|
[1]Matsukawa, Y.; Marui, N.; Sakai, T.; Satomi, Y.; Yoshida, M.; Matsumoto, K.; Nishino, H.; Aoike, A. Genistein Arrests Cell Cycle Progression at G2-M. Cancer Res 53:1328-1331; 1993. [2]Stavric, B. Role of chemopreventers in human diet. Clinical Biochemistry 27:319-332; 1994. [3]Yanagihara, K.; Ito, A.; Toge, T.; Numoto, M. Antiproliferative Effects of Isoflavones on Human Cancer Cell Lines Established from the Gastrointestinal Tract. Cancer Res 53:5815-5821; 1993. [4]Wei, Y.; Zhao, X.; Kariya, Y.; Fukata, H.; Teshigawara, K.; Uchida, A. Induction of Apoptosis by Quercetin: Involvement of Heat Shock Protein. Cancer Res 54:4952-4957; 1994. [5]Burdock, GA. Review of the biological properties and toxicity of bee propolis. Food and Chemical Toxicology 36:347-363; 1998. [6]Castaldo, S.; Capasso, F. Propolis, an old remedy used in modern medicine. Fitoterapia 73:S1-S6; 2002. [7]Fesen, MR.; Pommier, Y.; Leteurtre, F.; Hiroguchi, S.; Yung, J.; Kohn, KW. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochemical Pharmacology 48:595-608; 1994. [8]Sud''ina, GF.; Mirzoeva, OK.; Pushkareva, MA.; Korshunova, GA.; Sumbatyan, NV.; Varfolomeev, SD. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Letters 329:21-24; 1993. [9]Michaluart, P.; Masferrer, JL.; Carothers, AM.; Subbaramaiah, K.; Zweifel, BS.; Koboldt, C.; Mestre, JR.; Grunberger, D.; Sacks, PG.; Tanabe, T.; Dannenberg, AJ. Inhibitory Effects of Caffeic Acid Phenethyl Ester on the Activity and Expression of Cyclooxygenase-2 in Human Oral Epithelial Cells and in a Rat Model of Inflammation. Cancer Res 59:2347-2352; 1999. [10]Dobrowolski JW; Vohora SB; Sharma K; Shah SA; Naqvi SA. Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products. J Ethnopharmacol. 35:77-82.; 1991. [11]Huleihel M. Anti-herpes simplex virus effect of an aqueous extract of propolis. Isr Med Assoc J. 4:923-927; 2002. [12]Chen, JH.; Shao, Y.; Huang, MT.; Chin, CK.; Ho, CT. Inhibitory effect of caffeic acid phenethyl ester on human leukemia HL-60 cells. Cancer Letters 108:211-214; 1996. [13]Lee, YJ.; Liao, PH.; Chen, WK.; Yang, CC. Preferential cytotoxicity of caffeic acid phenethyl ester analogues on oral cancer cells. Cancer Letters 153:51-56; 2000. [14]Hishikawa, K.; Nakaki, T.; Fujita, T. Oral Flavonoid Supplementation Attenuates Atherosclerosis Development in Apolipoprotein E-Deficient Mice. Arterioscler Thromb Vasc Biol 25:442-446; 2005. [15]Atilla I.; Mustafa I.; Ahmet G.; Armutcu, F.; Akyol, O. Caffeic Acid Phenethyl Ester Exerts a Neuroprotective Effect on CNS Against Pentylenetetrazol-Induced Seizures in Mice Neurochemical Research 29:2287-2292; 2004. [16]Park EH. Suppressive effects of propolis in rat adjuvant arthritis. Arch Pharm Res. 22:554-558.; 1999. [17]Ozyurt H; Irmak MK; Akyol OS. Caffeic acid phenethyl ester changes the indices of oxidative stress in serum of rats with renal ischaemia-reperfusion injury. Cell Biochemistry and Function 19:259-263; 2001. [18]Natarajan K; Singh S; Burke TR.; Grunberger D. