|
Reference List
[1]Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM, Embryonic stem cell lines derived from human blastocysts. Science 282, (1998) 1145-1147. [2]Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A, Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18, (2000) 399-404. [3]Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA, Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227, (2000) 271-278. [4]Scholer HR, Balling R, Hatzopoulos AK, Suzuki N, Gruss P, Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO J 8, (1989) 2551-2557. [5]Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A, Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95, (1998) 379-391. [6]Boiani M, Eckardt S, Scholer HR, McLaughlin KJ, Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev 16, (2002) 1209-1219. [7]Abud HE, Skinner JA, McDonald FJ, Bedford MT, Lonai P, Heath JK, Ectopic expression of Fgf-4 in chimeric mouse embryos induces the expression of early markers of limb development in the lateral ridge. Dev Genet 19, (1996) 51-65. [8]Wilder PJ, Kelly D, Brigman K, Peterson CL, Nowling T, Gao QS, McComb RD, Capecchi MR, Rizzino A, Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/or the survival of their early differentiated progeny. Dev Biol 192, (1997) 614-629. [9]Yuan H, Corbi N, Basilico C, Dailey L, Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9, (1995) 2635-2645. [10]Hanna LA, Foreman RK, Tarasenko IA, Kessler DS, Labosky PA, Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo. Genes Dev 16, (2002) 2650-2661. [11]Sutton J, Costa R, Klug M, Field L, Xu D, Largaespada DA, Fletcher CF, Jenkins NA, Copeland NG, Klemsz M, Hromas R, Genesis, a winged helix transcriptional repressor with expression restricted to embryonic stem cells. J Biol Chem 271, (1996) 23126-23133. [12]Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R, Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17, (2003) 126-140. [13]Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A, Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, (2003) 643-655. [14]Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S, The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, (2003) 631-642. [15]Huckins C, The spermatogonial stem cell population in adult rats. I. Their morphology, proliferation and maturation. Anat Rec 169, (1971) 533-557. [16]Wylie C, Germ cells. Cell 96, (1999) 165-174. [17]Oakberg EF, Spermatogonial stem-cell renewal in the mouse. Anat Rec 169, (1971) 515-531. [18]Oosterhuis JW, Looijenga LH, Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5, (2005) 210-222. [19]Schmoll HJ, Souchon R, Krege S, Albers P, European consensus on diagnosis and treatment of germ cell cancer: a report of the European Germ Cell Cancer Consensus Group (EGCCCG). Ann Oncol 15, (2004) 1377-1399. [20]Purdue MP, Devesa SS, Sigurdson AJ, McGlynn KA, International patterns and trends in testis cancer incidence. Int J Cancer 115, (2005) 822-827. [21]Shah MN, Devesa SS, Zhu K, McGlynn KA, Trends in testicular germ cell tumours by ethnic group in the United States. Int J Androl 30, (2007) 206-213. [22]Swerdlow AJ, dos Santos Silva I, Reid A, Qiao Z, Brewster DH, Arrundale J, Trends in cancer incidence and mortality in Scotland: description and possible explanations. Br J Cancer 77, (1998) 1-54. [23]Richiardi L, Bellocco R, Adami HO, Torrang A, Barlow L, Hakulinen T, Rahu M, Stengrevics A, Storm H, Tretli S, Kurtinaitis J, Tyczynski JE, Akre O, Testicular cancer incidence in eight northern European countries: secular and recent trends. Cancer Epidemiol Biomarkers Prev 13, (2004) 2157-2166. [24]Giwercman A, Carlsen