跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/19 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧毅
研究生(外文):Yi Lu
論文名稱:以靜電紡絲製備聚苯噁唑-聚乳酸分子複合材料
論文名稱(外文):Electrospun Molecular Composites of Poly(p-phenylenebenzobisoxazole)-Poly(L-lactic acid)
指導教授:陳建中陳建中引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:生醫材料暨工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:84
中文關鍵詞:分子複合材料靜電紡絲乾式成膜聚苯噁唑聚乳酸
外文關鍵詞:molecular compositeelectrospinningdry-castPBOPLLA
相關次數:
  • 被引用被引用:2
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的在利用靜電紡絲之方式,將poly(p-phenylene benzo-bisoxazole) (PBO)與poly(L-lactic acid) (PLLA)製備成分子複合薄膜。先將PBO及PLLA分別以TFA/MSA (volume rate: 1/1)和DCM溶劑,配製成0.8 w/v %和10 w/v %成膜原液,經單一針筒混合式靜電紡絲、雙針筒模頭混合式靜電紡絲之方式與乾式成膜製備成PBO-PLLA薄膜,水洗12小時去除溶劑後乾燥,並利用熱重分析儀 (TGA)觀察薄膜熱穩定性和燒結殘餘量,接續以溫度調幅式微差掃瞄熱卡儀 (TMDSC)、X光繞射儀 (XRD)、掃描式電子顯微鏡 (SEM)及正弦波震盪黏度儀,分析薄膜之玻璃轉移溫度 (Tg)、結晶度 (weight fractional crystallinities, Xc, %)、結晶結構、表面形態以及黏度差異。結果顯示,以單一針筒混合式靜電紡絲製備薄膜,其熱裂解溫度在358 ℃,隨著PBO固含量從0 %~10 %,薄膜的燒結後殘餘量由1.0 wt %升高至5.6 wt %,Tg則介於52.2~56.0 ℃,Xc介於41.32~56.10 %,結晶形態不明顯,表面纖維直徑由4.89±0.76 ?慆下降至0.54±0.15 ?慆,而以利用雙針筒模頭混合式靜電紡絲PBO-PLLA薄膜,熱裂解溫度為358 ℃,PBO固體含量從0 %~10 %,薄膜燒結後殘餘量由1.21 wt %提升至10.78 wt %,Tg則介於 52.5 ℃至57.4 ℃,Xc介於45.14 % ~49.97 % 之間,其結晶強度於471上升至1745,表面纖維直徑由1.02±0.28 ?慆下降至0.58±0.30 ?慆,薄膜於溶解後進行黏度分析,其值為0.62、0.39、0.37、0.40、0.30及0.30 cP,另外,乾式成膜燒結後殘餘量由1.04 wt %增加至11.87 wt %,Tg則介於53.30 ℃至55.95 ℃之間,Xc從39 %上升至54 %,亦結晶形態在2??=17.15˚產生結晶,結晶強度622提高至1715,薄膜經溶劑溶解後其黏度為0.75、0.45、0.46、0.45、0.45及0.38。以單一針筒混合式靜電紡絲製備薄膜,其添加PBO固體含量對於纖維殘留量,Tg、Xc及結晶強度無較明顯之影響,纖維直徑則逐漸變小,而雙針筒模頭混合式靜電紡絲薄膜卻因電紡過程中PBO溶劑未及時揮發,而將PLLA裂解,導致薄膜Tg略為下降,Xc無明顯之提升,分子量則下降,導致纖維直徑則逐漸變小。乾式成膜之方式其混合時間較短並馬上水洗,減少酸性溶劑的影響,因此對Tg而言有提高之幫助,於Xc則逐漸上升。由本研究可得知利用單一針筒混合式靜電紡絲及雙針筒混合式靜電紡絲製備PBO-PLLA纖維薄膜,其具有良好熱穩定性及較低結晶度之薄膜。
The objective of this study is to fabricate molecular composite membranes of poly(p-phenylenebenzo-bisoxazole) (PBO) and poly(L-lactic acid) (PLLA) by electrospinning technique and dry-casting. Firstly, PBO and PLLA were dissolved separately in TFA/MSA (volume ratio: 5/5) and DCM as 0.8 w/v % and 10 w/v % solutions, respectively, then