|
1.Gregoriadis, G. and A.C. Allison, Entrapment of proteins in liposomes prevents allergic reactions in pre-immunised mice. FEBS Lett, 1974. 45(1): p. 71-4. 2.Zho, F. and M.R. Neutra, Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci Rep, 2002. 22(2): p. 355-69. 3.Alving, C.R. Liposomes as carriers of vaccines. in Progress in Vaccinology. 1988. New York: Springer Verlag. 4.Gregoriadis, G., Immunological adjuvants: a role for liposomes. Immunol Today, 1990. 11(3): p. 89-97. 5.Lee, K.-Y. and T.-R. Heo, Survival of Bifidobacterium longum Immobilized in Calcium Alginate Beads in Simulated Gastric Juices and Bile Salt Solution. Appl. Environ. Microbiol., 2000. 66(2): p. 869-873. 6.Sheu, T.Y., R.T. Marshall, and H. Heymann, Improving survival of culture bacteria in frozen desserts by microentrapment. J Dairy Sci, 1993. 76(7): p. 1902-7. 7.V., R.A., S. N., and M. I., Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Canadian Institute of Food Science and Technology, 1989. 22: p. 345-349. 8.Wang, F.J. and C.H. Wang, Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. J Control Release, 2002. 81(3): p. 263-80. 9.Kiho, T., et al., Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver. Biosci Biotechnol Biochem, 2000. 64(2): p. 417-9. 10.Du, X., et al., Structural elucidation and immuno-stimulating activity of an acidic heteropolysaccharide (TAPA1) from Tremella aurantialba. Carbohydr Res, 2009. 11.Lien, E.J. and H. Gao., Higher plant polysaccharides and their pharmacological activities. Int. J. Orient. Med., 1990. 15: p. 123. 12.Xue, M. and X.S. Meng., Review on research progress and prosperous of immune activities of bio-active polysaccharides. J. Tradit. Chin. Vet. Med., 1996. 3: p. 15-18. 13.D, J. and K. GB, Gastroadhesives in Controlled Drug Delivery. Bioadhesion-Possibilities and Future Trends, ed. R. Gurny and H. Junginger. 1990, Stuttgart: Wissenschaftliche Verlagsgesellschaft. 14.VHL, L., et al., Oral Route of Peptide and Protein Drug Delivery. Peptide and Protein Drug Delivery, ed. L. VHL. 1991, New York: Marcel Dekker. 15.Johansen, P., et al., Ambiguities in the preclinical quality assessment of microparticulate vaccines. Trends Biotechnol, 2000. 18(5): p. 203-11. 16.Lebens, M. and J. Holmgren, Mucosal vaccines based on the use of cholera toxin B subunit as immunogen and antigen carrier. Dev Biol Stand, 1994. 82: p. 215-27. 17.O''Hagan, D.T., The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat, 1996. 189 ( Pt 3): p. 477-82. 18.HR, B., D. PS, and N. R, Oral Vaccination by Microspheres. Microparticulate Systems for the Delivery of Proteins and Vaccines, ed. S. Cohen and H. Bernstein. 1996, New York: Marcel Dekker. 19.Levine, M.M. and J.B. Kaper, Live oral vaccines against cholera: an update. Vaccine, 1993. 11(2): p. 207-12. 20.Webster, R.G., et al., Evolution and ecology of influenza A viruses. Microbiol Rev, 1992. 56(1): p. 152-79. 21.VanDalen, K.K., et al., Increased detection of influenza A H16 in the United States. Arch Virol, 2008. 153(10): p. 1981-3. 22.de Jong, M.D. and T.T. Hien, Avian influenza A (H5N1). Journal of Clinical Virology, 2006. 35(1): p. 2-13. 23.Hatta, M., et al., Human influenza a viral genes responsible for the restriction of its replication in duck intestine. Virology, 2002. 295(2): p. 250-5. 24.Horimoto, T. and Y. Kawaoka, Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev, 2001. 14(1): p. 129-49. 25.Bangham, A.D., M.M. Standish, and J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol, 1965. 13(1): p. 238-52. 26.Sessa, G. and G. Weissmann, Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res, 1968. 