E, Keiding N, Skakkebaek NE, Evidence for increasing incidence of abnormalities of the human testis: a review. Environ Health Perspect 101, (1993) 65-71. [25]McGlynn KA, Devesa SS, Graubard BI, Castle PE, Increasing incidence of testicular germ cell tumors among black men in the United States. J Clin Oncol 23, (2005) 5757-5761. [26]Looijenga LH, Oosterhuis JW, Pathobiology of testicular germ cell tumors: views and news. Anal Quant Cytol Histol 24, (2002) 263-279. [27]Reuter VE, Origins and molecular biology of testicular germ cell tumors. Mod Pathol 18, (2005) S51-S60. [28]Robboy SJ, Miller T, Donahoe PK, Jahre C, Welch WR, Haseltine FP, Miller WA, Atkins L, Crawford JD, Dysgenesis of testicular and streak gonads in the syndrome of mixed gonadal dysgenesis: perspective derived from a clinicopathologic analysis of twenty-one cases. Hum Pathol 13, (1982) 700-716. [29]Verp MS, Simpson JL, Abnormal sexual differentiation and neoplasia. Cancer Genet Cytogenet 25, (1987) 191-218. [30]Cools M, Stoop H, Kersemaekers AM, Drop SL, Wolffenbuttel KP, Bourguignon JP, Slowikowska-Hilczer J, Kula K, Faradz SM, Oosterhuis JW, Looijenga LH, Gonadoblastoma arising in undifferentiated gonadal tissue within dysgenetic gonads. J Clin Endocrinol Metab 91, (2006) 2404-2413. [31]Rajpert-De Meyts E, Bartkova J, Samson M, Hoei-Hansen CE, Frydelund-Larsen L, Bartek J, Skakkebaek NE, The emerging phenotype of the testicular carcinoma in situ germ cell. APMIS 111, (2003) 267-278. [32]van Gurp RJ, Oosterhuis JW, Kalscheuer V, Mariman EC, Looijenga LH, Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors. J Natl Cancer Inst 86, (1994) 1070-1075. [33]Stoop H, Honecker F, Cools M, de Krijger R, Bokemeyer C, Looijenga LH, Differentiation and development of human female germ cells during prenatal gonadogenesis: an immunohistochemical study. Hum Reprod 20, (2005) 1466-1476. [34]Honecker F, Stoop H, de Krijger RR, Chris Lau YF, Bokemeyer C, Looijenga LH, Pathobiological implications of the expression of markers of testicular carcinoma in situ by fetal germ cells. J Pathol 203, (2004) 849-857. [35]Looijenga LH, Stoop H, de Leeuw HP, de Gouveia Brazao CA, Gillis AJ, van Roozendaal KE, Oosterhuis JW, POU5F1 (OCT3/4) identifies cells with pluripotent potential in human germ cell tumors. Cancer Res 63, (2003) 2244-2250. [36]Hoei-Hansen CE, Almstrup K, Nielsen JE, Brask Sonne S, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E, Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology 47, (2005) 48-56. [37]Hoei-Hansen CE, Nielsen JE, Almstrup K, Sonne SB, Graem N, Skakkebaek NE, Leffers H, Rajpert-De Meyts E, Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res 10, (2004) 8521-8530. [38]Pauls K, Jager R, Weber S, Wardelmann E, Koch A, S.H.Buttner R, Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. Int J Cancer 115, (2005) 470-477. [39]Rajpert-De Meyts E, Skakkebaek NE, Expression of the c-kit protein product in carcinoma-in-situ and invasive testicular germ cell tumours. Int J Androl 17, (1994) 85-92. [40]Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, Moore H, Andrews PW, Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20, (2002) 329-337. [41]Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB, Brooks JD, Andrews PW, Brown PO, Thomson JA, Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci U S A 100, (2003) 13350-13355. [42]Zaehres H, Scholer HR, Induction of pluripotency: from mouse to human. Cell 131, (2007) 834-835. [43]Rossant J, Stem cells and early lineage development. Cell 132, (2008) 527-531. [44]Jaenisch R, Young R, Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, (2008) 