跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄧宗憲
研究生(外文):Tsung-Hsien Teng
論文名稱:以超音波霧化熱裂解法製備鋰鐵磷/碳二次鋰離子電池之正極複合材
論文名稱(外文):LIFEPO4/CARBON CATHODE MATERIALS OF THE LITHIUM SECONDARY BATTERY PREPARED BY ULTRASONIC SPRAY PYROLYSIS
指導教授:楊木榮楊木榮引用關係
指導教授(外文):Mu-Rong Yang
學位類別:博士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:126
中文關鍵詞:鋰鐵磷交流阻抗超音波霧化正極材料
外文關鍵詞:Lithium iron phosphateAc impedanceultrasonic spray pyrolysiscathode materialRaman
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
因橄欖石結構相之LiFePO4擁有低成本、低的環境汙染性、穩定的熱穩定性、較佳的循環壽命與高的理論電容量(170 mAhg-1),使得LiFePO4是目前鋰離子二次電池之正極材料中,最熱門的研究方向。在市場上,可利用於電子手工具、電動自行車、電動摩托車和油電混合車等大電流充放特性之器材。然而其低的鋰離子擴散速率與低的電子導電率通常會造成鋰鐵磷在商業運用上的一大瓶頸。
本論文利用超音波霧化熱裂解法成功地製備純相鋰鐵磷/碳(LiFePO4 /C) 及其摻雜異質元素 (LiFe(1-x)MxPO4 /C, M = Mg, V) 之二次鋰離子電池正極複合材。超音波霧化熱裂解法之製程特點為其可一次性合成摻雜異質元素及在細小且均勻的顆粒表面上均勻披覆助導性物質於表面,進而提升鋰鐵磷正極材料之導電性、鋰離子擴散速率及其電化學特性。
此研究中,以經由PVA 熱裂解所得之碳膜批覆(碳含量3.54 wt.%,電子導電率為 2.59 × 10-2 S cm-1) LiFe0.95V0.05PO4/C複合材可達最佳之電化學特性,0.1C和1C分別達134 mAhg-1和122 mAhg-1,並且經由30次充放電循環下,呈幾乎無電容量衰退之現象。這是由於異質元素之摻雜能有效的提高磷酸根分子之結構穩定性,並且使得Li-O鍵之鍵長增加,促使弱化Li-O鍵,造成提高橄欖石結構在充放電過程中,提高了橄欖石結構之穩定性及增進鋰離子的擴散速率。由CV 和EIS結果證明,其鋰離子擴散速分別為1.14 x10-11 cm2s-1 and 1.32 x10-11 cm2s-1,高於純相之鋰鐵磷六個數量級(106),並且降低了電荷轉移電阻及Warburg 阻抗。由XRD 及FTIR 之結果得知,超音波霧化熱裂解法相較其他不同製程下,確實能得到無雜相之純相鋰鐵磷/碳及其摻雜異質元素之二次鋰離子電池正極複合材。
Small crystalline pure LiFePO4 and doped-LiFePO4 powders with conducting carbon coating can be synthesized by ultrasonic spray pyrolysis. Cheaper trivalent iron ion is used as the precursor. The powders can be prepared with the duplex process of spray pyrolysis and subsequent heat treatment. From SEM observation, it can be found that the powders are covered with fine pyrolyzed carbon. The evenly-distributed carbon will provide intimate contact among particles to reduce the electrical resistance. Raman spectra indicate that the phase of carbon with higher electrically-conductive phase is predominant when prolonged subsequent heat treatment is carried out. On the other hand, the spherical, dense and solid LiFe(1-x)VxPO4/C (x = 0, 0.01, 0.05, 0.1) composite cathodes were prepared by introducing the polyvinyl alcohol (carbon precursor) in the precursor solution The amount of carbon in LiFe0.95V0.05PO4/C powders is 3.54 wt.% and its electrical conductivity is 2.59 × 10-2 S cm-1. The solid spherical structure provides excellent electrical contact between particles to enhance the discharge capacity and mitigate the fading rate. In contrast to the hollow spherical morphology, the solid spherical morphology of the LiFePO4/C powders will have higher discharge capacity. The cells were tested at C/10 and 1C discharge rate at 30oC. The LiFe0.95V0.05PO4/C sample, prepared at Tsp = 450oC and post heat-treatment 700oC for 8h, exhibits higher specific discharge capacity (122 mAhg−1) and no obvious fading rate after 30 charge-discharge cycles at 1C rate. The kinetics of chemical behavior of the LiFe0.97V0.03PO4/carbon cathode materials were measured by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The chemical diffusion coefficient of lithium was found by CV and EIS were 1.14 x10-11 cm2s-1 and 1.32 x10-11 cm2s-1, respectively. The phase purity and morphology of LiFe0.97V0.03PO4 were also identified using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The lower fading rate at high discharge rate can be attributed to the intrinsic doping, which can enhance the diffusion coefficient of Li ions and reduce the Warburg impedance and the charge-transfer resistance.
