跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 07:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂宜蓉
研究生(外文):Yi-Jung Lu
論文名稱:電致表面改質對新型鐵基微型骨釘之影響研究
論文名稱(外文):Effect of electro-discharging modifications on new Fe-based mini-implant alloy
指導教授:歐耿良
指導教授(外文):Keng-Liang Ou
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生醫材料暨工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:50
中文關鍵詞:鐵鋁錳重鑄層放電生物相容性
外文關鍵詞:Fe-Al-MnRecast layerElectro-dischargingBiocompatibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究以放電加工的方式使鐵鋁錳合金表面形成一層奈微米複合性孔洞的重鑄層,重鑄層為?蚻菑哅e0.6Mn5.4C2(κ相)之碳化物,此相對於生物相容性有著重要的意義。而再以物理及化學性的分析儀器測試表面之成分、元素、膜厚、孔洞大小及結構,之後將對符合要求的試片於無塵室加以清洗、消毒後,即以這些試片進行細胞培養,經特定時間分別對細胞的攀附、增殖作不同的測試, 並加以比較不同條件下測試的結果。
本研究主要是在探討鐵鋁錳合金植體表面經由放電加工方式製作出重鑄層,並以細胞實驗在不同條件下的生長情形,此外更進一步探討微奈米複合式孔洞的表面與骨整合的癒合機制並進行比較,此結果可對縮短植入於骨內的植體,如牙科植體的骨整合癒合時間有所助益。
This investigation elucidates the biocompatibility and microstructural variation of Fe-Al-Mn and electro-discharged Fe-Al-Mn alloys. A recast layer was formed on the alloy surface, following electro-discharged machining. ??-phase and Fe0.6Mn5.4C2 carbide (κ-carbide) were formed on the recast layer following electro-discharging. The ??-phase and κ-carbide are nanostructures. The nano-(??-phase + κ-carbide) have important roles in forming nanostructured oxide layer. In order to realize chemical composition, energy dispersive X-ray spectrometer (EDS) and X-ray photoelectron spectrometer (XPS) were performed. XPS was performed to detect the oxide film thickness by depth profile analysis. Pore sizes were observed by field emission scanning electron microscopy (FESEM). Microstructural variation was analyzed by cross-section transmission electron microscope (XTEM) and transmission electron microscope (TEM).Furthermore, electro-discharging not only generates a nanostructural recast layer, but also converts the alloy surface into a nanostructured oxide surface, increasing the alloy biocompatibility.
Contents
Contents……………………………………………………………………………1
Figure captions…………………………………………………………………….2
中文摘要…………………………………………………………………………...3
Abstract……………………………………………………………………………4
Chapter 1 Introduction………………………………………………...................5
1.1 General background…………………….………………………..5
1.2 Motivation of this study……………….…………………………6
1.3 Purpose of this study……………………………………………6
1.4 Hypothesis of this study……..…………………………………7
1.5 Organization of the thesis………………………………………7
Chapter 2 Literature Review…………...……………………………………….8
2.1 Property of Fe-Al-Mn alloys………….....…………………8
2.2Osseo/osetointegration of Fe-Al-Mn alloy…………11
2.3 Relationship of osseo/oseteointegration and oxide layer..…….12
Chapter 3 Experimental Procedure…………...………………………………..13
3.1 Fe-Al-Mn alloy implant preparation………………………….13
3.2 Physical and Chemical properties of dental implant with and without surface treatments...…………….…..…………………13
3.3 Fe-Al-Mn alloy implant biocompatibility …………………......15
Chapter 4 Results and Discussion………………………………………………17
Chapter 5 Conclusion……………………………………………………………25
Acknowledgement………………………………………………………………..26
Reference…………………………………………………………………………27


Figure captions
Figure 3.1 Energy Dispersive X-ray Spectroscopy (EDXS)………………...…34
Figure 3.2 Grazing-Incidence X-ray Diffraction (GIXRD)……………...……35
Figure 3.3 Transmission Electron Microscope(TEM)…………………………36
Figure 3.4 Field-Emission Scanning Electron Microscope(FE-SEM)……...…37
Figure 4.1 Fi Cross-sectional SEM morphology of electro-discharged Fe-Al-Mn alloy…………………………………………………………………….38
Figure 4.2 XRD spectra of treated and untreated Fe-Al-Mn alloy…………….39
Figure 4.3 TEM micrographs and selected area diffraction patterns (SADP) of treated and untreated Fe-Al-Mn alloy(a) without treatment, and (b) with treatment…………………………………………………………40
Figure 4.4 Highly magnified SEM image Fe-Al-Mn alloy: (a) without treatment, and (b) with treatment………………………………………………...42
Figure 4.5 Highly magnified SEM image of NIH3T3 cell cultured for three days on Fe-Al-Mn alloy: (a)、(c)、(e) without treatment, and (b)、(d)、(f) with treatment………………………………………………………………..44
Figure 4.6 Cell counting results for Fe-Al-Mn with and without EDM treatments……………………………………………………………….50
1.J.R. Crookall, The Design and Exploitation of a Role-play/ Simulation.CIRP Ann. 27 (1978) 113.
