跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/19 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余偲旭
研究生(外文):Szu-Hsu Yu
論文名稱:在咖啡酸苯乙酯所引起腦神經膠質瘤細胞凋亡中AMPK的保護角色之探討
論文名稱(外文):Activation of AMPK protects C6 glioma cells from caffeic acid phenethyl ester-induced apoptosis
指導教授:林俊茂林俊茂引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:62
中文關鍵詞:咖啡酸苯乙酯細胞凋亡AMPK
外文關鍵詞:CAPEapoptosisAMPKglioma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:382
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
Caffeic acid phenethyl ester (CAPE)是蜂膠的組成分之一。過去已經有很多研究報導CAPE 具有多功能的生物與藥理作用:抗氧化、抗菌、抗發炎、抗黴菌、抗病毒、抗腫瘤等性質。許多研究已證實CAPE對於某些癌細胞具有細胞毒殺能力。AMP-activating protein kinase (AMPK)是細胞內主要的能量狀態偵測器,當細胞裡ATP含量較低,AMP含量相對升高時,能透過AMPK的活化,產生ATP以維持能量平衡。AMPK最近已被研究與細胞的增生與凋亡有關。我們發現在四個待測的癌細胞株當中CAPE對於神經瘤細胞C6 glioma最具有毒殺能力;處理CAPE(10μM)24小時可觀察到anti-apoptotic Bcl-2 蛋白表現減少,MAPK如p38 的磷酸化蛋白質表現量下降,而Erk的磷酸化蛋白質則有上升的情形;磷酸化AMPK蛋白質表現量在給予CAPE處理約3小時有最高的表現量,之後隨時間增加而逐漸下降。我們判斷AMPK在這裡扮演保護細胞,避免死亡的角色,因此分別投與AMPK抑制劑 Compound C以及活化劑 AICAR同時比較CAPE,來比較細胞死亡的情形。我們利用流式細胞儀分析細胞凋亡,在CAPE 處理的細胞約有15%凋亡,與Compound C 有一致的情形,而AICAR則與未經任何處理的控制組表現一致;接著利用共軛焦顯微鏡觀察,CAPE與Compound C在粒線體內產生的ROS含量接有明顯增加,AICAR的ROS產生量與控制組差不多;在粒線體膜電位變化方面,也可看到相同的情形,CAPE與Compound C 兩組經處理之後粒線體膜電位下降,而AICAR與控制組維持一致。我們進而步的利用siRNA將AMPK knock down,發現當沒有AMPK保護的情形下,bcl-2的表現些微下降;再繼續投與CAPE時,細胞毒殺作用更甚。我們同時也觀察到經由CAPE處理有細胞自噬的現象;在同時處理細胞自噬與AMPK的抑制劑,與單獨處理CAPE的細胞毒性作比較,可以看到細胞在沒有AMPK與細胞自噬這兩種保護角色之下,對於CAPE的毒性更甚。因此經由以上實驗推論,AMPK與細胞自噬可以保護由CAPE引起C6 glioma的細胞凋亡。
Caffeic acid phenethyl ester (CAPE), an active component of propolis, has many biological and pharmacological activities including antioxidant, anti-inflammation, and anticancer effect. Previous studies have shown that CAPE exhibit significant cytotoxicity in various malignant cell lines. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis, and AMPK regulates a variety of cell functions including proliferation, apoptosis, and brain metabolic plasticity. C6 glioma cells displayed preferential cytotoxicity to CAPE among the four tested cells. We report that AMPK is involved in CAPE-induced apoptosis in C6 glioma cells. Intracellular ROS was increased after CAPE treatment, while the Bcl-2 level was decreased. Phosphorylated AMPK level was decreased upon CAPE treatment, while unphosphorylated AMPK retained a fairly constant level. Further results showed that ROS production and mitochondrial membrane potential change when C6 glioma cells treated with AMPK inhibitor Compound C, that is similar to the effect of CAPE. On the other hand, cells treated with AMPK activator AICAR had the opposite effect. Cells expressing normal AMPK had a survival advantage over AMPK-knockdown cells with the treatment of CAPE, while increased cytotoxicity was observed in the absence of autophagy and AMPK activation. In conclusion, these data suggest that activation of AMPK and autophagy has protective effect from CAPE-induced C6 glioma cell apoptosis.
