跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉展志
研究生(外文):Jann-Jyh Yeh
論文名稱:胃酸成膠性褐藻酸包覆口服銀耳多醣修飾之微脂粒H5N3死毒疫苗對小鼠免疫力之評估
論文名稱(外文):Assessment of TFP-modified liposomal oral H5N3 inactive vaccine entrapped in HCl-induced alginate gel for mice immunity
指導教授:林時宜
指導教授(外文):Shyr-Yi Lin
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:H5N3禽流感微脂粒黏膜免疫銀耳多醣褐藻膠
外文關鍵詞:H5N3 avian influenzaliposomemucosal immunitytremellaalginate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本實驗中,我們評估一種新的口服疫苗輸送系統:胃酸成膠性褐藻膠包覆銀耳多醣修飾微脂粒;結合褐藻膠之高分子聚合物(抵抗胃酸破壞)、微脂粒(疫苗佐劑)輸送系統和銀耳多醣(免疫刺激)特性。我們利用95 % PC之多層球微脂粒包覆106.0 EID50/mL H5N3(LV組)死毒再用銀耳多醣(TFP) 修飾微脂粒表面24小時(LTV組)。單純H5N3病毒 (V組)、LV、 LTV組分別與含有磷酸三鈣之1.5 % alginate混合 (AV、ALV、ALTV組)。
  將疫苗與胃酸成膠性褐藻酸混合,並進行體外溶離試驗,當胃酸成膠性褐藻酸與模擬胃液接觸時就會形成褐藻膠將微脂粒疫苗包覆起來,而保護微脂粒疫苗不受胃酸破壞,並且在進入腸道時可以調節釋放微脂粒疫苗。而經由單層Caco-2細胞的跨細胞上皮電阻值 ( TEER )實驗顯示,在腸道釋放後之微脂粒疫苗,LV和LTV組都能夠打開Caco-2細胞單層膜間的緊密聯合(分別是77.4%與75.4%比率,兩組沒有顯著差異)。而在TEER的恢復實驗中,可以觀察到LV與LTV組給予Caco-2之後,再給予細胞培養後細胞間緊密聯合可以恢復,細胞也能存活。
動物實驗顯示褐藻膠包覆之疫苗在第二次免疫後3週可以誘發腸道sIgA的產生,雖然在血清中IgG沒有預期中的提高,且血球凝集抑制實驗也顯示沒有足夠的抗體保護效力。但是有可能是因為行Th1免疫途徑而抑制了體液性免疫反應。
  經由以上的結果顯示,胃酸成膠性銀耳多醣修飾之微脂粒口服疫苗對於提高腸黏膜IgA有一定的能力,而這樣型式的一種疫苗載體再經過材料上的改進,期盼其具有攜帶不易經由口服吸收的疫苗載體的潛力。
In this study, we evaluate a novel delivery system for oral vaccines, TFP-modified liposomes entrapped in acid-induced alginate (ALT) of biodegradable polymers, which is conceived from a combination of the polymer, the lipid–based delivery system and immunostimulant. We utilized liposomes (multilamellar, MLV) of 95 % PC to encapsulate 106.0 EID50/mL inactive H5N3 virus (LV group) and coated with Tremella fuciformis polysaccharide (TFP), purified from hot water extracts of Tremella fuciformis, for 24 hr (LTV group). The virus(V), LV, LTV mixed within 1.5 % alginate with tricalcium phosphate, respectively (AV, ALV and ALTV group).
The vaccine mixed with acid-induced alginate used for in vitro release study. When HCl-induced alginate contact with HCl to forming alginate gel that was more resistant in acidic pH and modulated the release profiles of the encapsulated vaccines in the alkaline pH. Transepithelial electrical resistance (TEER) studies revealed that LV and LTV were able to opening the tight junctions (about 77.4 % and 75.4 % of the initial value, respectively) of Caco-2 cell monolayer by about three times. Recovery studies on the TEER showed that the effect of the LV and LTV vaccines on Caco-2 cell monolayer is reversible and proves the viability of cells after incubation with all vaccines.
The animal exp. showed that vaccine entrapped in alginate gel induced intestinal sIgA production at 3wk after second administration. although IgG in serum not expected to increase, and the hemagglutination inhibition test also showed that there was insufficient protection of the effectiveness of the antibody. However, there may be because it means Th1 immune suppression of the humoral immune response.
In conclusion, the TFP modified liposomal oral vaccine entrapped in HCl-induced alginate gel for improving the intestinal mucosal IgA have a certain capacity, and this type of a vaccine vector for another material improvement, and this vaccine delivery system may have potential use as a carrier for vaccine that are poorly absorbed after oral administration.
致謝 i
中文摘要 ii
英文摘要 iii