2.N. Yutani, A.L. Pickerell, Met. Progr. 83 (1962) 66.
3.Lina, F. H., Hsub, Y. S., Linb, S. H. & Sun, J. S. The effect of Ca/P concentration and temperature of simulated bodyfluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials 23, 4029-4038 (2002).
4.Harnroongroj, T. & Vanadurongwan, V. Biomechanical aspects of plating osteosynthesis of transverse clavicular fracture with and witho ut inferior cortical defect. Clinical Biomechanics 11, 290-294 (1996).
5.N. Mohri, Y. Tsunekawa, N. Kinoshita, Surface modification by EDM - an innovation in EDM with semi-conductive electrodes, CIRP ann. 42 (1993) 219.
6.L.C. Lim, L.C. Lee, Y.S. Wong, H.H. Lu, Solidification microstructure of electrodischarge machined surfaces of tool Steels, Matls. Sci. & Tech. 7 (1991) 239.
7.S.L. Chen, M.H. Lin, S.Y. Chiou, S.L. Lin, Properties and microstructures of electro-discharge machined surface of, 18th Nat. Conf. On Mech. Eng. 719 (2001) 719.
8.H.K. Lloyd, R.H. Warren, Metallurgy of Spark-machined Surfaces, J. Iron steel Inst. 203 (1965) 238.
9.B.V. Kosolapov, A. Winkelman, Metalloved. Term. Obrab. Met., 41 (1955) 226.
10.J. Wallbank, Phadke, Some metallurgical aspects of die failure, Met. Technol., 9 (1982) 405.
11.J. Wallbank, Coal sulphur transformations monitored by hyperthermophilic archaebacteria, Metallurg. 47 (1980) 4.
12.P. Duwez, Amorphous metal film and process for applying same, ASM Trans. 60 (1967) 607.
13.S.I. Tanaka, M. Aonuma, N. Hirose, T. Tanaki, The preparation of porous TiO2 by immersing Ti in NaOH solution, J. Electrochem. Soc. 11 (2002) 167.
14.Pereni, C. I., Zhao, Q., Liu, Y. & Abel, E. Surface free energy effect on bacterial retention. Colloids Surf B Biointerfaces 48, 143-7 (2006).
15.Haidopoulos, M., Turgeon, S., Sarra-Bournet, C., Laroche, G. & Mantovani, D. Development of an optimized electrochemical process for subsequent coating of 316 stainless steel for stent applications. J Mater Sci Mater Med 17, 647-57 (2006).
16.Fan, X., Lin, L., Dalsin, J. L. & Messersmith, P. B. Biomimetic anchor for surface-initiated polymerization from metal substrates. J Am Chem Soc 127, 15843-7 (2005).
17.Morrison, M. L. et al. The electrochemical evaluation of a Zr-based bulk metallic glass in a phosphate-buffered saline electrolyte. J Biomed Mater Res A 74, 430-8 (2005).
18.Shustak, G., Domb, A. J. & Mandler, D. Preparation and characterization of n-alkanoic acid self-assembled monolayers adsorbed on 316L stainless steel. Langmuir 20, 7499-506 (2004).
19.Tan, Q., Ji, J., Barbosa, M. A., Fonseca, C. & Shen, J. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterials 24, 4699-705 (2003).
20.Mazumder, M. M. et al. Corrosion resistance of polyurethane- coated nitinol cardiovascular stents. J Biomater Sci Polym Ed 14, 1351-62 (2003).
21.Chang, J. C. et al. Electrochemical study on microbiology-related corrosion of metallic dental materials. Biomed Mater Eng 13, 281-95 (2003).
22.Ji, J. et al. Fabrication of alternating polycation and albumin multilayer coating onto stainless steel by electrostatic layer-by-layer adsorption. Colloids Surf B Biointerfaces 34, 185-90 (2004).
23.Rodil, S. E., Olivar es, R., Arzate, H. & Muhl, S. Properties of carbon films and their biocompatibility using in-vitro tests. Diamond and Related Materials 12, 931-937 (2003).
24.Shih, C. C. et al. Quantitative evaluation of thrombosis by electrochemical methodology. Thromb Res 111, 103-9 (2003).
25.Vallet-Regı, M., Izquierdo-Barba, I. & Gil, F. J. Localized corrosion of 316L stainless steel with SiO2-CaO films obtained by means of sol- gel treatment. J Biomed Mater Res 67A, 674-678 (2003).
26.Shih, C. C., Shih, C. M., Su, Y. Y. & Lin, S. J. Impact on the thrombogenicity of surface oxide properties of 316l stainless steel for biomedical applications. J Biomed Mater Res A 67, 1320-8 (2003).
27.Fathi, M. H., Salehi, M., Saatchi, A., Mortazavi, V. & Moosavi, S. B. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Dent Mater 19, 188-98 (2003).