Acknowledgement ---------------------------------- 4
Abbreviations ------------------------------------ 5
Abstract ------------------------------------------7
Introduction --------------------------------------8
Specific aim --------------------------------------15
Materials and Methods -----------------------------16
Results -------------------------------------------22
Discussion ----------------------------------------28
Conclusion ----------------------------------------33
Figures -------------------------------------------34
References ----------------------------------------47
Appendixes ----------------------------------------57
[1]Matsukawa, Y.; Marui, N.; Sakai, T.; Satomi, Y.; Yoshida, M.; Matsumoto, K.;
Nishino, H.; Aoike, A. Genistein Arrests Cell Cycle Progression at G2-M.
Cancer Res 53:1328-1331; 1993.
[2]Stavric, B. Role of chemopreventers in human diet. Clinical Biochemistry
27:319-332; 1994.
[3]Yanagihara, K.; Ito, A.; Toge, T.; Numoto, M. Antiproliferative Effects of
Isoflavones on Human Cancer Cell Lines Established from the Gastrointestinal
Tract. Cancer Res 53:5815-5821; 1993.
[4]Wei, Y.; Zhao, X.; Kariya, Y.; Fukata, H.; Teshigawara, K.; Uchida, A. Induction
of Apoptosis by Quercetin: Involvement of Heat Shock Protein. Cancer Res
54:4952-4957; 1994.
[5]Burdock, GA. Review of the biological properties and toxicity of bee propolis.
Food and Chemical Toxicology 36:347-363; 1998.
[6]Castaldo, S.; Capasso, F. Propolis, an old remedy used in modern medicine.
Fitoterapia 73:S1-S6; 2002.
[7]Fesen, MR.; Pommier, Y.; Leteurtre, F.; Hiroguchi, S.; Yung, J.; Kohn, KW.
Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE)
and related compounds. Biochemical Pharmacology 48:595-608; 1994.
[8]Sud''ina, GF.; Mirzoeva, OK.; Pushkareva, MA.; Korshunova, GA.; Sumbatyan,
NV.; Varfolomeev, SD. Caffeic acid phenethyl ester as a lipoxygenase inhibitor
with antioxidant properties. FEBS Letters 329:21-24; 1993.
[9]Michaluart, P.; Masferrer, JL.; Carothers, AM.; Subbaramaiah, K.; Zweifel, BS.;
Koboldt, C.; Mestre, JR.; Grunberger, D.; Sacks, PG.; Tanabe, T.; Dannenberg,
AJ. Inhibitory Effects of Caffeic Acid Phenethyl Ester on the Activity and
Expression of Cyclooxygenase-2 in Human Oral Epithelial Cells and in a Rat
Model of Inflammation. Cancer Res 59:2347-2352; 1999.
[10]Dobrowolski JW; Vohora SB; Sharma K; Shah SA; Naqvi SA. Antibacterial,
antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee
products. J Ethnopharmacol. 35:77-82.; 1991.
[11]Huleihel M. Anti-herpes simplex virus effect of an aqueous extract of propolis.
Isr Med Assoc J. 4:923-927; 2002.
[12]Chen, JH.; Shao, Y.; Huang, MT.; Chin, CK.; Ho, CT. Inhibitory effect of caffeic
acid phenethyl ester on human leukemia HL-60 cells. Cancer Letters
108:211-214; 1996.
[13]Lee, YJ.; Liao, PH.; Chen, WK.; Yang, CC. Preferential cytotoxicity of caffeic
acid phenethyl ester analogues on oral cancer cells. Cancer Letters 153:51-56;
2000.
[14]Hishikawa, K.; Nakaki, T.; Fujita, T. Oral Flavonoid Supplementation Attenuates
Atherosclerosis Development in Apolipoprotein E-Deficient Mice. Arterioscler
Thromb Vasc Biol 25:442-446; 2005.
[15]Atilla I.; Mustafa I.; Ahmet G.; Armutcu, F.; Akyol, O. Caffeic Acid Phenethyl
Ester Exerts a Neuroprotective Effect on CNS Against Pentylenetetrazol-Induced
Seizures in Mice Neurochemical Research 29:2287-2292; 2004.
[16]Park EH. Suppressive effects of propolis in rat adjuvant arthritis. Arch Pharm
Res. 22:554-558.; 1999.
[17]Ozyurt H; Irmak MK; Akyol OS. Caffeic acid phenethyl ester changes the
indices of oxidative stress in serum of rats with renal ischaemia-reperfusion
injury. Cell Biochemistry and Function 19:259-263; 2001.