第一章 緒論 1

第二章 文獻回顧 4

§I 家禽流行性感冒病毒之特性 4
•I-1 一般特性 4
•I-2 物理特性 6
•I-3 病毒蛋白特性 6
•I-4 高病原H5N1禽流感的流行病學及臨床症狀 7

§II. 微脂粒簡介 9
•II-1 微脂粒的結構與組成 10
•II-2 微脂粒的分類 13
•II-3 微脂粒基本的製備方法 14
•II-4 微脂粒的性質 14
•II-5 微脂粒的穩定度 15
•II-6 微脂粒與佐劑的關係 16
*II-6-1 佐劑 16
*II-6-2 理想之黏膜佐劑免疫反應特性 18
•II-7 微脂粒之佐劑機制 19

§III . 水膠 20

•III-1 褐藻膠之結構 21
•III-2 褐藻膠之凝膠性質 22
•III-3 影響褐藻膠體強度之因子 24
*III-3-1 褐藻酸鈉種類 24
*III-3-2 褐藻酸鈉濃度 24
*III-3-3 氯化鈣濃度 24
*III-3-4 浸泡於鈣離子中之時間 25
*III-3-5 其他離子 25
*III-3-6 pH 值 26

§IV . 銀耳多醣的介紹 27

•IV-1 銀耳多醣的組成分 27
•IV-2 銀耳多醣的生理活性 29

§V. 免疫系統與黏膜免疫之簡介 30
•V-1 銀耳多醣的組成分 31
•V-2 銀耳多醣的生理活性 32

第三章 研究動機 34

第四章 實驗設計流程 35

第五章 實驗設備與實驗方法 36

§5-1 實驗材料與藥品 36

§5-2 實驗儀器與設備 38
•5-2-1 粒徑與界面電位分析儀 38
•5-2-2 減壓濃縮機 38
•5-2-3 其他設備儀器 39

§5-3 實驗方法 40
•5-3-1 溶液配製 40
•5-3-2 疫苗製備 42
•5-3-3 粒徑分析 43
•5-3-4 界面電位測定 44
•5-3-5 體外溶離實驗 44
•5-4-6 TEER試驗 45
•5-4-7 動物實驗 45
•5-4-8 抗體分析(血清、鼻腔沖洗液) 48
•5-4-9 血球凝集試驗HA test 49
•5-4-10 血球抑制凝集試驗HI test 49

第六章 結果與討論 50

•6-1 粒徑與介面電位分析 50
•6-2 體外溶離實驗 51
•6-3 Transepithelial Electrical Resistance, TEER試驗 54
•6-4 動物實驗分析 55
•6-4-1 血清中抗體分析 56
•6-4-2 小腸沖洗液之抗體sIgA分析 61
•6-4-3 血球凝集抑制實驗 62