28.Vinnichenko, M., Chevolleau, T., Pham, M. T., Poperenko, L. & Maitz, M. F. Spectroellipsometric, AFM and XPS probing of stainless steel surfaces subjected to biological influences. Applied Surface Science 201, 41-50 (2002).
29.Silva, R. A., Walls, M., Rondot, B., Da Cunha Belo, M. & Guidoin, R. Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery. J Mater Sci Mater Med 13, 495-500 (2002).
30.Zhao, H., Van Humbeeck, J., Sohier, J. & De Scheerder, I. Electrochemical polishing of 316L stainless steel slotted tube coronary stents. J Mater Sci Mater Med 13, 911-6 (2002).
31.Armitage, D. A., Parker, T. L. & Grant, D. M. Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 66, 129-37 (2003).
32.Yue, T. M., Yu, J. K. & Man, H. C. The effect of excimer laser surface treatment on pitting corrosion resistance of 316LS stainless steel. Surface and Coatings Technology 137, 65-71 (2001).
33.Shettlemore, M. G. & Bundy, K. J. Examination of in vivo influences on bioluminescent microbial assessment of corrosion product toxicity. Biomaterials 22, 2215-28 (2001).
34.Le, M. K. & Zhu, X. M. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels. Biomaterials 22, 641-7 (2001).
35.Arola, D. & Huang, M. P. The influence of simultaneous mechanical and thermal loads on the stress distribution in molars with amalgam restorations. J Mater Sci Mater Med 11, 133-40 (2000).
36.Morais, S. & Pereira, M. C. Application of stripping voltammetry and microelectrodes in vitro biocompatibility and in vivo toxicity tests of AISI 316L corrosion products. J Trace Elem Med Biol 14, 48-54 (2000).
37.Vignal, V., Roux, J. C., Flandrois, S. & Fevrier, A. Nanoscopic studies of stainless steel electropolishing. Corrosion Science 42, 1041-1053 (2000).
38.Boklae, C. et al. Direct observation of oxygen-induced structural changes in stailess-steel surfaces. J.Vac. Sci. Technol. B 18, 868-872 (2000).
39.Lopez, M. F., Gutierrez, A., Torres, C. L. & Bastidas, J. M. Soft x-ray absorption spectroscopy study of electrochemically formed passive layers on AISI 304 and 316L stainless steel. J. Mater. Res., 14, 763-770 (1999).
40.Beddoes, J. & Bucci, K. The influence of surface condition on the localized corrosion of 316L stainless steel orthopaedic implants. J Mater Sci Mater Med 10, 389-94 (1999).
41.Cho, B., Choi, E. & Chung, S. Oxidation-induced stoichiometric and morphological change of oxide films on stainless-steel surfaces. Appl. Phys. A 69, 625-630 (1999).
42.Morais, S. et al. Decreased consumption of Ca and P during in vitro biomineralization and biologically induced deposition of Ni and Cr in presence of stainless steel corrosion products. J Biomed Mater Res 42, 199-212 (1998).
43.Ledvina, M. & Rigney, E. D. The thin electrolyte layer approach to corrosion testing of dental materials?焨haracterization of the technique. Biomaterials 19, 2201-2207 (1998).
44.Torres, F. J. et al. Corrosion behavior of sensitized duplex stainless steel. Biomed Mater Eng 8, 25-36 (1998).
45.Morais, S. et al. Effects of AISI 316L corrosion products in in vitro bone formation. Biomaterials 19, 999-1007 (1998).
46.Morais, S., Sousa, J. P., Fernandes, M. H. & Carvalho, G. S. In vitro biomineralization by osteoblast-like cells. I. Retardation of tissue mineralization by metal salts. Biomaterials 19, 13-21 (1998).
47.Shieu, F. S., Deng, M. J. & Lin, S. H. Microstructure and corrosing resistance of a type 316L stainless steel. Corrosion Science, 40, 1267-1279 (1998).
48.Ohmi, T., Nakagawa, Y., Nakamura, M., Ohki, A. & Koyama, T. Formation of chromium oxide on 316L austenitic stainless steel. J. Vac. Sci. Technol. A 14 (1996).
49.S. I. Tanaka, M. Aonuma, N. Hirose, T. Tanaki, Effect of Hydrogen on the Formation of Porous TiO2 in Alkaline Solution, J. Electrochem. Soc. 12 (2002) 186.
50.H.H. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi, T. Nakamura, Bioactive macroporous titanium surface layer on titanium substrate J. Biomed. Materi. Res. 5 (1999) 100.
51.J.Y. Park, C.H. Gemmell, J.E. Davies, Red blood cell and platelet interactions with titanium implant surface, Biomater. 22 (2001) 2671.
52.M.F. Maitz, M.T. Pham, E. Wieser, I. Tsyganov, Enhancement of Biocompatibility on Bioactive Titanium Surface by Low-Temperature Plasma Treatment, J. Biomater. Appl. 17 (2003) 303.
53.M.C. Sunny, C.P. Sharma, Titanium-Protein Interaction: Changes with Oxide Layer Thickness, J. Biomater. Appl. 6 (1991) 89.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top