, Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J, 1991. 10(8): p. 2247-58.
52.Forman, H.J. and M. Torres, Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med, 2002. 166(12 Pt 2): p. S4-8.
53.Kang, J., et al., Reactive oxygen species mediate A beta(25-35)-induced activation of BV-2 microglia. Neuroreport, 2001. 12(7): p. 1449-52.
54.Wang, X., et al., Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med, 2006. 11(5): p. 343-53.
55.Wada, T. and J.M. Penninger, Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004. 23(16): p. 2838-49.
56.Tibbles, L.A. and J.R. Woodgett, The stress-activated protein kinase pathways. Cell Mol Life Sci, 1999. 55(10): p. 1230-54.
57.Ivanov, V.N. and Z. Ronai, p38 protects human melanoma cells from UV-induced apoptosis through down-regulation of NF-kappaB activity and Fas expression. Oncogene, 2000. 19(26): p. 3003-12.
58.Yang, S.H., A.D. Sharrocks, and A.J. Whitmarsh, Transcriptional regulation by the MAP kinase signaling cascades. Gene, 2003. 320: p. 3-21.
59.Sen, R. and D. Baltimore, Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986. 46(5): p. 705-16.
60.Chen, L.F. and W.C. Greene, Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol, 2004. 5(5): p. 392-401.
61.Ghosh, S. and M. Karin, Missing pieces in the NF-kappaB puzzle. Cell, 2002. 109 Suppl: p. S81-96.
62.Xie, Q.W., Y. Kashiwabara, and C. Nathan, Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem, 1994. 269(7): p. 4705-8.
63.Okombi, S., et al., Analogues of N-hydroxycinnamoylphenalkylamides as inhibitors of human melanocyte-tyrosinase. Bioorg Med Chem Lett, 2006. 16(8): p. 2252-5.
64.Park, J.B. and N. Schoene, N-Caffeoyltyramine arrests growth of U937 and Jurkat cells by inhibiting protein tyrosine phosphorylation and inducing caspase-3. Cancer Lett, 2003. 202(2): p. 161-71.
65.Nesterenko, V., K.S. Putt, and P.J. Hergenrother, Identification from a combinatorial library of a small molecule that selectively induces apoptosis in cancer cells. J Am Chem Soc, 2003. 125(48): p. 14672-3.
66.Son, S. and B.A. Lewis, Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure-activity relationship. J Agric Food Chem, 2002. 50(3): p. 468-72.
67.Tamiz, A.P., et al., Structure-activity relationship of N-(phenylalkyl)cinnamides as novel NR2B subtype-selective NMDA receptor antagonists. J Med Chem, 1999. 42(17): p. 3412-20.
68.Mohanakumar, K.P., et al., Nitric oxide: an antioxidant and neuroprotector. Ann N Y Acad Sci, 2002. 962: p. 389-401.
69.Bredt, D.S. and S.H. Snyder, Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A, 1990. 87(2): p. 682-5.
70.Taylor, B.S., et al., Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem, 1998. 273(24): p. 15148-56.
71.Wang, D. and A.S. Baldwin, Jr., Activation of nuclear factor-kappaB-dependent transcription by tumor necrosis factor-alpha is mediated through phosphorylation of RelA/p65 on serine 529. J Biol Chem, 1998. 273(45): p. 29411-6.
72.Liu, B. and J.S. Hong, Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther, 2003. 304(1): p. 1-7.
73.Qin, L., et al., NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem, 2004. 279(2): p. 1415-21.
74.Gloire, G., S. Legrand-Poels, and J. Piette, NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol, 2006. 72(11): p. 1493-505.
75.Tang, J., et al., Mmp-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab, 2004. 24(10): p. 1133-45.
76.Zhao, B.Q., E. Tejima, and E.H. Lo, Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke, 2007. 38(2 Suppl): p. 748-52.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