[18]Natarajan K; Singh S; Burke TR.; Grunberger D. Caffeic acid phenethyl ester is
a potent and specific inhibitor of activation of nuclear transcription factor
NF-kappa B. Proc Natl Acad Sci U S A. 93:9090-9095; 1996.
[19]Russo, A.; Longo, R.; Vanella, A. Antioxidant activity of propolis: role of caffeic
acid phenethyl ester and galangin. Fitoterapia 73:S21-S29; 2002.
[20]Huang, MT.; Ma, W.; Yen, P.; Xie, JG.; Han, J.; Frenkel, K.; Grunberger, D.;
Conney, AH. Inhibitory effects of caffeic acid phenethyl ester (CAPE) on
12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion in mouse skin
and the synthesis of DNA, RNA and protein in HeLa cells. Carcinogenesis
17:761-765; 1996.
[21]Lee, YJ.; Kuo, HC.; Chu, CY.; Wang, CJ.; Lin, WC.; Tseng, TH. Involvement of
tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl
ester-induced apoptosis of C6 glioma cells. Biochemical Pharmacology
66:2281-2289; 2003.
[22]Watabe, M.; Hishikawa, K.; Takayanagi, A.; Shimizu, N.; Nakaki, T. Caffeic
Acid Phenethyl Ester Induces Apoptosis by Inhibition of NF-kappa B and
Activation of Fas in Human Breast Cancer MCF-7 Cells. J. Biol. Chem.
279:6017-6026; 2004.
[23]Joo, JH.; Kim, JW.; Lee, Y.; Yoon, SY.; Kim, JH.; Paik, SG.; Choe, IS.
Involvement of NF- kappa B in the regulation of S100A6 gene expression in
human hepatoblastoma cell line HepG2. Biochemical and Biophysical Research
Communications 307:274-280; 2003.
[24]Masaaki N. Suppression of cell transformation and induction of apoptosis by
caffeic acid phenethyl ester. Molecular Carcinogenesis 31:83-89; 2001.

[25]Liao, HF.; Chen, YY.; Liu, JJ.; Hsu, ML.; Shieh, HJ.; Liao, HJ.; Shieh, CJ.;
Shiao,MS.; Chen, YJ. Inhibitory Effect of Caffeic Acid Phenethyl Ester on
Angiogenesis, Tumor Invasion, and Metastasis. Journal of Agricultural and
Food Chemistry 51:7907-7912; 2003.
[26]Mahmoud, NN.; Carothers, AM.; Grunberger, D.; Bilinski, RT.; Churchill, MR.;
Martucci, C.; Newmark, HL.; Bertagnolli, MM. Plant phenolics decrease
intestinal tumors in an animal model of familial adenomatous polyposis.
Carcinogenesis 21:921-927; 2000.
[27]Chung, TW.; Moon, SK.; Chang, YC.; Ko, JH.; Lee, YC.; Cho, GU.; Kim, SH.;
Kim, JG.; Kim, CH. Novel and therapeutic effect of caffeic acid and caffeic acid
phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth
and metastasis by dual mechanism. FASEB J. 18:1670-1681; 2004.
[28]Lin YH.; Chiu JH.; Tseng WS.; Wong TT.; Chiou SH. Antiproliferation and
radiosensitization of caffeic acid phenethyl ester on human medulloblastoma
cells. Cancer Chemother Pharmacol. 57:525-532; 2006.
[29]Grunberger D.; Banerjee R.; Eisinger K.; Oltz EM.; Efros L.; Caldwell M.;
Estevez VK. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl
ester isolated from propolis. Experientia. 44:230-232; 1988.
[30]Nagata, S. Apoptosis by Death Factor. Cell 88:355-365; 1997.
[31]Ashe, PC.; Berry, MD. Apoptotic signaling cascades. Progress in
Neuro-Psychopharmacology and Biological Psychiatry 27:199-214; 2003.
[32]Schwartz LM. Programmed cell death, apoptosis and killer genes. 14:582-590;
1993.
[33]Thompson, CB. Apoptosis in the pathogenesis and treatment of disease. Science.
267:1456-1462; 1995.
[34]Steller, H. Mechanisms and genes of cellular suicide. Science. 267:1445-1449;
1995.
[35]Vaux, DL.; Haecker, G.; Strasser, A. An evolutionary perspective on apoptosis.
Cell 76:777-779; 1994.
[36]Martinou, JC.; Green, DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell
Biol 2:63-67; 2001.
[37]Tsujimoto, Y. Bcl-2 Family of Proteins: Life-or-Death Switch in Mitochondria.
Biosci Rep. 22:47-58; 2002.