ACKNOWLEDGMENTS I
ENGLISH ABSTRACT ІI
CHINESE ABSTRACT IV
CONTENTS VI
LIST OF FIGURES IX
LIST OF TABLES XV
CHAPTER
I. Introduction 1
II. Theories and Literature Reviews 5
2.1 The Olivine Structure 5
2.2 Improving the electronic conductivity of the LiFePO4 powders 7
2.3 Preparing the LiFePO4 compound materials 9
2.4 The electronic conductivity of the doped Olivine LiFePO4 12
2.5 The Diffusion Paths of Li+ in the carbon-coating and doped LiFePO4 powders 22
2.6 Impure phases 31
2.7 Ultrasonic atomization 38
2.7.1 The principle of ultrasonic atomization 38
2.7.2 Characteristic of ultrasound transducer 40
2.8 Ultrasonic atomization spray pyrolysis method 43
2.8.1 The particle formation 44
2.8.2 Application to other materials 45
2.9 The influence of precursor properties on aerosols 47
III. Experimental procedures 50
3.1 Material syntheses 50
3.1.1 Precursor preparation and post heat-treatment 50
3.1.2 Ultrasonic atomization 52
3.1.3 Spray pyrolysis 52
3.1.4 Powder collection 53
3.1.5 Powder properties 53
3.2 Cell fabrication 56
3.2.1 Preparation of cathode electrode 56
3.2.2 The coin-type cell fabrication 56
3.3 Electrochemical characteristic 57
3.3.1 Cyclic voltammetry (CV) and EIS (electrochemical impedance spectroscopy) measurement 57
3.3.2 Charge-Discharge test 57
IV. Results and discussion 62
4.1 LiFePO4 62
4.2 LiFe0.9Mg0.1PO4 72
4.3 Solid spherical LiFe(1-x)VxPO4 82
4.4 The chemical diffusion coefficient of lithium in LiFe0.97V0.03PO4/carbon composites 91
V. Conclusions 109
REFERENCES 111
AUTHOR PUBLICATION LIST 124
VITA 126
[1]A. S. Andersson, J. O. Thomas, B. Kalska, L. Haggstrom Electrochemical and Solid-State Letters, 3(2), (2000) 66.
[2]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc., 144(4), (1997) 1188.
[3]K. Padhi, K. S. Nanjundaswamy, C. Masquelier, Okada, J. B. Goodenough, J. Electrochem.Soc., 144 (5), (1997) 1609.
[4]A. S. Andersson, J. O. Thomas, J. Power Sources, 97-98, (2001) 498.
[5]J. M. Tarason, M. Armand, NATURE, 414 (15), (2001) 259.
[6]D. D. MacNeil, Z. Lu, Z. Chen, J. R. Dahn, J. Power Sources, 108, (2002) 8.
[7]M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, J. Power Sources, 97-98, (2001) 508.
[8]S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mate, 1 (2002) 123.
[9]F. Croce, A.D Epifanio, J. Hassoun, A. Deptula, T.Olczac, B. Scrosati, Electrochemical and Solid-State Letters, 5 (3), (2002) A47.
[10]J. Barker, M.Y. Saidi, J. L. Swoyer, Electrochemical and Solid-State Letters, 6 (3), (2003) A53.
[11]A. Yamada, S.C. Chung and K. Hinokuma. J. Electrochem. Soc. 148 (2001) A224.
[12]N. Ravet, J.B. Goodenough, S. Besner, M. Simoneau, P. Hovington and M. Armand. Electrochem. Soc. Abst. 99–102 (1999) 127.
[13]J.B. Goodenough, Solid State Ionics 69 (1994) 184.
[14]H. Huang, S. C. Yin, L. F. Nazar, Electrochem. Solid-State Lett. 4 (2001) A170.
[15]Z. Chen, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A1184.
[16]P. P. Prosini, D. Zane, M. Pasquali, Electrochim. Acta 46 (2001) 3517.
[17]R. Dominko, M. Gaberscek, J. Drofenik, M. Bele and S. Pejovnik. Electrochem. Solid-State Lett. 4 (2001), p. A187.
[18]S. L. Bewlay, K. Konstantinov, G. X. Wang, S. X. Dou, H. K. Liu, Materials Letters 58 (2004) 1788.
[19]S. Franger, F. Le Cras, C. Bourbon, H. Rouault, Electrochem. Solid State Lett. 5 (2002) A231.
[20]R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, J. Jamnik, J. Power Sources, 119-121, (2003) 770.
[21]M. R. Yang, T.H. Teng, S.H. Wu, J. Power Sources 159, (2006) 307.