567-582. [45]Skotheim RI, Lind GE, Monni O, Nesland JM, Abeler VM, Fossa SD, Duale N, Brunborg G, Kallioniemi O, Andrews PW, Lothe RA, Differentiation of human embryonal carcinomas in vitro and in vivo reveals expression profiles relevant to normal development. Cancer Res 65, (2005) 5588-5598. [46]Przyborski SA, Christie VB, Hayman MW, Stewart R, Horrocks GM, Human embryonal carcinoma stem cells: models of embryonic development in humans. Stem Cells Dev 13, (2004) 400-408. [47]Andrews PW, Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev Biol 103, (1984) 285-293. [48]Martin GR, Teratocarcinomas and mammalian embryogenesis. Science 209, (1980) 768-776. [49]Andrews PW, Damjanov I, Simon D, Dignazio M, A pluripotent human stem-cell clone isolated from the TERA-2 teratocarcinoma line lacks antigens SSEA-3 and SSEA-4 in vitro, but expresses these antigens when grown as a xenograft tumor. Differentiation 29, (1985) 127-135. [50]Hogan B, Williams J, Integration of foreign genes into the mammalian germ line: genetic engineering enters a new era. Nature 294, (1981) 9-10. [51]Artzt K, Dubois P, Bennett D, Condamine H, Babinet C, Jacob F, Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture. Proc Natl Acad Sci U S A 70, (1973) 2988-2992. [52]Andrews PW, Teratocarcinomas and human embryology: pluripotent human EC cell lines. APMIS 106, (1998) 158-167. [53]Pleasure SJ, Page C, Lee VM, Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J Neurosci 12, (1992) 1802-1815. [54]Thompson S, Stern PL, Webb M, Walsh FS, Engstrom W, Evans EP, Shi WK, Hopkins B, Graham CF, Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J Cell Sci 72, (1984) 37-64. [55]Marchal-Victorion S, Deleyrolle L, De Weille J, Saunier M, Dromard C, Sandillon F, Privat A, Hugnot JP, The human NTERA2 neural cell line generates neurons on growth under neural stem cell conditions and exhibits characteristics of radial glial cells. Mol Cell Neurosci 24, (2003) 198-213. [56]Jones-Villeneuve EM, McBurney MW, Rogers KA, Kalnins VI, Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94, (1982) 253-262. [57]McBurney MW, Reuhl KR, Ally AI, Nasipuri S, Bell JC, Craig J, Differentiation and maturation of embryonal carcinoma-derived neurons in cell culture. J Neurosci 8, (1988) 1063-1073. [58]MacPherson PA, McBurney MW, P19 embryonal carcinoma cells: a source of cultured neurons amenable to genetic manipulation. Methods 7, (1995) 238-252. [59]Przyborski SA, Morton IE, Wood A, Andrews PW, Developmental regulation of neurogenesis in the pluripotent human embryonal carcinoma cell line NTERA-2. Eur J Neurosci 12, (2000) 3521-3528. [60]Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli NC, Fogh J, Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 50, (1984) 147-162. [61]Pera MF, Cooper S, Mills J, Parrington JM, Isolation and characterization of a multipotent clone of human embryonal carcinoma cells. Differentiation 42, (1989) 10-23. [62]Przyborski SA, Isolation of human embryonal carcinoma stem cells by immunomagnetic sorting. Stem Cells 19, (2001) 500-504. [63]Walsh J, Andrews PW, Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cell. APMIS 111, (2003) 197-210. [64]Draper JS, Pigott C, Thomson JA, Andrews PW, Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200, (2002) 249-258. [65]Duran C, Talley PJ, Walsh J, Pigott C, Morton IE, Andrews PW, Hybrids of pluripotent and nullipotent human embryonal carcinoma cells: partial retention of a pluripotent phenotype. Int J Cancer 93, (2001) 324-332. [66]Trojanowski JQ, Mantione JR, Lee JH, Seid DP, You T, Inge LJ, Lee VM, Neurons derived from a human teratocarcinoma cell line establish molecular