[38]Maundrell, K.; Antonsson, B.; Magnenat, E.; Camps, M.; Muda, M.; Chabert, C.;
Gillieron, C.; Boschert, U.; Vial KE.; Martinou, JC.; Arkinstall, S. Bcl-2
Undergoes Phosphorylation by c-Jun N-terminal Kinase/Stress-activated Protein
Kinases in the Presence of the Constitutively Active GTP-binding Protein Rac1.
J. Biol. Chem. 272:25238-25242; 1997.
[39]Murphy KM; Ranganathan V; Farnsworth ML; Kavallaris M. Bcl-2 inhibits Bax
translocation from cytosol to mitochondria during drug-induced apoptosis of
human tumor cells. Cell Death Differ. 7:102-111; 2000.
[40]Rusinol, AE.; Thewke, D.; Liu, J.; Freeman, N.; Panini, SR.; Sinensky, MS.
AKT/Protein Kinase B Regulation of BCL Family Members during
Oxysterol-induced Apoptosis. J. Biol. Chem. 279:1392-1399; 2004.
[41]John, C.; Reed, DR. Mitochondria and Apoptosis. Science 281:1309-1312;
1998.
[42]Greenhalf, W.; Stephan, C.; Chaudhuri, B. Role of mitochondria and C-terminal
membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in
Saccharomyces cerevisiae. FEBS Letters 380:169-175; 1996.
[43]Isabelle, G.; Carole, SF.; Gaumer, S.; Mignotte, B. Bcl-2 and Hsp27 act at
different levels to suppress programmed cell death. Oncogene 15:347-360; 1997.
[44]Martin, SJ. Ultraviolet B irradiation of human leukaemia HL-60 cells in vitro
induces apoptosis. Int J Radiat Biol. 59:1001-1016; 1991.
[45]Quillet, MA.; Jaffrezou, JP.; Mansat, V.; Bordier, C.; Naval, J.; Laurent, G.
Implication of Mitochondrial Hydrogen Peroxide Generation in
Ceramide-induced Apoptosis. J. Biol. Chem. 272:21388-21395; 1997.
[46]Vayssiere JL.; Petit, PX.; Risler, Y.; Mignotte, B. Commitment to apoptosis is
associated with changes in mitochondrial biogenesis and activity in cell lines
conditionally immortalized with simian virus 40. Proc Natl Acad Sci U S A.
91:11752–11756; 1994.
[47]Mignotte, B.; Larcher, JC.; Zheng, DQ.; Esnault, C.; Coulaud, DJ. SV40 induced
cellular immortalization: phenotypic changes associated with the loss of
proliferative capacity in a conditionally immortalized cell line. Oncogene
5:1529-1533; 1990.
[48]Ashkenazi, A.; Dixit, VM. Death Receptors: Signaling and Modulation. Science
281:1305-1308; 1998.
[49]Martínez, MJ.; Alava, MA.; Gamen, S.; Kim, KJ.; Chuntharapai, A.; Piñeiro, A.;
Naval, J. Involvement of APO2 ligand/TRAIL in activation-induced death of
Jurkat and human peripheral blood T cells. European Journal of Immunology
28:2714-2725; 1998.

[50]Thornberry, NA.; Lazebnik, Y. Caspases: Enemies Within. Science
281:1312-1316; 1998.
[51]Reed, JC. Cytochrome c: Can''t Live with It--Can''t Live without It. Cell
91:559-562; 1997.
[52]Davis, RJ. Signal Transduction by the JNK Group of MAP Kinases. Cell
103:239-252; 2000.
[53]Seger, R.; Krebs, EG. The MAPK signaling cascade. FASEB J. 9:726-735; 1995.
[54]Dent, P.; Yacoub, A.; Fisher, PB.; Hagan, MP.; Grant, S. MAPK pathways in
radiation responses. Oncogene 22:5885-5896; 2003.
[55]Cowley, S.; Paterson, H.; Kemp, P.; Marshall, CJ. Activation of MAP kinase
kinase is necessary and sufficient for PC12 differentiation and for transformation
of NIH 3T3 cells. Cell 77:841-852; 1994.
[56]Maiuri, MC.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing:
crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741-752;
2007.
[57]Yang, C.; Kaushal, V.; Shah, SV.; Kaushal, G. P. Autophagy is associated with
apoptosis in cisplatin injury to renal tubular epithelial cells. Am J Physiol Renal
Physiol 294:F777-787; 2008.