9(3): p. 310-8. 27.Chang, R., S. Nir, and F.R. Poulain, Analysis of binding and membrane destabilization of phospholipid membranes by surfactant apoprotein B. Biochim Biophys Acta, 1998. 1371(2): p. 254-64. 28.Cullis, P.R., A. Chonn, and S.C. Semple, Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv Drug Deliv Rev, 1998. 32(1-2): p. 3-17. 29.Frezard, F. and A. Garnier-Suillerot, Permeability of lipid bilayer to anthracycline derivatives. Role of the bilayer composition and of the temperature. Biochim Biophys Acta, 1998. 1389(1): p. 13-22. 30.Weinstein, J.N., Liposomes as drug carriers in cancer therapy. Cancer Treat Rep, 1984. 68(1): p. 127-35. 31.Sospedra, P., et al., Hepatitis A Synthetic Peptide VP3(110-121) Miscibility with Dipalmitoylphosphatidylcholine, Dipalmitoylphosphatidylglycerol, and Stearylamine Monolayers. J Colloid Interface Sci, 2000. 221(2): p. 230-235. 32.Aguado, T., et al., Novel adjuvants currently in clinical testing November 2-4, 1998, Fondation Merieux, Annecy, France: a meeting sponsored by the World Health Organization. Vaccine, 1999. 17(19): p. 2321-8. 33.O''Hagan, D.T., Recent developments in vaccine delivery systems. Curr Drug Targets Infect Disord, 2001. 1(3): p. 273-86. 34.De Magistris, M.T., Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev, 2006. 58(1): p. 52-67. 35.Fujii, Y., et al., Enhancement of systemic and mucosal immune responses following oral administration of liposomes. Immunol Lett, 1993. 36(1): p. 65-9. 36.Michalek, S.M., et al., Use of liposomes for the induction of mucosal immunity. Vaccine Research, 1992. 1: p. 241-247. 37.Peppas, N.A., Hydrogels in Medicine and Pharmacy (V 1, Fundamentals; V 2, Polymers; V 3, Properties and Applications). Vol. 1-3. 1986: CRC Press Inc, Boca Raton, Florita, USA. 38.Park, T.G. and A.S. Hoffman, Thermal cycling effects on the bioreactor performances of immobilized beta-galactosidase in temperature-sensitive hydrogel beads. Enzyme Microb Technol, 1993. 15(6): p. 476-82. 39.Park, T.G. and A.S. Hoffman, Estimation of temperature-dependent pore size in poly(N-isopropylacrylamide) hydrogel beads. Biotechnol Prog, 1994. 10(1): p. 82-6. 40.Sershen, S.R., et al., Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res, 2000. 51(3): p. 293-8. 41.Vakkalanka, S.K., C.S. Brazel, and N.A. Peppas, Temperature- and pH-sensitive terpolymers for modulated delivery of streptokinase. J Biomater Sci Polym Ed, 1996. 8(2): p. 119-29. 42.Brannon-Peppas, L. and N.A. Peppas, Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials, 1990. 11(9): p. 635-44. 43.De Yao, K., et al., pH-sensitivity of hydrogels based on complex forming chitosan: polyether interpenetrating polymer network. Journal of Applied Polymer Science, 1993. 48(2): p. 343-354. 44.Dong, L.-C. and A.S. Hoffman, A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. Journal of Controlled Release, 1991. 15(2): p. 141-152. 45.Paavola, A., J. Yliruusi, and P. Rosenberg, Controlled release and dura mater permeability of lidocaine and ibuprofen from injectable poloxamer-based gels. J Control Release, 1998. 52(1-2): p. 169-78. 46.Na, K., et al., Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release, 2000. 69(2): p. 225-36. 47.Hinds, K., et al., Synthesis and characterization of poly(ethylene glycol)-insulin conjugates. Bioconjug Chem, 2000. 11(2): p. 195-201. 48.T., Y., et al., Calcium-induced gelation of alginic acid and pH-sensitive reswelling of dried gels. Chem Pharm Bull (Tokyo), 1987. 35: p. 1555-1563. 49.Poncelet, D., et al., Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl Microbiol Biotechnol, 1992. 38(1): p. 39-45. 