composite membranes were fabricated by electrospinning technique and dry-casting. Membranes were subsequently washed in deionized water to remove the solvents and dried in the oven. Glass transition temperature (Tg), weight fractional crystallinities (Xc, %), crystal structure and surface morphology of these membranes were analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The TGA data showed the percentage residue weight of sintered electrospun membranes were increased from 1.21 wt% to 10.78 wt %. The glass transition temperatures were decreased from 60.6 ℃ to 51.5 ℃ and the average diameter of fibers was decreased from 1.02±0.3 ?慆 to 0.58±0.3 ?慆. The values of Xc were between 12.2 % and 27.0 %, and the crystal diffraction intensity was weak. On the other hand, the glass transition temperatures of cast membranes were increased from 55.5 ℃ to 58.2 ℃. The Xc were also increased from 5.1 % to 35.9 %. However, it is still considered a poor crystalline structure by very weak diffraction pattern. The thermal stability of PLLA was not affected with adding PBO. Different from the case of electrospun membrane, the residue weight percentage of sintered cast membranes were remain constant even with increased content of PBO. This might due to the uneven mixing of solutions. Tg of cast film membranes was higher than that of pure PLLA, suggesting some degree of molecular level mixing between PLLA and PBO. On the other hand, this was not the case for electrospun membrane, probably due to the mixing did not take place by very limited contact time between two solution. The Xc of both membranes were far lower than perfectly crystalline PLLA (93.7 J/g), suggesting very poor crystalline structure. These electrospun PBO-PLLA membranes showed lower crystalline structure which might be desirable for some special medical applications when faster degradation is needed.
中文摘要 I
Abstract III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 前言 1
1-1研究動機與重要性 1
1-2研究目的 2
1-3研究假設 3
第二章 文獻回顧 4
2-1分子複合材料簡介 4
2-2硬桿狀高分子種類 6
2-3硬桿狀高分子特性之比較 9
2-4聚苯噁唑 10
2-4-1聚苯噁唑纖維之簡介 10