[58]Levine, B.; Klionsky, DJ. Development by Self-Digestion. Developmental Cell
6:463-477; 2004.
[59]Daniel, JK.; Emr, SD. Autophagy as a Regulated Pathway of Cellular
Degradation Science 290:1717 - 1721; 2000.
[60]Yang, YP.; Liang, ZQ.; Zhen, GU.; Qin, ZH. Molecular mechanism and
regulation of autophagy. Acta Pharmacologica Sinica 26:1421-1434; 2005.
[61]Yorimitsu, T.; Klionsky, D. Autophagy: molecular machinery for self-eating. Cell
Death Differ 12:1542-1552 2005.
[62]Kunz, JB.; Schwarz, H.; Mayer, A. Determination of Four Sequential Stages
during Microautophagy in Vitro. J. Biol. Chem. 279:9987-9996; 2004.
[63]Dice, JF. Chaperone-Mediated Autophagy. Autophagy 3:295 - 299 2007.
[64]Winder, WW. AMP-activated protein kinase: possible target for treatment of type
2 diabetes. Diabetes Technol Ther. 2:441-448; 2000.
[65]Hardie, DG. Minireview: The AMP-Activated Protein Kinase Cascade: The Key
Sensor of Cellular Energy Status. Endocrinology 144:5179-5183; 2003.
[66]Hardie, DG. The AMP-activated protein kinase-a multisubstrate regulator of
lipid metabolism. Trends Biochem. Sci. 14:20-23; 1989.
[67]Hardie, DG.; Carling, D.; Carlson, M. The AMP-activated/SNF1 protein kinase
subfamily: Metabolic Sensors of the Eukaryotic Cell? Annual Review of
Biochemistry 67:821-855; 1998.
[68]Hardie, DG. The AMP-Activated Protein Kinase. European Journal of
Biochemistry 246:259-273; 1997.
[69]Kemp, BE.; Mitchelhill, KI.; Stapleton, D.; Michell, BJ.; Chen, ZP.; Witters, LA.
Dealing with energy demand: the AMP-activated protein kinase. Trends in
Biochemical Sciences 24:22-25; 1999.
[70]Carling, D. The AMP-activated protein kinase cascade - a unifying system for
energy control. Trends in Biochemical Sciences 29:18-24; 2004.
[71]Foretz, M.; Carling, D.; Guichard, C.; Ferre, P.; Foufelle, F. AMP-activated
Protein Kinase Inhibits the Glucose-activated Expression of Fatty Acid Synthase
Gene in Rat Hepatocytes. J. Biol. Chem. 273:14767-14771; 1998.
[72]Leclerc, I.; Kahn, A.; Doiron, B. The 5''-AMP-activated protein kinase inhibits
the transcriptional stimulation by glucose in liver cells, acting through the
glucose response complex. FEBS Letters 431:180-184; 1998.
[73]Yang, W.; Hong, YH.; Shen, XQ.; Frankowski, C.; Camp, HS.; Leff, T.
Regulation of Transcription by AMP-activated Protein Kinase: phosphorylatioin
of p300 blocks its interaction with nuclear receptors. J. Biol. Chem.
276:38341-38344; 2001.
[74]Winder, W. Activation of AMP-activated protein kinase increases mitochondrial
enzymes in skeletal muscle. . Appl. Physiol 88:2219–2226; 2000.
[75]Gabriela, SX.; Isabelle, L.; Ian, PS.; Bruno, D.; Hardie, DG.; Kahn, A.; Rutter,
GA. Role of AMP-activated protein kinase in the regulation by glucose of islet
beta cell gene expression. Proc Natl Acad Sci U S A. 97:4023–4028.; 2000.
[76]Roman, EA.; Cesquini, M.; Stoppa, GR.; Carvalheira, JB.; Torsoni, MA.; Velloso,LA. Activation of AMPK in rat hypothalamus participates in cold-induced resistance to nutrient-dependent anorexigenic signals. J Physiol 568:993-1001; 2005.
[77]Hawley, SA.; Selbert, MA.; Goldstein, EG.; Edelman, AM.; Carling, D.; Hardie,
DG. 5`-AMP Activates the AMP-activated Protein Kinase Cascade, and
Ca/Calmodulin Activates the Calmodulin-dependent Protein Kinase I Cascade,
via Three Independent Mechanisms. J. Biol. Chem. 270:27186-27191; 1995.