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci U S A. 93:9090-9095; 1996. [19]Russo, A.; Longo, R.; Vanella, A. Antioxidant activity of propolis: role of caffeic acid phenethyl ester and galangin. Fitoterapia 73:S21-S29; 2002. [20]Huang, MT.; Ma, W.; Yen, P.; Xie, JG.; Han, J.; Frenkel, K.; Grunberger, D.; Conney, AH. Inhibitory effects of caffeic acid phenethyl ester (CAPE) on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in mouse skin and the synthesis of DNA, RNA and protein in HeLa cells. Carcinogenesis 17:761-765; 1996. [21]Lee, YJ.; Kuo, HC.; Chu, CY.; Wang, CJ.; Lin, WC.; Tseng, TH. Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Biochemical Pharmacology 66:2281-2289; 2003. [22]Watabe, M.; Hishikawa, K.; Takayanagi, A.; Shimizu, N.; Nakaki, T. Caffeic Acid Phenethyl Ester Induces Apoptosis by Inhibition of NF-kappa B and Activation of Fas in Human Breast Cancer MCF-7 Cells. J. Biol. Chem. 279:6017-6026; 2004. [23]Joo, JH.; Kim, JW.; Lee, Y.; Yoon, SY.; Kim, JH.; Paik, SG.; Choe, IS. Involvement of NF- kappa B in the regulation of S100A6 gene expression in human hepatoblastoma cell line HepG2. Biochemical and Biophysical Research Communications 307:274-280; 2003. [24]Masaaki N. Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester. Molecular Carcinogenesis 31:83-89; 2001.
[25]Liao, HF.; Chen, YY.; Liu, JJ.; Hsu, ML.; Shieh, HJ.; Liao, HJ.; Shieh, CJ.; Shiao,MS.; Chen, YJ. Inhibitory Effect of Caffeic Acid Phenethyl Ester on Angiogenesis, Tumor Invasion, and Metastasis. Journal of Agricultural and Food Chemistry 51:7907-7912; 2003. [26]Mahmoud, NN.; Carothers, AM.; Grunberger, D.; Bilinski, RT.; Churchill, MR.; Martucci, C.; Newmark, HL.; Bertagnolli, MM. Plant phenolics decrease intestinal tumors in an animal model of familial adenomatous polyposis. Carcinogenesis 21:921-927; 2000. [27]Chung, TW.; Moon, SK.; Chang, YC.; Ko, JH.; Lee, YC.; Cho, GU.; Kim, SH.; Kim, JG.; Kim, CH. Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. FASEB J. 18:1670-1681; 2004. [28]Lin YH.; Chiu JH.; Tseng WS.; Wong TT.; Chiou SH. Antiproliferation and radiosensitization of caffeic acid phenethyl ester on human medulloblastoma cells. Cancer Chemother Pharmacol. 57:525-532; 2006. [29]Grunberger D.; Banerjee R.; Eisinger K.; Oltz EM.; Efros L.; Caldwell M.; Estevez VK. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia. 44:230-232; 1988. [30]Nagata, S. Apoptosis by Death Factor. Cell 88:355-365; 1997. [31]Ashe, PC.; Berry, MD. Apoptotic signaling cascades. Progress in Neuro-Psychopharmacology and Biological Psychiatry 27:199-214; 2003. [32]Schwartz LM. Programmed cell death, apoptosis and killer genes. 14:582-590; 1993. [33]Thompson, CB. Apoptosis in the pathogenesis and treatment of disease. Science. 267:1456-1462; 1995. [34]Steller, H. Mechanisms and genes of cellular suicide. Science. 267:1445-1449; 1995. [35]Vaux, DL.; Haecker, G.; Strasser, A. An evolutionary perspective on apoptosis. Cell 76:777-779; 1994. [36]Martinou, JC.; Green, DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63-67; 2001. [37]Tsujimoto, Y. Bcl-2 Family of Proteins: Life-or-Death Switch in Mitochondria. Biosci Rep. 22:47-58; 2002.