and structural polarity following transplantation into the rodent brain. Exp Neurol 122, (1993) 283-294. [67]PIERCE GB Jr, DIXON FJ Jr, VERNEY EL, Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest 9, (1960) 602. [68]Miyazono M, Lee VM, Trojanowski JQ, Proliferation, cell death, and neuronal differentiation in transplanted human embryonal carcinoma (NTera2) cells depend on the graft site in nude and severe combined immunodeficient mice. Lab Invest 73, (1995) 273-283. [69]Philips MF, Muir JK, Saatman KE, Raghupathi R, Lee VM, Trojanowski JQ, McIntosh TK, Survival and integration of transplanted postmitotic human neurons following experimental brain injury in immunocompetent rats. J Neurosurg 90, (1999) 116-124. [70]Pleasure SJ, Lee VM, NTera 2 cells: a human cell line which displays characteristics expected of a human committed neuronal progenitor cell. J Neurosci Res 35, (1993) 585-602. [71]Rendt J, Erulkar S, Andrews PW, Presumptive neurons derived by differentiation of a human embryonal carcinoma cell line exhibit tetrodotoxin-sensitive sodium currents and the capacity for regenerative responses. Exp Cell Res 180, (1989) 580-584. [72]Fenderson BA, Andrews PW, Nudelman E, Clausen H, Hakomori S, Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev Biol 122, (1987) 21-34. [73]Bani-Yaghoub M, Felker JM, Naus CC, Human NT2/D1 cells differentiate into functional astrocytes. Neuroreport 10, (1999) 3843-3846. [74]Scholer HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P, New type of POU domain in germ line-specific protein Oct-4. Nature 344, (1990) 435-439. [75]Scholer HR, Octamania: the POU factors in murine development. Trends Genet 7, (1991) 323-329. [76]Pesce M, Scholer HR, Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells 19, (2001) 271-278. [77]Klemm JD, Rould MA, Aurora R, Herr W, Pabo CO, Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules. Cell 77, (1994) 21-32. [78]Scholer HR, Dressler GR, Balling R, Rohdewohld H, Gruss P, Oct4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J 9, (1990) 2185-2195. [79]Niwa H, Molecular mechanism to maintain stem cell renewal of ES cells. Cell Str & Func 26, (2001). [80]Palmieri SL, Peter W, Hess H, Scholer HR, Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol 166, (1994) 259-261. [81]Niwa H, Miyazaki J, Smith AG, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, (2000) 372-376. [82]Gidekel S, Pizov G, Bergman Y, Pikarsky E, Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4, (2003) 361-370. [83]Palumbo C, van Roozendaal K, Gillis AJ, van Gurp RH, de Munnik H, Oosterhuis JW, van Zoelen EJ, Looijenga LH, Expression of the PDGF alpha-receptor 1.5 kb transcript, OCT-4, and c-KIT in human normal and malignant tissues. Implications for the early diagnosis of testicular germ cell tumours and for our understanding of regulatory mechanisms. J Pathol 196, (2002) 467-477. [84]Pera MF, Herszfeld D, Differentiation of human pluripotent teratocarcinoma stem cells induced by bone morphogenetic protein-2. Reprod Fertil Dev 10, (1998) 551-555. [85]Kraft HJ, Mosselman S, Smits HA, Hohenstein P, Piek E, Chen Q, Artzt K, van Zoelen EJ, Oct-4 regulates alternative platelet-derived growth factor alpha receptor gene promoter in human embryonal carcinoma cells. J Biol Chem 271, (1996) 12873-12878. [86]Pochampally RR, Smith JR, Ylostalo J, Prockop DJ, Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of Oct-4 and other embryonic genes. Blood 103, (2004) 1647-1652. [87]Zangrossi S, Marabese M, Broggini M, Giordano R, D''Erasmo M, Montelatici E, Intini D, Neri A, Pesce M, Rebulla P, Lazzari L, Oct-4 expression in adult human