[78]Hemminki, A.; Markie, D.; Tomlinson, I.; Avizienyte, E.; Roth, S.; Loukola, A.;
Bignell, G.; Warren, W.; Aminoff, M.; Hoglund, P.; Jarvinen, H.; Kristo, P.; Pelin, K.; Ridanpaa, M.; Salovaara, R.; Toro, T.; Bodmer, W.; Olschwang, S.; Olsen, AS.; Stratton, MR.; Chapelle, A.; Aaltonen, LA. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391:184-187; 1998.
[79]Jenne, DE.; Reomann, H.; Nezu, JI.; Friedel, W.; Loff, S.; Jeschke, R.; Muller, O.;Back, W.; Zimmer, M. Peutz-Jeghers syndrome is caused by mutations in a novel serine threoninekinase. Nat Genet 18:38-43; 1998.
[80]Momcilovic, M.; Hong, SP.; Carlson, M. Mammalian TAK1 Activates Snf1
Protein Kinase in Yeast and Phosphorylates AMP-activated Protein Kinase in
Vitro. J. Biol. Chem. 281:25336-25343; 2006.
[81]Carrera, AC. TOR signaling in mammals. J Cell Sci 117:4615-4616; 2004.
[82]Tokunaga, C.; Yoshino, KI.; Yonezawa, K. mTOR integrates amino acid- and
energy-sensing pathways. Biochemical and Biophysical Research
Communications 313:443-446; 2004.
[83]Xiang, X.; Saha, AK.; Wen, R.; Ruderman, NB.; Luo, Z. AMP-activated protein
kinase activators can inhibit the growth of prostate cancer cells by multiple
mechanisms. Biochemical and Biophysical Research Communications
321:161-167; 2004.
[84]Blazquez, C.; Geelen, MJ.; Velasco, G. The AMP-activated protein kinase
prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS Letters
489:149-153; 2001.
[85]Durante, P.; Gueuning, MA.; Darville, MI.; Hue, L.; Rousseau, GG. Apoptosis
induced by growth factor withdrawal in fibroblasts overproducing fructose
2,6-bisphosphate. FEBS Letters 448:239-243; 1999.
[86]Sith, AD.; Annick, R.; Jennifer, D.; Quinn, AJ.; Jeremy, V.; Rich, N. Molecularly
targeted therapy for malignant glioma. Cancer 110:13-24; 2007.
[87]Isakovic, A.; Harhaji, L.; Stevanovic, D.; Markovic, Z.; Sumarac, DM.; Starcevic,V.; Micic, D.; Trajkovic, V. Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis Cellular and Molecular Life Sciences 64:1420-9071 2007.
[88]Purna, M.; Tiernan, JM; Marsh, E.; Derek, B.; Thomas, CC.; Seyfried, TN.
Differential effects of energy stress on AMPK phosphorylation and apoptosis in
experimental brain tumor and normal brain. Mol Cancer 7; 2008.
[89]Kitamura, Y.; Ota, T.; Matsuoka, Y.; Tooyama, I.; Kimura, H.; Shimohama, S.;
Nomura, Y.; Gebicke, HP.; Taniguchi, T. Hydrogen peroxide-induced apoptosis
mediated by p53 protein in glial cells. GLIA 25:154-164; 1999.
[90]Sonoda, Y.; Watanabe, S.; Matsumoto, Y.; Aizu, YE.; Kasahara, T. FAK Is the
Upstream Signal Protein of the Phosphatidylinositol 3-Kinase-Akt Survival
Pathway in Hydrogen Peroxide-induced Apoptosis of a Human Glioblastoma
Cell Line. J. Biol. Chem. 274:10566-10570; 1999.
[91]Fitzpatrick, LR.; Wang, J.; Le, T. Caffeic Acid Phenethyl Ester, an Inhibitor of
Nuclear Factor-kappa B, Attenuates Bacterial Peptidoglycan
Polysaccharide-Induced Colitis in Rats. J Pharmacol Exp Ther 299:915-920;
2001.

[92]Chen, MJ.; Lin, CC.; Liu, CY.; Wang, TE.; Chu, CH.; Shih, SC.; Chen, YJ. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology. 8:566-576; 2008.
[93]Paolo, O.; Sharon, DM.; Eugenio, G,; Antonio, F.; Romina, M.; Julie, V.; Shelley,
K.; Yoshiyuki, U.; Domenico, A.; Jennifer, S.; Gianfranco, A.; Francis, H.
Caffeic acid phenethyl ester decreases cholangiocarcinoma growth by inhibition
of NF-kappa B and induction of apoptosis. International Journal of Cancer
125:565-576; 2009.