50.Sabra, W., A.P. Zeng, and W.D. Deckwer, Bacterial alginate: physiology, product quality and process aspects. Appl Microbiol Biotechnol, 2001. 56(3-4): p. 315-25. 51.Kikuchi, A., et al., Pulsed dextran release from calcium-alginate gel beads. Journal of Controlled Release, 1997. 47(1): p. 21-29. 52.Ostberg, T., E.M. Lund, and C. Graffner, Calcium alginate matrices for oral multiple unit administration: IV. Release characteristics in different media. Int J Pharm, 1994. 112(3): p. 241-248. 53.Smidsrod, O. and G. Skjak-Brk, Alginate as immobilization matrix for cells. Trends in Biotechnology, 1990. 8: p. 71-78. 54.Robyt, J.F., “Plant polysaccharides,” Essentials of carbohydrate Chemistry. 1 ed. 1997: Springer. 55.A. Martinsen, G.S.-B.O.S., Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnology and Bioengineering, 1989. 33(1): p. 79-89. 56.Fundueanu, G., et al., Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials, 1999. 20(15): p. 1427-35. 57.Higgs, P.G. and R.C. Ball, A Reel-Chain Model for the elasticity of biopolymer gels, and its relationship to slip-link treatments of entanglements. 1990, New York. 58.Kennedy, J.F., Biotechnology of polysaccharides. 1988, NEW YORK. 59.Grant, G.T., et al., Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Letters, 1973. 32(1): p. 195-198. 60.Peter S. J. Cheetham, K.W.B.C.B., Physical Studies on Cell Immobilization Using Calcium Alginate Gels. Biotechnology and Bioengineering, 1979. 21(12): p. 2155-2168. 61.Bickerstaff and G. F., Immobilization of enzymes and cells / edited by Gordon F. Bickerstaff. Methods in biotechnology 1997, Totowa, New Jersey Totowa, N.J. : Humana. p. 1-11. 62.Chang, T.M.S., Hybrid Artificial Cells: Microencapsulation of Living cells. ASIAO J., 1992. 38: p. 128-130. 63.Casas, S., C., Application of Immobilized Yeast Cells to Sparkling Wine Fermentation. Biotechnol. Prog., 1991. 7: p. 468-470. 64.Tomkins, R.G., et al., Enzymatic Function of Alginate Immobilized Rat Hepatocytes. Biotechnol. Bioeng, 1988. 31: p. 11-18. 65.Goosen, M.F.A., et al., Optimization of Microencapsulation Parameters: Semipermeable Microcapsules as a Bioartificial Pancreas. Biotech. and Bioengin, 1985. 27: p. 146-150. 66.Sutherland, I.W., Alginates,. 1991, New York. 67.Aslani, P. and R.A. Kennedy, Studies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. Journal of Controlled Release, 1996. 42(1): p. 75-82. 68.Abdel-Naby, M.A., R.M. Reyad, and A.F. Abdel-Fattah, Biosynthesis of cyclodextrin glucosyltransferase by immobilized Bacillus amyloliquefaciens in batch and continuous cultures. Biochemical Engineering Journal, 2000. 5(1): p. 1-9. 69.Yoo, I.-K., et al., Encapsulation of Lactobacillus casei cells in liquid-core alginate capsules for lactic acid production. Enzyme and Microbial Technology, 1996. 19(6): p. 428-433. 70.Murata, Y., et al., Use of floating alginate gel beads for stomach-specific drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 50(2): p. 221-226. 71.Sezer, A.D., Release characteristics of chitosan treated alginate beads: I. Sustained release of a macromolecular drug from chitosan treated alginate beads. Journal of Microencapsulation, 1999. 16(2): p. 195 - 203. 72.Takka, S. and F. Acarturk, Calcium alginate microparticles for oral administration: I: effect of sodium alginate type on drug release and drug entrapment efficiency. Journal of Microencapsulation, 1999. 16(3): p. 275 - 290. 73.Lee, B.-J. and G.-H. Min, Oral controlled release of melatonin using polymer-reinforced and coated alginate beads. Int J Pharm, 1996. 144(1): p. 37-46. 74.Cui, J.-H., et al., Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. Int J Pharm, 2000. 