第七章 結論 64

第八章 未來展望 65

第九章 參考文獻 66
1.Gregoriadis, G. and A.C. Allison, Entrapment of proteins in liposomes prevents allergic reactions in pre-immunised mice. FEBS Lett, 1974. 45(1): p. 71-4.
2.Zho, F. and M.R. Neutra, Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci Rep, 2002. 22(2): p. 355-69.
3.Alving, C.R. Liposomes as carriers of vaccines. in Progress in Vaccinology. 1988. New York: Springer Verlag.
4.Gregoriadis, G., Immunological adjuvants: a role for liposomes. Immunol Today, 1990. 11(3): p. 89-97.
5.Lee, K.-Y. and T.-R. Heo, Survival of Bifidobacterium longum Immobilized in Calcium Alginate Beads in Simulated Gastric Juices and Bile Salt Solution. Appl. Environ. Microbiol., 2000. 66(2): p. 869-873.
6.Sheu, T.Y., R.T. Marshall, and H. Heymann, Improving survival of culture bacteria in frozen desserts by microentrapment. J Dairy Sci, 1993. 76(7): p. 1902-7.
7.V., R.A., S. N., and M. I., Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Canadian Institute of Food Science and Technology, 1989. 22: p. 345-349.
8.Wang, F.J. and C.H. Wang, Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents. J Control Release, 2002. 81(3): p. 263-80.
9.Kiho, T., et al., Effect of a polysaccharide (TAP) from the fruiting bodies of Tremella aurantia on glucose metabolism in mouse liver. Biosci Biotechnol Biochem, 2000. 64(2): p. 417-9.
10.Du, X., et al., Structural elucidation and immuno-stimulating activity of an acidic heteropolysaccharide (TAPA1) from Tremella aurantialba. Carbohydr Res, 2009.
11.Lien, E.J. and H. Gao., Higher plant polysaccharides and their pharmacological activities. Int. J. Orient. Med., 1990. 15: p. 123.
12.Xue, M. and X.S. Meng., Review on research progress and prosperous of immune activities of bio-active polysaccharides. J. Tradit. Chin. Vet. Med., 1996. 3: p. 15-18.
13.D, J. and K. GB, Gastroadhesives in Controlled Drug Delivery. Bioadhesion-Possibilities and Future Trends, ed. R. Gurny and H. Junginger. 1990, Stuttgart: Wissenschaftliche Verlagsgesellschaft.
14.VHL, L., et al., Oral Route of Peptide and Protein Drug Delivery. Peptide and Protein Drug Delivery, ed. L. VHL. 1991, New York: Marcel Dekker.
15.Johansen, P., et al., Ambiguities in the preclinical quality assessment of microparticulate vaccines. Trends Biotechnol, 2000. 18(5): p. 203-11.
16.Lebens, M. and J. Holmgren, Mucosal vaccines based on the use of cholera toxin B subunit as immunogen and antigen carrier. Dev Biol Stand, 1994. 82: p. 215-27.
17.O''Hagan, D.T., The intestinal uptake of particles and the implications for drug and antigen delivery. J Anat, 1996. 189 ( Pt 3): p. 477-82.
18.HR, B., D. PS, and N. R, Oral Vaccination by Microspheres. Microparticulate Systems for the Delivery of Proteins and Vaccines, ed. S. Cohen and H. Bernstein. 1996, New York: Marcel Dekker.
19.Levine, M.M. and J.B. Kaper, Live oral vaccines against cholera: an update. Vaccine, 1993. 11(2): p. 207-12.
20.Webster, R.G., et al., Evolution and ecology of influenza A viruses. Microbiol Rev, 1992. 56(1): p. 152-79.
21.VanDalen, K.K., et al., Increased detection of influenza A H16 in the United States. Arch Virol, 2008. 153(10): p. 1981-3.
22.de Jong, M.D. and T.T. Hien, Avian influenza A (H5N1). Journal of Clinical Virology, 2006. 35(1): p. 2-13.
23.Hatta, M., et al., Human influenza a viral genes responsible for the restriction of its replication in duck intestine. Virology, 2002. 295(2): p. 250-5.
24.Horimoto, T. and Y. Kawaoka, Pandemic threat posed by avian influenza A viruses. Clin Microbiol Rev, 2001. 14(1): p. 129-49.
25.Bangham, A.D., M.M. Standish, and J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol, 1965. 13(1): p. 238-52.
26.Sessa, G. and G. Weissmann, Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res, 1968. 9(3): p. 310-8.