[94]Waskiewicz, AJ.; Cooper, JA. Mitogen and stress response pathways: MAP
kinase cascades and phosphatase regulation in mammals and yeast. Current
Opinion in Cell Biology 7:798-805; 1995.
[95]Kazuhito,Y.; Hidenori, I.; Korsmeyer, JS. Bcl-2 Is Phosphorylated and
Inactivated by an ASK1/Jun N-Terminal Protein Kinase Pathway Normally
Activated at G2/M. Mol Cell Biol. 19:8469–8478. ; 1999.
[96]Westwick, JK.; Bielawska, AE.; Dbaibo, G.; Hannun, YA.; Brenner, DA.
Ceramide Activates the Stress-activated Protein Kinases. J. Biol. Chem.
270:22689-22692; 1995.
[97]Johnson, NL.; Gardner, AM.; Diener, KM.; Lange, CA.; Gleavy, J.; Jarpe, MB.;
Minden, A.; Karin, M.; Zon, LI.; Johnson, GL. Signal Transduction Pathways
Regulated by Mitogen-activated/Extracellular Response Kinase Kinase Kinase
Induce Cell Death. J. Biol. Chem. 271:3229-3237; 1996.
[98]Cuvillier, O.; Pirianov, G.; Kleuser, B.; Vanek, PG.; Coso, OA.; Gutkind, JS.;
Spiegel, S. Suppression of ceramide-mediated programmed cell death by
sphingosine-1-phosphate. Nature 381:800-803; 1996.
[99]Devanand, S.; Zao, ZS.; Irina, VL.; Moira, S.; Rahul VG.; Kristoffer,V.; Paul, D.;
Fisher, PB. mda-7 (IL-24) mediates selective apoptosis in human melanoma cells
by inducing the coordinated overexpression of the GADD family of genes by
means of p38 MAPK. Proc Natl Acad Sci U S A 99:10054–10059; 2002.
[100]Kaladhar, BR. ; Nabha, SM.; Atanaskova, AN. Role of MAP kinase in tumor
progression and invasion Cancer and Metastasis Reviews 22:1573-7233 2003.
[101]Paolo, O. Caffeic acid phenethyl ester decreases cholangiocarcinoma
growth by inhibition of NF-kappaB and induction of apoptosis. International
Journal of Cancer 125:565-576; 2009.
[102]Chen, YJ.; Shiao, MS.; Hsu, ML.; Tsai, TH.; Wang, SY. Effect of Caffeic Acid
Phenethyl Ester, an Antioxidant from Propolis, on Inducing Apoptosis in Human
Leukemic HL-60 Cells. Journal of Agricultural and Food Chemistry
49:5615-5619; 2001.
[103] Gabriel, N.; Mary, AB.; Hu, Y.; Inohara, N. Caspases: the proteases of the
apoptotic pathway. Oncogene 17:3237-3245; 1998.
[104] Enari, M.; Talanian, RV.; Wrong, WW.; Nagata, S. Sequential activation of
ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature
380:723-726; 1996.
[105] Ji, EK.; Myun, WA.; Suk, HB.; In, KL.; Yong, WK.; Jong, YK.; Jin, MD.; So, Y
P. AMPK activator, AICAR, inhibits palmitate-induced apoptosis in osteoblast.
Bone 43:394-404; 2008.
[106] Yun, H.; Kim, HS.; Lee, S.; Kang, I.; Kim, SS.; Choe, W.; Ha, J. AMP kinase
signaling determines whether c-Jun N-terminal kinase promotes survival or
apoptosis during glucose deprivation. Carcinogenesis 30:529-537; 2009.
[107] Laderoute, KR.; Amin, K.; Calaoagan, JM.; Knapp, M.; Le, T.; Orduna, J.;
Foretz, M.; Viollet, B. 5''-AMP-Activated Protein Kinase (AMPK) Is Induced
by Low-Oxygen and Glucose Deprivation Conditions Found in Solid-Tumor
Microenvironments. Mol. Cell. Biol. 26:5336-5347; 2006.
[108] Margaret, MS. 5''AMP-activated protein kinase α deficiency enhances
stress-induced apoptosis in BHK and PC12 cells. Journal of Cellular and
Molecular Medicine 11:286-298; 2007.
[109] Vucicevic, L.; Misirkic, M.; Janjetovic, K.; Harhaji, TL.; Prica, M.; Stevanovic,
D.; Isenovic, E.; Sudar, E.; Sumarac, DM.; Micic, D.; Trajkovic, V. AMP-activated protein kinase-dependent and -independent mechanisms underlying in vitro antiglioma action of compound C. Biochemical Pharmacology 77:1684-1693; 2009.