[38]Maundrell, K.; Antonsson, B.; Magnenat, E.; Camps, M.; Muda, M.; Chabert, C.; Gillieron, C.; Boschert, U.; Vial KE.; Martinou, JC.; Arkinstall, S. Bcl-2 Undergoes Phosphorylation by c-Jun N-terminal Kinase/Stress-activated Protein Kinases in the Presence of the Constitutively Active GTP-binding Protein Rac1. J. Biol. Chem. 272:25238-25242; 1997. [39]Murphy KM; Ranganathan V; Farnsworth ML; Kavallaris M. Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ. 7:102-111; 2000. [40]Rusinol, AE.; Thewke, D.; Liu, J.; Freeman, N.; Panini, SR.; Sinensky, MS. AKT/Protein Kinase B Regulation of BCL Family Members during Oxysterol-induced Apoptosis. J. Biol. Chem. 279:1392-1399; 2004. [41]John, C.; Reed, DR. Mitochondria and Apoptosis. Science 281:1309-1312; 1998. [42]Greenhalf, W.; Stephan, C.; Chaudhuri, B. Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Letters 380:169-175; 1996. [43]Isabelle, G.; Carole, SF.; Gaumer, S.; Mignotte, B. Bcl-2 and Hsp27 act at different levels to suppress programmed cell death. Oncogene 15:347-360; 1997. [44]Martin, SJ. Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro induces apoptosis. Int J Radiat Biol. 59:1001-1016; 1991. [45]Quillet, MA.; Jaffrezou, JP.; Mansat, V.; Bordier, C.; Naval, J.; Laurent, G. Implication of Mitochondrial Hydrogen Peroxide Generation in Ceramide-induced Apoptosis. J. Biol. Chem. 272:21388-21395; 1997. [46]Vayssiere JL.; Petit, PX.; Risler, Y.; Mignotte, B. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci U S A. 91:11752–11756; 1994. [47]Mignotte, B.; Larcher, JC.; Zheng, DQ.; Esnault, C.; Coulaud, DJ. SV40 induced cellular immortalization: phenotypic changes associated with the loss of proliferative capacity in a conditionally immortalized cell line. Oncogene 5:1529-1533; 1990. [48]Ashkenazi, A.; Dixit, VM. Death Receptors: Signaling and Modulation. Science 281:1305-1308; 1998. [49]Martínez, MJ.; Alava, MA.; Gamen, S.; Kim, KJ.; Chuntharapai, A.; Piñeiro, A.; Naval, J. Involvement of APO2 ligand/TRAIL in activation-induced death of Jurkat and human peripheral blood T cells. European Journal of Immunology 28:2714-2725; 1998.