27.Chang, R., S. Nir, and F.R. Poulain, Analysis of binding and membrane destabilization of phospholipid membranes by surfactant apoprotein B. Biochim Biophys Acta, 1998. 1371(2): p. 254-64.
28.Cullis, P.R., A. Chonn, and S.C. Semple, Interactions of liposomes and lipid-based carrier systems with blood proteins: Relation to clearance behaviour in vivo. Adv Drug Deliv Rev, 1998. 32(1-2): p. 3-17.
29.Frezard, F. and A. Garnier-Suillerot, Permeability of lipid bilayer to anthracycline derivatives. Role of the bilayer composition and of the temperature. Biochim Biophys Acta, 1998. 1389(1): p. 13-22.
30.Weinstein, J.N., Liposomes as drug carriers in cancer therapy. Cancer Treat Rep, 1984. 68(1): p. 127-35.
31.Sospedra, P., et al., Hepatitis A Synthetic Peptide VP3(110-121) Miscibility with Dipalmitoylphosphatidylcholine, Dipalmitoylphosphatidylglycerol, and Stearylamine Monolayers. J Colloid Interface Sci, 2000. 221(2): p. 230-235.
32.Aguado, T., et al., Novel adjuvants currently in clinical testing November 2-4, 1998, Fondation Merieux, Annecy, France: a meeting sponsored by the World Health Organization. Vaccine, 1999. 17(19): p. 2321-8.
33.O''Hagan, D.T., Recent developments in vaccine delivery systems. Curr Drug Targets Infect Disord, 2001. 1(3): p. 273-86.
34.De Magistris, M.T., Mucosal delivery of vaccine antigens and its advantages in pediatrics. Adv Drug Deliv Rev, 2006. 58(1): p. 52-67.
35.Fujii, Y., et al., Enhancement of systemic and mucosal immune responses following oral administration of liposomes. Immunol Lett, 1993. 36(1): p. 65-9.
36.Michalek, S.M., et al., Use of liposomes for the induction of mucosal immunity. Vaccine Research, 1992. 1: p. 241-247.
37.Peppas, N.A., Hydrogels in Medicine and Pharmacy (V 1, Fundamentals; V 2, Polymers; V 3, Properties and Applications). Vol. 1-3. 1986: CRC Press Inc, Boca Raton, Florita, USA.
38.Park, T.G. and A.S. Hoffman, Thermal cycling effects on the bioreactor performances of immobilized beta-galactosidase in temperature-sensitive hydrogel beads. Enzyme Microb Technol, 1993. 15(6): p. 476-82.
39.Park, T.G. and A.S. Hoffman, Estimation of temperature-dependent pore size in poly(N-isopropylacrylamide) hydrogel beads. Biotechnol Prog, 1994. 10(1): p. 82-6.
40.Sershen, S.R., et al., Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res, 2000. 51(3): p. 293-8.
41.Vakkalanka, S.K., C.S. Brazel, and N.A. Peppas, Temperature- and pH-sensitive terpolymers for modulated delivery of streptokinase. J Biomater Sci Polym Ed, 1996. 8(2): p. 119-29.
42.Brannon-Peppas, L. and N.A. Peppas, Dynamic and equilibrium swelling behaviour of pH-sensitive hydrogels containing 2-hydroxyethyl methacrylate. Biomaterials, 1990. 11(9): p. 635-44.
43.De Yao, K., et al., pH-sensitivity of hydrogels based on complex forming chitosan: polyether interpenetrating polymer network. Journal of Applied Polymer Science, 1993. 48(2): p. 343-354.
44.Dong, L.-C. and A.S. Hoffman, A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. Journal of Controlled Release, 1991. 15(2): p. 141-152.
45.Paavola, A., J. Yliruusi, and P. Rosenberg, Controlled release and dura mater permeability of lidocaine and ibuprofen from injectable poloxamer-based gels. J Control Release, 1998. 52(1-2): p. 169-78.
46.Na, K., et al., Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release, 2000. 69(2): p. 225-36.
47.Hinds, K., et al., Synthesis and characterization of poly(ethylene glycol)-insulin conjugates. Bioconjug Chem, 2000. 11(2): p. 195-201.
48.T., Y., et al., Calcium-induced gelation of alginic acid and pH-sensitive reswelling of dried gels. Chem Pharm Bull (Tokyo), 1987. 35: p. 1555-1563.
49.Poncelet, D., et al., Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl Microbiol Biotechnol, 1992. 38(1): p. 39-45.