[110] Iwamaru, A.; Kondo, Y.; Iwado, E.; Aoki, H.; Fujiwara, K.; Yokoyama, T.; Mills, GB.; Kondo, S. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene 26:1840-1851; 2006.
[111] Kanzawa, T.; Germano, IM.; Komata, T.; Ito, H.; Kondo, Y.; Kondo, S. Role of
autophagy in temozolomide-induced cytotoxicity for malignant glioma cells.
Cell Death Differ 11:448-457; 2004.
[112] Harhaji, L.; Isakovic, A.; Raicevic, N.; Markovic, Z.; Todorovic,MB.; Nikolic,
N.; Vranjes, DS.; Markovic, I.; Trajkovic, V. Multiple mechanisms underlying
the anticancer action of nanocrystalline fullerene. European Journal of
Pharmacology 568:89-98; 2007.
[113] Gozuacik, D.; Kimchi, A. Autophagy as a cell death and tumor suppressor
mechanism. Oncogene 23:2891-2906; 2004.
[114] Codogno, P.; Meijer, AJ. Autophagy and signaling: their role in cell survival and
cell death. Cell Death Differ 12:1509-1518; 2005.
[115] Elmore, SP.; Qian, T.; Grissom, SF.; Lemasters, JJ. The mitochondrial
permeability transition initiates autophagy in rat hepatocytes. FASEB
J.:01-0206fje; 2001.
[116] Lemasters, JJ.; Nieminen, AL.; Qian, T.; Trost, LC.; Elmore, SP.; Nishimura, Y.;
Crowe, RA.; Cascio, WE.; Bradham, CA.; Brenner, DA. The mitochondrial
permeability transition in cell death: a common mechanism in necrosis,
apoptosis and autophagy. Biochim Biophys Acta. 10:177-196; 1998.
[117] Longo, L.; Platini, F.; Scardino, A.; Alabiso, O.; Vasapollo, G. Autophagy
inhibition enhances anthocyanin-induced apoptosis in hepatocellular carcinoma.
Molecular Cancer Theraputics 7:2476-2485; 2008.
[118] Takashi, S.; Fujiwara, K.; Akiyama, Y.; Moritake, K.; Shinojima, N.; Tamada, Y.; Yokoyama, T.; Kondo, S. Inhibition of autophagy at a late stage enhances imatinib-induced cytotoxicity in human malignant glioma cells. International Journal of Cancer 124:1060-1071; 2009.
[119] Jie, L.; Ni, H.; Ahmad, F.; Soichi, T.; Takeuchi, T.; Kuwano, H. Inhibition of
Autophagy by 3-MA Enhances the Effect of 5-FU-Induced Apoptosis in Colon
Cancer Cells Annals of Surgical Oncology 16:1534-4681 2009.
[120] Wu, YC.; Wu, WK.; Li, Y.; Yu, L.; Li, ZJ.; Wong, CC.; Li, HT.; Sung, JJ.; Cho,
CH. Inhibition of macroautophagy by bafilomycin A1 lowers proliferation and induces apoptosis in colon cancer cells. Biochemical and Biophysical Research
Communications 382:451-456; 2009.
[121] Trajkovic, LH. AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumor cells. Journal of Cellular and Molecular Medicine 9999; 2009.
[122] Meley, D.; Bauvy, C.; Houben, JH; Dubbelhuis, PF.; Helmond, MT.; Codogno,
P.; Meijer, AJ. AMP-activated Protein Kinase and the Regulation of Autophagic
Proteolysis. J. Biol. Chem. 281:34870-34879; 2006.
[123] Meijer, AJ.; Codogno, P. AMP-Activated Protein Kinase and Autophagy.
Autophagy 3:238 - 240; 2007.
[124] Kim, JE.; Kim, YW.; Lee, IK.; Kim, JY.; Kang, YJ.; Park, SY. AMP-Activated
Protein Kinase Activation by 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) Inhibits Palmitate-Induced Endothelial Cell Apoptosis Through Reactive Oxygen Species Suppression. Journal of Pharmacological Sciences 106:394-403; 2008.
[125] Zhuge, J. Overexpression of CYP2E1 induces HepG2 cells death by the AMP
kinase activator 5′-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside
(AICAR) Cell Biology and Toxicology 25:1573-6822 2009.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