[50]Thornberry, NA.; Lazebnik, Y. Caspases: Enemies Within. Science 281:1312-1316; 1998. [51]Reed, JC. Cytochrome c: Can''t Live with It--Can''t Live without It. Cell 91:559-562; 1997. [52]Davis, RJ. Signal Transduction by the JNK Group of MAP Kinases. Cell 103:239-252; 2000. [53]Seger, R.; Krebs, EG. The MAPK signaling cascade. FASEB J. 9:726-735; 1995. [54]Dent, P.; Yacoub, A.; Fisher, PB.; Hagan, MP.; Grant, S. MAPK pathways in radiation responses. Oncogene 22:5885-5896; 2003. [55]Cowley, S.; Paterson, H.; Kemp, P.; Marshall, CJ. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841-852; 1994. [56]Maiuri, MC.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741-752; 2007. [57]Yang, C.; Kaushal, V.; Shah, SV.; Kaushal, G. P. Autophagy is associated with apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal Physiol 294:F777-787; 2008. [58]Levine, B.; Klionsky, DJ. Development by Self-Digestion. Developmental Cell 6:463-477; 2004. [59]Daniel, JK.; Emr, SD. Autophagy as a Regulated Pathway of Cellular Degradation Science 290:1717 - 1721; 2000. [60]Yang, YP.; Liang, ZQ.; Zhen, GU.; Qin, ZH. Molecular mechanism and regulation of autophagy. Acta Pharmacologica Sinica 26:1421-1434; 2005. [61]Yorimitsu, T.; Klionsky, D. Autophagy: molecular machinery for self-eating. Cell Death Differ 12:1542-1552 2005. [62]Kunz, JB.; Schwarz, H.; Mayer, A. Determination of Four Sequential Stages during Microautophagy in Vitro. J. Biol. Chem. 279:9987-9996; 2004. [63]Dice, JF. Chaperone-Mediated Autophagy. Autophagy 3:295 - 299 2007. [64]Winder, WW. AMP-activated protein kinase: possible target for treatment of type 2 diabetes. Diabetes Technol Ther. 2:441-448; 2000. [65]Hardie, DG. Minireview: The AMP-Activated Protein Kinase Cascade: The Key Sensor of Cellular Energy Status. Endocrinology 144:5179-5183; 2003. [66]Hardie, DG. The AMP-activated protein kinase-a multisubstrate regulator of lipid metabolism. Trends Biochem. Sci. 14:20-23; 1989. [67]Hardie, DG.; Carling, D.; Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: Metabolic Sensors of the Eukaryotic Cell? Annual Review of Biochemistry 67:821-855; 1998. [68]Hardie, DG. The AMP-Activated Protein Kinase. European Journal of Biochemistry 246:259-273; 1997. [69]Kemp, BE.; Mitchelhill, KI.; Stapleton, D.; Michell, BJ.; Chen, ZP.; Witters, LA. Dealing with energy demand: the AMP-activated protein kinase. Trends in Biochemical Sciences 24:22-25; 1999. [70]Carling, D. The AMP-activated protein kinase cascade - a unifying system for energy control. Trends in Biochemical Sciences 29:18-24; 2004. [71]Foretz, M.; Carling, D.; Guichard, C.; Ferre, P.; Foufelle, F. AMP-activated Protein Kinase Inhibits the Glucose-activated Expression of Fatty Acid Synthase Gene in Rat Hepatocytes. J. Biol. Chem. 273:14767-14771; 1998. [72]Leclerc, I.; Kahn, A.; Doiron, B. The 5''-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Letters 431:180-184; 1998. [73]Yang, W.; Hong, YH.; Shen, XQ.; Frankowski, C.; Camp, HS.; Leff, T. Regulation of Transcription by AMP-activated Protein Kinase: phosphorylatioin of p300 blocks its interaction with nuclear receptors. J. Biol. Chem. 276:38341-38344; 2001. [74]Winder, W. Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. . Appl. Physiol 88:2219–2226; 2000. [75]Gabriela, SX.; Isabelle, L.; Ian, PS.; Bruno, D.; Hardie, DG.; Kahn, A.; Rutter, GA. Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proc Natl Acad Sci U S A. 97:4023–4028.; 2000. [76]Roman, EA.; Cesquini, M.; Stoppa, GR.; Carvalheira, JB.; Torsoni, MA.; Velloso,LA. Activation of AMPK in rat hypothalamus participates in cold-induced resistance to nutrient-dependent anorexigenic signals. J Physiol 568:993-1001; 2005. [77]Hawley, SA.; Selbert, MA.; Goldstein, EG.; Edelman, AM.; Carling, D.; Hardie, DG. 5`-AMP Activates the AMP-activated Protein Kinase Cascade, and Ca/Calmodulin Activates the Calmodulin-dependent Protein Kinase I Cascade, via Three Independent Mechanisms. J. Biol. Chem. 270:27186-27191; 1995. [78]Hemminki, A.; Markie, D.; Tomlinson, I.; Avizienyte, E.; Roth, S.; Loukola, A.; Bignell, G.; Warren, W.; Aminoff, M.; Hoglund, P.; Jarvinen, H.; Kristo, P.; Pelin, K.; Ridanpaa, M.; Salovaara, R.; Toro, T.; Bodmer, W.; Olschwang, S.; Olsen, AS.; Stratton, MR.; Chapelle, A.; Aaltonen, LA. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391:184-187; 1998. [79]Jenne, DE.; Reomann, H.; Nezu, JI.; Friedel, W.; Loff, S.; Jeschke, R.; Muller, O.;Back, W.; Zimmer, M. Peutz-Jeghers syndrome is caused by mutations in a novel serine threoninekinase. Nat Genet 18:38-43; 1998. [80]Momcilovic, M.; Hong, SP.; Carlson, M. Mammalian TAK1 Activates Snf1 Protein Kinase in Yeast and Phosphorylates AMP-activated Protein Kinase in Vitro. J. Biol. Chem. 281:25336-25343; 2006. [81]Carrera, AC. TOR signaling in mammals. J Cell Sci 117:4615-4616; 2004. [82]Tokunaga, C.; Yoshino, KI.; Yonezawa, K. mTOR integrates amino acid- and energy-sensing pathways. Biochemical and Biophysical Research Communications 313:443-446; 2004. [83]Xiang, X.; Saha, AK.; Wen, R.; Ruderman, NB.; Luo, Z. AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. Biochemical and Biophysical Research Communications 321:161-167; 2004. [84]Blazquez, C.; Geelen, MJ.; Velasco, G. The AMP-activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Letters 489:149-153; 2001. [85]Durante, P.; Gueuning, MA.; Darville, MI.; Hue, L.; Rousseau, GG. Apoptosis induced by growth factor withdrawal in fibroblasts overproducing fructose 2,6-bisphosphate. FEBS Letters 448:239-243; 1999. [86]Sith, AD.; Annick, R.; Jennifer, D.; Quinn, AJ.; Jeremy, V.; Rich, N. Molecularly targeted therapy for malignant glioma. Cancer 110:13-24; 2007. [87]Isakovic, A.; Harhaji, L.; Stevanovic, D.; Markovic, Z.; Sumarac, DM.; Starcevic,V.; Micic, D.; Trajkovic, V. Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis Cellular and Molecular Life Sciences 64:1420-9071 2007. [88]Purna, M.; Tiernan, JM; Marsh, E.; Derek, B.; Thomas, CC.; Seyfried, TN. Differential effects of energy stress on AMPK phosphorylation and apoptosis in experimental brain tumor and normal brain. Mol Cancer 7; 2008. [89]Kitamura, Y.; Ota, T.; Matsuoka, Y.; Tooyama, I.; Kimura, H.; Shimohama, S.; Nomura, Y.; Gebicke, HP.; Taniguchi, T. Hydrogen peroxide-induced apoptosis mediated by p53 protein in glial cells. GLIA 25:154-164; 1999. [90]Sonoda, Y.; Watanabe, S.; Matsumoto, Y.; Aizu, YE.; Kasahara, T. FAK Is the Upstream Signal Protein of the Phosphatidylinositol 3-Kinase-Akt Survival Pathway in Hydrogen Peroxide-induced Apoptosis of a Human Glioblastoma Cell Line. J. Biol. Chem. 274:10566-10570; 1999. [91]Fitzpatrick, LR.; Wang, J.; Le, T. Caffeic Acid Phenethyl Ester, an Inhibitor of Nuclear Factor-kappa B, Attenuates Bacterial Peptidoglycan Polysaccharide-Induced Colitis in Rats. J Pharmacol Exp Ther 299:915-920; 2001.