210(1-2): p. 51-59. 75.林山陽, 膜衣包覆技術. 第五章:腸溶性膜衣包覆材料與處方設計. 1996, 台北: 九州圖書文物有限公司. p.117-174. 76.Gao, Q., et al., Conjugates of Tremella Polysaccharides with Microbeads and their TNF-Stimulating Activity. Planta Medica, 1998(6): p. 551-554. 77.Gao, Q., et al., Characterization and Cytokine-Stimulating Activities of Acidic Heteroglycans from Tremella fuciformis. Planta Medica, 1997(5): p. 457-460. 78.Yui, T., et al., Chain Conformation of a Glucurono-xylo-mannan Isolated from Fruit Body of Tremella fuciformis Berk. Journal of Carbohydrate Chemistry, 1995. 14(2): p. 255 - 263. 79.De Baets, S. and E.J. Vandamme, Extracellular Tremella polysaccharides: structure, properties and applications. Biotechnology Letters, 2001. 23(17): p. 1361-1366. 80.Ukai, S., et al., Polysaccharides in fungi. XIV. Anti-inflammatory effect of the polysaccharides from the fruit bodies of several fungi. J Pharmacobiodyn, 1983. 6(12): p. 983-90. 81.MISAKI, A., et al., Comparison of Structure and Antitumor Activity of Polysaccharides Isolated from Fukurotake, the Fruiting Body of Volvariella volvacea. Agric Biol Chem., 1986. 50(9): p. 2171-2183. 82.Cheung, P.C.K., Dietary Fiber Content and Composition of Some Cultivated Edible Mushroom Fruiting Bodies and Mycelia. J. Agric. Food Chem., 1996. 44(2): p. 468-471. 83.Gao, Q., et al., Characterisation of acidic heteroglycans from Tremella fuciformis Berk with cytokine stimulating activity. Carbohydrate Research, 1996. 288: p. 135-142. 84.Gao, Q.-p., et al., Characterization and Cytokine Stimulating Activities of Heteroglycans from Tremella fuciformis. Planta Medica, 1996(4): p. 297-302. 85.Fraser, C.G., H.J. Jennings, and P. Moyna, Structural analysis of an acidic polysaccharide from Tremella mesenterica NRRL Y-6158. Can J Biochem, 1973. 51(3): p. 219-24. 86.L, M. and L. ZB, Effect of Tremella polysaccharide on IL-2 production by mouse splenocytes. Yao Hsueh Hsueh Pao, 1992. 27: p. 1-4. 87.S, U., et al., Antitumor activity on sarcoma 180 of the polysaccharides from Tremella fuciformis Berk. Chem Pharm Bull (Tokyo), 1972. 20(10): p. 2293-4. 88.T, K., et al., Polysaccharides in fungi. XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis. Yakugaku Zasshi, 1994. 114(5): p. 308-15. 89.Cheung, P.C.K., The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats1. Nutrition Research, 1996. 16(10): p. 1721-1725. 90.J., X.R., A stimulator of vascular endothelial cells and use thereof EP Patent. 1992, No:0506773 B1, publ 07.10.1992. 91.Guo, F.C., et al., Coccidiosis Immunization: Effects of Mushroom and Herb Polysaccharides on Immune Responses of Chickens Infected with Eimeria tenella. Avian Diseases, 2005. 49(1): p. 70-73. 92.Davis, S.S., Nasal vaccines. Adv Drug Deliv Rev, 2001. 51(1-3): p. 21-42. 93.van Ginkel, F.W., H.H. Nguyen, and J.R. McGhee, Vaccines for mucosal immunity to combat emerging infectious diseases. Emerg Infect Dis, 2000. 6(2): p. 123-32. 94.王金和, et al., 疫苗發展技術與實驗. 2003. p84-85. 95.Sadeghi, A.M., et al., Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur J Pharm Biopharm, 2008. 70(1): p. 270-8. 96.Germann, T., et al., Interleukin-12 profoundly up-regulates the synthesis of antigen-specific complement-fixing IgG2a, IgG2b and IgG3 antibody subclasses in vivo. Eur J Immunol, 1995. 25(3): p. 823-9. 97.Ryan, E.J., L.M. Daly, and K.H. Mills, Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol, 2001. 19(8): p. 293-304. 98.Smith, K.M., et al., Oral tolerance. Am J Respir Crit Care Med, 2000. 162(4 Pt 2): p. S175-8. 99.Fooks, A.R., Development of oral vaccines for human use. Curr Opin Mol Ther, 2000. 2(1): p. 80-6.
|