2-4-2聚苯噁唑纖維之應用 12
2-5聚乳酸 13
2-6靜電紡絲 15
2-6-1靜電紡絲之簡介 15
2-6-2靜電紡絲原理 16
2-6-3靜電紡絲設備及參數 17
第三章 材料與方法 21
3-1實驗材料與儀器設備 21
3-1-1實驗材料 21
3-1-2儀器設備 22
3-2實驗流程 23
3-3實驗方法 24
3-3-1成膜溶液製備 24
3-3-1-1 PLLA溶液製備 24
3-3-1-2 PBO溶液製備 25
3-3-1-3單一針筒混合式靜電紡絲溶液製備 25
3-3-1-4雙針筒模頭混合式靜電紡絲溶液製備 25
3-3-1-5乾式成膜溶液製備 27
3-3-2薄膜製備方式 27
3-3-2-1單一針筒混合式靜電紡絲薄膜製備 27
3-3-2-2雙針筒模頭混合式靜電紡絲薄膜製備 28
3-3-2-3乾式成膜薄膜製備 29
3-3-3薄膜物性分析 30
3-3-3-1熱重分析儀 (TGA) 30
3-3-3-2溫度調幅式微差掃瞄熱卡儀 (TMDSC) 31
3-3-3-3 X-ray繞射儀 (XRD) 33
3-3-3-4掃描式電子顯微鏡 (SEM) 34
3-3-3-5正弦波震盪式黏度儀 35
第四章 結果 37
4-1 PBO-PLLA薄膜之熱裂解程度與熱穩定性 37
4-2 PBO-PLLA薄膜之熱性質變化 39
4-3 PBO-PLLA薄膜之結晶形態 41
4-4 PBO-PLLA薄膜之表面形態 42
4-5 PBO-PLLA薄膜溶劑對分子量之影響 44
4-6以DCM溶劑溶解PBO-PLLA薄膜之PBO表面形態 45
第五章 結論 47
文獻回顧 48









表目錄
表2-1以不同種類之硬桿狀高分子物理特性 9
表2-2不同種類之硬桿狀高分子PBO物理特性 12
表2-3 PLLA高分子之物理特性 14
表2-4不同參數對電紡後纖維形態的影響 20
表4-1單一針筒混合式靜電紡絲複合薄膜熱裂解量化分析 50
表4-2雙針筒模頭混合式靜電紡絲複合薄膜熱裂解量化分析 51
表4-3乾式成膜複合薄膜熱裂解分析 52
表4-4單一針筒混合式靜電紡絲PBO-PLLA複合薄膜熱性質量化分析 (n=2) 53
表4-5雙針筒模頭混合式靜電紡絲PBO-PLLA複合薄膜熱性質量化分析 (n=2) 54
表4-6乾式成膜PBO-PLLA複合薄膜熱性質量化分析 (n=2) 55
表4-7不同方式製備PBO-PLLA薄膜之各別PBO與PLLA重量百分率 56



圖目錄
圖2-1一般硬桿狀高分子材料結構,其商品名稱為(a) Nomex®、(b) Kevlar®、(c) Technora®、(d) Vectran® 7
圖2-2雜環類硬桿狀高分子材料結構,其(a) poly((benzo 1,2-d:4,5-d_ bisthiazole-2,6-diyl)-1,4-phenylene) (PBZT)、(b) poly((benzo 1,2-d:5,4-d_ bisoxazole-2,6-diyl)-1,4-phenylene) (PBO,Zylon®)、(c) poly(2,6- diimidazo(4,5-b:4’5’-e)pyridinylene-1,4(2,5-dihydroxy)phenylene) (PIPD)、(d) polybenzimidazole (PBI) 8
圖2-3硬桿狀高分子材料PBO結構示意圖 11
圖2-4硬桿狀高分子材料柱狀分子結構示意圖 11
圖2-5聚乳酸不同結構示意圖 14
圖2-6靜電紡絲設備 19
圖3-1雙針筒模頭混合式靜電紡絲之模頭設計示意圖 26
圖3-2水平式靜電紡絲滾筒收集法示意圖 28
圖3-3垂直式靜電紡絲滾筒收集法示意圖 29
圖3-4 TGA儀器結構示意圖 30
圖3-5 TMDSC加熱模式原理示意圖 32
圖3-6 Bragg’s law 34
圖4-1 PBO-PLLA複合薄膜熱裂解程度與熱穩定性分析 57
圖4-2單一針筒混合式靜電紡絲製備PBO-PLLA複合薄膜之熱性質分析 58
圖4-3雙針筒模頭混合式靜電紡絲PBO-PLLA複合薄膜之熱性質分析 59
圖4-4乾式成膜PBO-PLLA複合薄膜之熱性質分析 60
圖4-5單一針筒混合式靜電紡絲PBO-PLLA複合薄膜之X-ray繞射分析圖(n=3) 61
圖4-6雙針筒模頭混合式靜電紡絲PBO-PLLA複合薄膜之X-ray繞射分析圖(n=3) 62
圖4-7乾式成膜PBO-PLLA複合薄膜之X-ray繞射分析圖(n=3) 63
圖4-8單一針筒混合式靜電紡絲複合薄膜纖維直徑與PBO固體含量之關係圖 64
圖4-9 SEM image (15 kV,x2000),PBO-PLLA複合薄膜 (0/100)與其纖維直徑分佈圖,平均纖維直徑為4.89±0.76 ?慆 (n=100) 65