50.Sabra, W., A.P. Zeng, and W.D. Deckwer, Bacterial alginate: physiology, product quality and process aspects. Appl Microbiol Biotechnol, 2001. 56(3-4): p. 315-25.
51.Kikuchi, A., et al., Pulsed dextran release from calcium-alginate gel beads. Journal of Controlled Release, 1997. 47(1): p. 21-29.
52.Ostberg, T., E.M. Lund, and C. Graffner, Calcium alginate matrices for oral multiple unit administration: IV. Release characteristics in different media. Int J Pharm, 1994. 112(3): p. 241-248.
53.Smidsrod, O. and G. Skjak-Brk, Alginate as immobilization matrix for cells. Trends in Biotechnology, 1990. 8: p. 71-78.
54.Robyt, J.F., “Plant polysaccharides,” Essentials of carbohydrate Chemistry. 1 ed. 1997: Springer.
55.A. Martinsen, G.S.-B.O.S., Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnology and Bioengineering, 1989. 33(1): p. 79-89.
56.Fundueanu, G., et al., Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials, 1999. 20(15): p. 1427-35.
57.Higgs, P.G. and R.C. Ball, A Reel-Chain Model for the elasticity of biopolymer gels, and its relationship to slip-link treatments of entanglements. 1990, New York.
58.Kennedy, J.F., Biotechnology of polysaccharides. 1988, NEW YORK.
59.Grant, G.T., et al., Biological interactions between polysaccharides and divalent cations: The egg-box model. FEBS Letters, 1973. 32(1): p. 195-198.
60.Peter S. J. Cheetham, K.W.B.C.B., Physical Studies on Cell Immobilization Using Calcium Alginate Gels. Biotechnology and Bioengineering, 1979. 21(12): p. 2155-2168.
61.Bickerstaff and G. F., Immobilization of enzymes and cells / edited by Gordon F. Bickerstaff. Methods in biotechnology 1997, Totowa, New Jersey Totowa, N.J. : Humana. p. 1-11.
62.Chang, T.M.S., Hybrid Artificial Cells: Microencapsulation of Living cells. ASIAO J., 1992. 38: p. 128-130.
63.Casas, S., C., Application of Immobilized Yeast Cells to Sparkling Wine Fermentation. Biotechnol. Prog., 1991. 7: p. 468-470.
64.Tomkins, R.G., et al., Enzymatic Function of Alginate Immobilized Rat Hepatocytes. Biotechnol. Bioeng, 1988. 31: p. 11-18.
65.Goosen, M.F.A., et al., Optimization of Microencapsulation Parameters: Semipermeable Microcapsules as a Bioartificial Pancreas. Biotech. and Bioengin, 1985. 27: p. 146-150.
66.Sutherland, I.W., Alginates,. 1991, New York.
67.Aslani, P. and R.A. Kennedy, Studies on diffusion in alginate gels. I. Effect of cross-linking with calcium or zinc ions on diffusion of acetaminophen. Journal of Controlled Release, 1996. 42(1): p. 75-82.
68.Abdel-Naby, M.A., R.M. Reyad, and A.F. Abdel-Fattah, Biosynthesis of cyclodextrin glucosyltransferase by immobilized Bacillus amyloliquefaciens in batch and continuous cultures. Biochemical Engineering Journal, 2000. 5(1): p. 1-9.
69.Yoo, I.-K., et al., Encapsulation of Lactobacillus casei cells in liquid-core alginate capsules for lactic acid production. Enzyme and Microbial Technology, 1996. 19(6): p. 428-433.
70.Murata, Y., et al., Use of floating alginate gel beads for stomach-specific drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2000. 50(2): p. 221-226.
71.Sezer, A.D., Release characteristics of chitosan treated alginate beads: I. Sustained release of a macromolecular drug from chitosan treated alginate beads. Journal of Microencapsulation, 1999. 16(2): p. 195 - 203.
72.Takka, S. and F. Acarturk, Calcium alginate microparticles for oral administration: I: effect of sodium alginate type on drug release and drug entrapment efficiency. Journal of Microencapsulation, 1999. 16(3): p. 275 - 290.
73.Lee, B.-J. and G.-H. Min, Oral controlled release of melatonin using polymer-reinforced and coated alginate beads. Int J Pharm, 1996. 144(1): p. 37-46.
74.Cui, J.-H., et al., Survival and stability of bifidobacteria loaded in alginate poly-l-lysine microparticles. Int J Pharm, 2000. 210(1-2): p. 51-59.