[92]Chen, MJ.; Lin, CC.; Liu, CY.; Wang, TE.; Chu, CH.; Shih, SC.; Chen, YJ. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology. 8:566-576; 2008. [93]Paolo, O.; Sharon, DM.; Eugenio, G,; Antonio, F.; Romina, M.; Julie, V.; Shelley, K.; Yoshiyuki, U.; Domenico, A.; Jennifer, S.; Gianfranco, A.; Francis, H. Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition of NF-kappa B and induction of apoptosis. International Journal of Cancer 125:565-576; 2009. [94]Waskiewicz, AJ.; Cooper, JA. Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Current Opinion in Cell Biology 7:798-805; 1995. [95]Kazuhito,Y.; Hidenori, I.; Korsmeyer, JS. Bcl-2 Is Phosphorylated and Inactivated by an ASK1/Jun N-Terminal Protein Kinase Pathway Normally Activated at G2/M. Mol Cell Biol. 19:8469–8478. ; 1999. [96]Westwick, JK.; Bielawska, AE.; Dbaibo, G.; Hannun, YA.; Brenner, DA. Ceramide Activates the Stress-activated Protein Kinases. J. Biol. Chem. 270:22689-22692; 1995. [97]Johnson, NL.; Gardner, AM.; Diener, KM.; Lange, CA.; Gleavy, J.; Jarpe, MB.; Minden, A.; Karin, M.; Zon, LI.; Johnson, GL. Signal Transduction Pathways Regulated by Mitogen-activated/Extracellular Response Kinase Kinase Kinase Induce Cell Death. J. Biol. Chem. 271:3229-3237; 1996. [98]Cuvillier, O.; Pirianov, G.; Kleuser, B.; Vanek, PG.; Coso, OA.; Gutkind, JS.; Spiegel, S. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381:800-803; 1996. [99]Devanand, S.; Zao, ZS.; Irina, VL.; Moira, S.; Rahul VG.; Kristoffer,V.; Paul, D.; Fisher, PB. mda-7 (IL-24) mediates selective apoptosis in human melanoma cells by inducing the coordinated overexpression of the GADD family of genes by means of p38 MAPK. Proc Natl Acad Sci U S A 99:10054–10059; 2002. [100]Kaladhar, BR. ; Nabha, SM.; Atanaskova, AN. Role of MAP kinase in tumor progression and invasion Cancer and Metastasis Reviews 22:1573-7233 2003. [101]Paolo, O. Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition of NF-kappaB and induction of apoptosis. International Journal of Cancer 125:565-576; 2009. [102]Chen, YJ.; Shiao, MS.; Hsu, ML.; Tsai, TH.; Wang, SY. Effect of Caffeic Acid Phenethyl Ester, an Antioxidant from Propolis, on Inducing Apoptosis in Human Leukemic HL-60 Cells. Journal of Agricultural and Food Chemistry 49:5615-5619; 2001. [103] Gabriel, N.; Mary, AB.; Hu, Y.; Inohara, N. Caspases: the proteases of the apoptotic pathway. Oncogene 17:3237-3245; 1998. [104] Enari, M.; Talanian, RV.; Wrong, WW.; Nagata, S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380:723-726; 1996. [105] Ji, EK.; Myun, WA.; Suk, HB.; In, KL.; Yong, WK.; Jong, YK.; Jin, MD.; So, Y P. AMPK activator, AICAR, inhibits palmitate-induced apoptosis in osteoblast. Bone 43:394-404; 2008. [106] Yun, H.; Kim, HS.; Lee, S.; Kang, I.; Kim, SS.; Choe, W.; Ha, J. AMP kinase signaling determines whether c-Jun N-terminal kinase promotes survival or apoptosis during glucose deprivation. Carcinogenesis 30:529-537; 2009. [107] Laderoute, KR.; Amin, K.; Calaoagan, JM.; Knapp, M.; Le, T.; Orduna, J.; Foretz, M.; Viollet, B. 5''-AMP-Activated Protein Kinase (AMPK) Is Induced by Low-Oxygen and Glucose Deprivation Conditions Found in Solid-Tumor Microenvironments. Mol. Cell. Biol. 26:5336-5347; 2006. [108] Margaret, MS. 5''AMP-activated protein kinase α deficiency enhances stress-induced apoptosis in BHK and PC12 cells. Journal of Cellular and Molecular Medicine 11:286-298; 2007. [109] Vucicevic, L.; Misirkic, M.; Janjetovic, K.; Harhaji, TL.; Prica, M.; Stevanovic, D.; Isenovic, E.; Sudar, E.; Sumarac, DM.; Micic, D.; Trajkovic, V. AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C. Biochemical Pharmacology 77:1684-1693; 2009. [110] Iwamaru, A.; Kondo, Y.; Iwado, E.; Aoki, H.; Fujiwara, K.; Yokoyama, T.; Mills, GB.; Kondo, S. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 26:1840-1851; 2006. [111] Kanzawa, T.; Germano, IM.; Komata, T.; Ito, H.; Kondo, Y.; Kondo, S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448-457; 2004. [112] Harhaji, L.; Isakovic, A.; Raicevic, N.; Markovic, Z.; Todorovic,MB.; Nikolic, N.; Vranjes, DS.; Markovic, I.; Trajkovic, V. Multiple mechanisms underlying the anticancer action of nanocrystalline fullerene. European Journal of Pharmacology 568:89-98; 2007. [113] Gozuacik, D.; Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23:2891-2906; 2004. [114] Codogno, P.; Meijer, AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12:1509-1518; 2005. [115] Elmore, SP.; Qian, T.; Grissom, SF.; Lemasters, JJ. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J.:01-0206fje; 2001. [116] Lemasters, JJ.; Nieminen, AL.; Qian, T.; Trost, LC.; Elmore, SP.; Nishimura, Y.; Crowe, RA.; Cascio, WE.; Bradham, CA.; Brenner, DA. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta. 10:177-196; 1998. [117] Longo, L.; Platini, F.; Scardino, A.; Alabiso, O.; Vasapollo, G. Autophagy inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma. Molecular Cancer Theraputics 7:2476-2485; 2008. [118] Takashi, S.; Fujiwara, K.; Akiyama, Y.; Moritake, K.; Shinojima, N.; Tamada, Y.; Yokoyama, T.; Kondo, S. Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. International Journal of Cancer 124:1060-1071; 2009. [119] Jie, L.; Ni, H.; Ahmad, F.; Soichi, T.; Takeuchi, T.; Kuwano, H. Inhibition of Autophagy by 3-MA Enhances the Effect of 5-FU-Induced Apoptosis in Colon Cancer Cells Annals of Surgical Oncology 16:1534-4681 2009. [120] Wu, YC.; Wu, WK.; Li, Y.; Yu, L.; Li, ZJ.; Wong, CC.; Li, HT.; Sung, JJ.; Cho, CH. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochemical and Biophysical Research Communications 382:451-456; 2009. [121] Trajkovic, LH. AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumor cells. Journal of Cellular and Molecular Medicine 9999; 2009. [122] Meley, D.; Bauvy, C.; Houben, JH; Dubbelhuis, PF.; Helmond, MT.; Codogno, P.; Meijer, AJ. AMP-activated Protein Kinase and the Regulation of Autophagic Proteolysis. J. Biol. Chem. 281:34870-34879; 2006. [123] Meijer, AJ.; Codogno, P. AMP-Activated Protein Kinase and Autophagy. Autophagy 3:238 - 240; 2007. [124] Kim, JE.; Kim, YW.; Lee, IK.; Kim, JY.; Kang, YJ.; Park, SY. AMP-Activated Protein Kinase Activation by 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) Inhibits Palmitate-Induced Endothelial Cell Apoptosis Through Reactive Oxygen Species Suppression. Journal of Pharmacological Sciences 106:394-403; 2008. [125] Zhuge, J. Overexpression of CYP2E1 induces HepG2 cells death by the AMP kinase activator 5′-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) Cell Biology and Toxicology 25:1573-6822 2009.
|