圖4-10 SEM image (15 kV,x2000),PBO-PLLA複合薄膜 (1/99)與其纖維直徑分佈圖,平均纖維直徑為1.93±0.59 ?慆 (n=100) 66
圖4-11 SEM image (15 kV,x2000),PBO-PLLA複合薄膜 (3/97)與其纖維直徑分佈圖,平均纖維直徑為1.96±0.50 ?慆 (n=100) 67
圖4-12 SEM image (15 kV,x2000),PBO-PLLA複合薄膜 (5/95)與其纖維直徑分佈圖,平均纖維直徑為1.03±0.57 ?慆 (n=100) 68
圖4-13 SEM image (15 kV,x2000),PBO-PLLA複合薄膜 (7/93)與其纖維直徑分佈圖,平均纖維直徑為0.82±0.23 ?慆 (n=100) 69
圖4-14 SEM image (15 kV,x2000),PBO-PLLA複合薄膜 (10/90)與其纖維直徑分佈圖,平均纖維直徑為0.54±0.15 ?慆 (n=100) 70
圖4-15雙針筒模頭混合式靜電紡絲複合薄膜纖維直徑與PBO固體含量關係圖 71
圖4-16 SEM image (15 kV,x2000),雙針筒混合式靜電紡絲纖維PBO-PLLA複合薄膜 (0/100)與其較粗纖維直徑分佈圖,平均纖維直徑為4.56±1.41 ?慆 (n=100) 72
圖4-17 SEM image (15 kV,x2000),雙針筒混合式靜電紡絲PBO-PLLA複合薄膜 (1/99)與其纖維直徑分佈圖,平均纖維直徑為1.02±0.28 ?慆 (n=100) 73
圖4-18 SEM image (15 kV,x2000),雙針筒混合式靜電紡絲PBO-PLLA複合薄膜 (3/97)與其纖維直徑分佈圖,平均纖維直徑為1.12±0.39 ?慆 (n=100) 74
圖4-19 SEM image (15 kV,x2000),雙針筒混合式靜電紡絲PBO-PLLA複合薄膜 (5/95)與其纖維直徑分佈圖,平均纖維直徑為0.59±0.29 ?慆 (n=100) 75
圖4-20 SEM image (15 kV,x2000),雙針筒混合式靜電紡絲PBO-PLLA複合薄膜 (7/93)與其纖維直徑分佈圖,平均纖維直徑為0.75±0.44 ?慆 (n=100) 76
圖4-21 SEM image (15 kV,x2000),雙針筒混合式靜電紡絲PBO-PLLA複合薄膜 (10/90)與其纖維直徑分佈圖,平均纖維直徑為0.58±0.30 ?慆 (n=100) 77
圖4-22 SEM image (15 kV,x1000),分析溶劑對表面形態的影響,以乾式成膜製備不同PBO固體含量之複合薄膜 78
圖4-23以乾式成膜製備PBO-PLLA複合薄膜分析不同PBO固體含量與表面孔隙率之關係 79
圖4-24雙針筒模頭混合式靜電紡絲製備不同PBO固體含量之PBO-PLLA複合薄膜於重新溶解其溶液黏度分析 80
圖4-25乾式成膜製備不同PBO固體含量之PBO-PLLA複合薄膜於重新溶解其溶液黏度分析 81
圖4-26 SEM image (15 kV,x2000),分析DCM溶解PBO-PLLA薄膜之PBO表面形態,以雙針筒混合式靜電紡絲製備不同PBO固體含量之複合薄膜 82
圖4-27雙針筒模頭混合式靜電紡絲之以DCM溶解PBO-PLLA複合薄膜殘餘PBO纖維直徑與PBO固體含量關係圖 83
圖4-28 SEM image (15 kV,x2000),分析DCM溶解PBO-PLLA薄膜之PBO表面形態,以乾式成膜製備不同PBO固體含量之複合薄膜 84
1.Pinnavaia TJ. Intercalated clay catalysts. Science, 220(4595): 365-71, 1983.
2.Helminiak TE, Benner CL, Arnold FE, Husman GE, invent, Aromatic heterocyclic polymer
alloys and products produced therefrom. 1980.
3.許明發, 郭文雄. 複合材料: 高立圖書有限公司, 2004.
4.袁莉, 馬曉燕, 梁國正, 王娟娟. 分子複合材料的研究進展. (第20卷 第5期), 2004.
5.Husman G, Helminiak T, Adams W, Wiff D, Benner C. Molecular composites - rodlike
polymer reinforcing an amorphous polymer matrix. Prepr of Pap presented at a Jt Am Chem
Soc/Chem Soc of Jpn Chem Congr Resins for Aerosp, 40, 1 April 1979 through 6 April
1979, 1979.