75.林山陽, 膜衣包覆技術. 第五章:腸溶性膜衣包覆材料與處方設計. 1996, 台北: 九州圖書文物有限公司. p.117-174.
76.Gao, Q., et al., Conjugates of Tremella Polysaccharides with Microbeads and their TNF-Stimulating Activity. Planta Medica, 1998(6): p. 551-554.
77.Gao, Q., et al., Characterization and Cytokine-Stimulating Activities of Acidic Heteroglycans from Tremella fuciformis. Planta Medica, 1997(5): p. 457-460.
78.Yui, T., et al., Chain Conformation of a Glucurono-xylo-mannan Isolated from Fruit Body of Tremella fuciformis Berk. Journal of Carbohydrate Chemistry, 1995. 14(2): p. 255 - 263.
79.De Baets, S. and E.J. Vandamme, Extracellular Tremella polysaccharides: structure, properties and applications. Biotechnology Letters, 2001. 23(17): p. 1361-1366.
80.Ukai, S., et al., Polysaccharides in fungi. XIV. Anti-inflammatory effect of the polysaccharides from the fruit bodies of several fungi. J Pharmacobiodyn, 1983. 6(12): p. 983-90.
81.MISAKI, A., et al., Comparison of Structure and Antitumor Activity of Polysaccharides Isolated from Fukurotake, the Fruiting Body of Volvariella volvacea. Agric Biol Chem., 1986. 50(9): p. 2171-2183.
82.Cheung, P.C.K., Dietary Fiber Content and Composition of Some Cultivated Edible Mushroom Fruiting Bodies and Mycelia. J. Agric. Food Chem., 1996. 44(2): p. 468-471.
83.Gao, Q., et al., Characterisation of acidic heteroglycans from Tremella fuciformis Berk with cytokine stimulating activity. Carbohydrate Research, 1996. 288: p. 135-142.
84.Gao, Q.-p., et al., Characterization and Cytokine Stimulating Activities of Heteroglycans from Tremella fuciformis. Planta Medica, 1996(4): p. 297-302.
85.Fraser, C.G., H.J. Jennings, and P. Moyna, Structural analysis of an acidic polysaccharide from Tremella mesenterica NRRL Y-6158. Can J Biochem, 1973. 51(3): p. 219-24.
86.L, M. and L. ZB, Effect of Tremella polysaccharide on IL-2 production by mouse splenocytes. Yao Hsueh Hsueh Pao, 1992. 27: p. 1-4.
87.S, U., et al., Antitumor activity on sarcoma 180 of the polysaccharides from Tremella fuciformis Berk. Chem Pharm Bull (Tokyo), 1972. 20(10): p. 2293-4.
88.T, K., et al., Polysaccharides in fungi. XXXIII. Hypoglycemic activity of an acidic polysaccharide (AC) from Tremella fuciformis. Yakugaku Zasshi, 1994. 114(5): p. 308-15.
89.Cheung, P.C.K., The hypocholesterolemic effect of two edible mushrooms: Auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats1. Nutrition Research, 1996. 16(10): p. 1721-1725.
90.J., X.R., A stimulator of vascular endothelial cells and use thereof EP Patent. 1992, No:0506773 B1, publ 07.10.1992.
91.Guo, F.C., et al., Coccidiosis Immunization: Effects of Mushroom and Herb Polysaccharides on Immune Responses of Chickens Infected with Eimeria tenella. Avian Diseases, 2005. 49(1): p. 70-73.
92.Davis, S.S., Nasal vaccines. Adv Drug Deliv Rev, 2001. 51(1-3): p. 21-42.
93.van Ginkel, F.W., H.H. Nguyen, and J.R. McGhee, Vaccines for mucosal immunity to combat emerging infectious diseases. Emerg Infect Dis, 2000. 6(2): p. 123-32.
94.王金和, et al., 疫苗發展技術與實驗. 2003. p84-85.
95.Sadeghi, A.M., et al., Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur J Pharm Biopharm, 2008. 70(1): p. 270-8.
96.Germann, T., et al., Interleukin-12 profoundly up-regulates the synthesis of antigen-specific complement-fixing IgG2a, IgG2b and IgG3 antibody subclasses in vivo. Eur J Immunol, 1995. 25(3): p. 823-9.
97.Ryan, E.J., L.M. Daly, and K.H. Mills, Immunomodulators and delivery systems for vaccination by mucosal routes. Trends Biotechnol, 2001. 19(8): p. 293-304.
98.Smith, K.M., et al., Oral tolerance. Am J Respir Crit Care Med, 2000. 162(4 Pt 2): p. S175-8.
99.Fooks, A.R., Development of oral vaccines for human use. Curr Opin Mol Ther, 2000. 2(1): p. 80-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top