differentiated cells challenges its role as a pure stem cell marker. Stem Cells 25, (2007) 1675-1680. [88]Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE, Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26, (2005) 495-502. [89]Hochedlinger K, Yamada Y, Beard C, Jaenisch R, Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121, (2005) 465-477. [90]Atlasi Y, Mowla SJ, Ziaee SA, Gokhale PJ, Andrews PW, Oct4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells 26, (2008) 3068-3074. [91]Liedtke S, Enczmann J, Waclawczyk S, Wernet P, Kogler G, Oct4 and its pseudogenes confuse stem cell research. Cell Stem Cell 1, (2007) 364-366. [92]Howell NR, Zheng W, Cheng L, Tornos C, Kane P, Pearl M, Chalas E, Liang SX, Carcinomas of ovary and lung with clear cell features: can immunohistochemistry help in differential diagnosis. Int J Gynecol Pathol 26, (2007) 134-140. [93]Moller E, Stenman G, Mandahl N, Hamberg H, Molne L, van den Oord JJ, Brosjo O, Mertens F, Panagopoulos I, POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 215, (2008) 78-86. [94]Yamaguchi S, Yamazaki Y, Ishikawa Y, Kawaguchi N, Mukai H, Nakamura T, EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 43, (2005) 217-222. [95]Monk M, Holding C, Human embryonic genes re-expressed in cancer cells. Oncogene 20, (2001) 8085-8091. [96]Huang YH, Chin CC, Ho HN, Chou CK, Shen CN, Kuo HC, Wu TJ, Wu YC, Hung YC, Chang CC, Ling TY, Pluripotency of mouse spermatogonial stem cells maintained by IGF-1- dependent pathway. FASEB J(2009). [97]de Rooij DG, Grootegoed JA, Spermatogonial stem cells. Curr Opin Cell Biol 10, (1998) 694-701. [98]Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bosse M, Lajoie G, Bhatia M, IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448, (2007) 1015-1021. [99]Armstrong L, Hughes O, Yung S, Hyslop L, Stewart R, Wappler I, Peters H, Walter T, Stojkovic P, Evans J, The role of PI3K/AKT, MAPK/ERK and NF{kappa}{beta} signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 15, (2006) 1894-1913. [100]McLean AB, D''Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, Liu H, Xu Y, Baetge EE, Dalton S, Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells 25, (2007) 29-38. [101]Li J, Wang G, Wang C, Zhao Y, Tan Z, Song Z, Ding M, Deng H, MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation 75, (2007) 299-307. [102]Wang L, Schulz TC, Sherrer ES, Dauphin DS, Shin S, Nelson AM, Ware CB, Zhan M, Song CZ, Chen X, Brimble SN, McLean A, Galeano MJ, Uhl EW, D''Amour KA, Chesnut JD, Rao MS, Blau CA, Robins AJ, Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling. Blood 110, (2007) 4111-4119. [103]Baserga R, Peruzzi F, Reiss K, The IGF-1 receptor in cancer biology. Int J Cancer 107, (2003) 873-877. [104]De Meyts P, Whittaker J, Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 1, (2002) 769-783. [105]Jones JI, Clemmons DR, Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16, (1995) 3-34. [106]Nakae J, Kido Y, Accili D, Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev 22, (2001) 818-835. [107]Pollak MN, Schernhammer ES, Hankinson SE, Insulin-like growth factors and neoplasia. Nat Rev Cancer 4, (2004) 505-518. [108]Clemmons DR, Role of insulin-like growth factor binding proteins in controlling IGF actions. Mol Cell Endocrinol 140, (1998) 19-24. [109]Kooijman R, Lauf JJ, Kappers AC, Rijkers GT, Insulin-like growth factor induces phosphorylation of immunoreactive insulin receptor substrate and its association with phosphatidylinositol-3 kinase in human thymocytes. J Exp Med 182, (1995) 593-597. [110]Soon L, Flechner L, Gutkind JS, Wang LH, Baserga R, Pierce JH, Li W, Insulin-like growth