6.廖肅然, 呂亞非, 李相魁. 河南科學, 17(3): 245-56, 1999.
7.Roberts MF, Jenekhe SA. Preparation and processing of molecular composites of rigid-rod
and flexible-chain polymers from soluble complexes. Chemistry of Materials, 6(2): 135-45,
1994.
8.Chae HG, Kumar S. Rigid-rod polymeric fibers. Journal of Applied Polymer Science,
100(1): 791-802, 2006.
9.Kitagawa T, Murase H, Yabuki K. Morphological study on
poly-p-phenylenebenzobisoxazole (PBO) fiber. Journal of Polymer Science, Part B:
Polymer Physics, 36(1): 39-48, 1998.
10.陳琬琪. 正型鹼性水溶液顯影耐高溫感光性聚苯噁唑之研究. (國立成功大學 材料科
學及工程學系), 2002.
11.Zhang X, Wyss UP, Pichora D, Goosen MFA. An investigation of the synthesis and thermal
stability of poly(dl-lactide). Polymer Bulletin, 27(6): 623-9, 1992.
12.劉貞儀. 生物可分解性的聚乳酸塑膠. 生物資源 生物技術 第九卷 第三/四期, (淡江
大學 生命科學研究所), 2007.
13.Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically
charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9
I): 4531-47, 2000.
14.Anton F, inventor Process and apparatus for preparing artificial threads. 1934.
15.Larrondo L, Manley RSJ. Electrostatic fiber spinning from polymer
melts - 2. examination of the flow field in an electrically driven jet. Journal of Polymer Science Part A-2, Polymer Physics, 19(6): 921-32, 1981.
16.G T. Electrically driven jets. Proceedings of the Royal. Society of London
Series a-Mathematical and Physical Sciences, 313(1515): 453-&, 1969.
17.Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning.
Nanotechnology, 7(3): 216-23, 1996.
18.Fong H, Chun I, Reneker DH. Beaded nanofibers formed during electrospinning. Polymer,
40(16): 4585-92, 1999.
19.覃小紅, 王新威, 胡祖明. 靜電紡絲聚丙烯腈耐米纖維工藝參數與纖維直徑關係的研
究. 東華大學學報, 31(6): 16-21, 2005.
20.楊炎澄. 以電氣紡絲製備具奈米結構之生物分解性薄膜. (台北醫學大學 口腔復健醫
學研究所 碩士論文), 2004.
21.Cloupeau M, Prunet-Foch B. Electrostatic spraying of liquids: Main functioning modes.
Journal of Electrostatics, 25(2): 165-84, 1990.
22.Deitzel JM, Kleinmeyer JD, Hirvonen JK, Beck Tan NC. Controlled deposition of
electrospun poly(ethylene oxide) fibers. Polymer, 42(19): 8163-70, 2001.
23.Min BM, You Y, Kim JM, Lee SJ, Park WH. Formation of nanostructured
poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydrate Polymers, 57(3): 285-92, 2004.
24.李書瀚. 以生物電紡技術製造多重中空管束支架並植入細胞作為神經導管的應用. (台
北醫學大學, 口腔醫學院, 生醫材料暨工程研究所, 碩士論文), 2009.
25.Wurm A, Merzlyakov M, Schick C. Reversible melting probed by temperature modulated
dynamic mechanical and calorimetric measurements. Colloid and Polymer Science, 276(4):
289-96, 1998.
26.Wurm A, Merzlyakov M, Schick C. Crystallization of polymers studied by
temperature-modulated techniques (TMDSC, TMDMA). Journal of Macromolecular
Science - Physics, 38, 1999.
27.Instruments T. Applications Library. (TN45 and TA210),
28.M R. Modulated DSC- A New way Forward in Materials Characterization. Trends Polym
Sic, 8: 248-53, 1993.
29.Skoog D.A. LJJ. Instrument Analysis Fourth Edition., 1992.
30.杜正恭. 儀器分析,材料分析儀器, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