factor I synergizes with interleukin 4 for hematopoietic cell proliferation independent of insulin receptor substrate expression. Mol Cell Biol 19, (1999) 3816-3828. [111]Kim B, Cheng HL, Margolis B, Feldman EL, Insulin receptor substrate 2 and Shc play different roles in insulin-like growth factor I signaling. J Biol Chem 273, (1998) 34543-34550. [112]Hernandez-Sanchez C, Blakesley V, Kalebic T, Helman L, LeRoith D, The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem 270, (1995) 29176-29181. [113]Butler AA, Blakesley VA, Koval A, deJong R, Groffen J, LeRoith D, In vivo regulation of CrkII and CrkL proto-oncogenes in the uterus by insulin-like growth factor-I. Differential effects on tyrosine phosphorylation and association with paxillin. J Biol Chem 272, (1997) 27660-27664. [114]Beitner-Johnson D, LeRoith D, Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J Biol Chem 270, (1995) 5187-5190. [115]Shaw RJ, Cantley LC, Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, (2006) 424-430. [116]Wullschleger S, Loewith R, Hall MN, TOR signaling in growth and metabolism. Cell 124, (2006) 471-484. [117]Xie Y, Skytting B, Nilsson G, Brodin B, Larsson O, Expression of insulin-like growth factor-1 receptor in synovial sarcoma: association with an aggressive phenotype. Cancer Res 59, (1999) 3588-3591. [118]Ouban A, Muraca P, Yeatman T, Coppola D, Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum Pathol 34, (2003) 803-808. [119]Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE, The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr Rev 21, (2000) 215-244. [120]Tao Y, Pinzi V, Bourhis J, Deutsch E, Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway--therapeutic perspectives in cancer. Nat Clin Pract Oncol 4, (2007) 591-602. [121]Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B, Rosner B, Speizer FE, Pollak M, Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 315, (1998) 1393-1396. [122]Ma J, Pollak MN, Giovannucci E, Chan JM, Tao Y, Hennekens CH, Stampfer MJ, Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst 91, (1999) 620-625. [123]Yu H, Spitz MR, Mistry J, Gu J, Hong WK, Wu X, Plasma levels of insulin-like growth factor-I and lung cancer risk: a case-control analysis. J Natl Cancer Inst 91, (1999) 151-156. [124]Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M, Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279, (1998) 563-566. [125]Habuchi T, Common genetic polymorphisms and prognosis of sporadic cancers: prostate cancer as a model. Future Oncol 2, (2006) 233-245. [126]Zecevic M, Amos CI, Gu X, Campos IM, Jones JS, Lynch PM, Rodriguez-Bigas MA, Frazier ML, IGF1 gene polymorphism and risk for hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst 98, (2006) 139-143. [127]Moon JW, Chang YS, Ahn CW, Yoo KN, Shin JH, Kong JH, Kim YS, Chang J, Kim SK, Kim HJ, Kim SK, Promoter -202 A/C polymorphism of insulin-like growth factor binding protein-3 gene and non-small cell lung cancer risk. Int J Cancer 118, (2006) 353-356. [128]Yu H, Li BD, Smith M, Shi R, Berkel HJ, Kato I, Polymorphic CA repeats in the IGF-I gene and breast cancer. Breast Cancer Res Treat 70, (2001) 117-122. [129]Cheng I, Stram DO, Penney KL, Pike M, Le Marchand L, Kolonel LN, Hirschhorn J, Altshuler D, Henderson BE, Freedman ML, Common genetic variation in IGF1 and prostate cancer risk in the Multiethnic Cohort. J Natl Cancer Inst 98, (2006) 123-134. [130]Wagner K, Hemminki K, Israelsson E, Grzybowska E, Soderberg M, Pamula J, Pekala W, Zientek H, Mielzynska D, Siwinska E, Forsti A, Polymorphisms in the IGF-1 and IGFBP 3 promoter and the risk of breast cancer. Breast Cancer Res Treat 92, (2005) 133-140. [131]Tsuchiya N, Wang L, Horikawa Y, Inoue T, Kakinuma H, Matsuura S, Sato K, Ogawa O, Kato T, Habuchi T, CA repeat polymorphism in the insulin-like growth factor-I gene is associated with increased risk of prostate cancer and benign prostatic hyperplasia. Int J Oncol 26, (2005) 225-231. [132]Tsuchiya N, Wang L, Suzuki H, Segawa T, Fukuda H, Narita S, Shimbo M, Kamoto T, Mitsumori K, Ichikawa T, Ogawa O, Nakamura A, Habuchi T, Impact of IGF-I and CYP19 gene polymorphisms on the survival of patients with metastatic prostate cancer. J Clin Oncol 24, (2006) 1982-1989. [133]DiGiovanni J, Kiguchi K, Frijhoff A, Wilker E, Bol DK, Beltran L, Moats S, Ramirez A, Jorcano J, Conti C, Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proc Natl Acad Sci U S A 97, (2000) 3455-3460. [134]Hadsell DL, Murphy KL, Bonnette SG, Reece N, Laucirica R, Rosen JM, Cooperative interaction between mutant p53 and des(1-3)IGF-I accelerates mammary tumorigenesis. Oncogene 19, (2000) 899-898. [135]Nagarajan L, Anderson WB, Insulin promotes the growth of F9 embryonal carcinoma cells apparently by acting through its own receptor. Biochem Biophys Res Commun 106, (1982) 974-980. [136]Heath JK, Isacke CM, PC13 embryonal carcinoma-derived growth factor. EMBO J 3, (1984) 2957-2962. [137]Engstrom W, Rees AR, Heath JK, Proliferation of a human embryonal carcinoma-derived cell line in serum-free medium: inter-relationship between growth factor requirements and membrane receptor expression. J Cell Sci 73, (1985) 361-373. [138]Nagarajan L, Anderson WB, Nissley SP, Rechler MM, Jetten AM, Production of insulin-like growth factor-II (MSA) by endoderm-like cells derived from embryonal carcinoma cells: possible mediator of embryonic cell growth. J Cell Physiol 124, (1985) 199-206. [139]Heath JK, Shi WK, Developmentally regulated expression of insulin-like growth factors by differentiated murine teratocarcinomas and extraembryonic mesoderm. J Embryol Exp Morphol 95, (1986) 193-212. [140]Adamson ED, Evans MJ, Magrane GG, Biochemical markers of the progress of differentiation in cloned teratocarcinoma cell lines. Eur J Biochem 79, (1977) 607-615. [141]Granerus M, Bierke P, Zumkeller W, Smith J, Engstrom W, Schofield PN, Insulin-like growth factor II prevents apoptosis in a human teratoma derived cell line. Clin Mol Pathol 48, (1995) M153-M157. [142]Engstrom W, Hopkins B, Schofield P, Expression of growth regulatory genes in primary human testicular neoplasms. Int J Androl 10, (1987) 79-84. [143]Biddle C, Li CH, Schofield PN, Tate VE, Hopkins B, Engstrom W, Huskisson NS, Graham CF, Insulin-like growth factors and the multiplication of Tera-2, a human teratoma-derived cell line. J Cell Sci 90, (1988) 475-484. [144]Heath JK, Rees AR, Growth factors in mammalian embryogenesis. Ciba Found Symp 116, (1985) 3-22. [145]D''Ercole AJ, Applewhite GT, Underwood LE, Evidence that somatomedin is synthesized by multiple tissues in the fetus. Dev Biol 75, (1980) 315-328. [146]Granerus M, Schofield P, Bierke P, Engstrom W, Growth factors and apoptosis in development. The role of insulin like growth factor I and TGFβ1 in regulating cell growth and cell death in a human teratocarcinoma derived cell line. Int J Dev Biol 39, (1995) 759-764. [147]Schofield PN, Engstrom W, Tally M, Hall K, Expression of a high molecular weight form of IGFII in a pluripotential human teratocarcinoma cell line. Cell Differ Dev 27, (1989). [148]Werner H, Karnieli E, Rauscher FJ, LeRoith D, Wild-type and mutant p53 differentially regulate transcription of the insulin-like growth factor I receptor gene. Proc Natl Acad Sci U S A. 93, (1996) 8318-8323.
|