[22]D. Wang, H. Li, S. Shi, X. Huang, L. Chen, Electrochimica Acta 50 (2005) 2955.
[23]C. Ouyang, S. Shi, Z. Wang, X. Huang, L. Chen, Physical Review B 69, (2004) 104303-1.
[24]S. J. Kwon, C. W. Kim, W. T. Jeong, K. S. Lee, J. Power Sources 137 (2004) 93
[25]H. T. Chunga, S. K. Janga, H. W. Ryub, K. B. Shimc, Solid State Communications, 131, Issue 8, (2004) 549.
[26]K. Konstantinov, S. Bewlay, G.X. Wang, M. Lindsay, J.Z. Wang, H.K. Liu, S.X. Dou, J.-H. Ahn, Electrochim. Acta 50 (2004) 421.
[27]L. Cheng, X. L. Li, H. J. Liu, H. M. Xiong, P. W. Zhang, Y. Y. Xia, J. Electrochem.Soc., 154 (7), (2007) A692.
[28]G. Li, Y. Kudo, K. Yu, H. Azuma, M. Tohda, J. Electrochemical Society, 149 (11), (2002) A1414.
[29]A. Yamada, S. C. Chung, J. Electrochemical Society, 148 (8), (2001) A960.
[30]M. Abbate, S. M. Lala, L. A. Montoro, J. M. Rosolenb, Electrochem. Solid-State Lett., 8 (6) (2005) A288.
[31]N. Penazzi, M. Arrabito, M.Piana, S. Bodoardo, S. Panero, I. Amadei, Journal of the European Ceramic Society 24 (2001) 1381.
[32]G. L. Messing, S.C. Zhang, G. V. Jayanthi. J. Am. Ceram. Soc. 76 (1993) 2707.
[33]T. H. Teng, M. R. Yang, S. H. Wu, 12th International Meeting on Lithium Batteries, Nara, Japan, June 27, 2004.
[34]M. R. Yang, W.H. Ke, S. H. Wu, J. Power Sources, 146 (2005) 539.
[35]S. H. Wu, K. M. Hsiao, W. R. Liu, J. Power Sources. 146 (2005) 550.
[36]S.Y. Chung, Y.M. Chiang, Electrochem. Solid-State Lett. 6 (2003) A278.
[37]C.Y. Ouyang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, L.Q. Chen, J. Phys., Condens. Matter 16 (2004) 2265.
[38]J. F. Ni, H. H. Zhou, J. T. Chen, X.X. Zhang, Materials letters 59 (2005) 2361.
[39]K.F. Hsu, S.Y. Tsay, B.J. Hwang, J. Power Sources 146 (2005) 529.
[40]S. Q. Shi, L. J. Liu, C. Y. Ouyang, D. S. Wang, Z. X. Wang, L.Q. Chen, X. J. Huang, Phys. Rev., B 68 (2003), 195108.
[41]K. Söllner, Trans. Faraday Soc., 32 (1936) 1532-1536
[42]F. Streibl, Dissertation, Erlangen, (1947)
[43]G. Keck, Acustica, 5 (1957) 310-312
[44]K. Stamm, Forschungsberichtedes Landes Nordrhein-Westfallen, 933 (1960)
[45]R. Pohlman, K. Stamm, Forschungsberichtedes Landes Nordrhein-Westfallen, 1480 (1965)
[46]R.J. Lang, J. Acoust. Soc. Am.,1 (1968) 6-8
[47]E.L. Gershenzon, O.K. Eknadiosyants, Sov. Phys. Acoust. 10 (1964) 156-162
[48]Y.Y. Boguslavskii, O.K. Eknadiosyants, Sov. Phys. Acoust. 15 (1969) 14-21
[49]Wells PNT: Biomedical ultrasonics, New York, 1977, Academic Press.
[50]島川正憲,超音波工學理論實務,科技用書,1982 501.
[51]Pramod S. Patil, Materials Chemistry and Physics 59 (1999) 185.
[52]Y. C. Kang, S. B. Park, Y. W. Kang, NanoStructured Materials, 5 (1995) 777.
[53]M. A. Lim, Y. C. Kang, H.D. Park, J. Electrochem. Soc. 148(2) H171 (2001)
[54]S. Jain, D. J. Skamser, T. T. Kodas, Aerosol science and technology, 27 (1997) 575.
[55]S. E. Pratsinis, S. Vemury, Powder Technology 88 (1996) 267.
[56]K. A. Kusters, S. E. Pratsinis, Powder Technology 82 (1995) 78.
[57]D. Janackovic, V. Jokanovic, L. Kostic-Gvozdenovic, D. Uskokovic, Nanostructure Materials, 10 (1998) 341.
[58]T. Suzuki, K. Itatani, M. Aizawa, F. Scott Howell, Akira Kishioka, Journal of the European Ceramic Society, 16 (1996) 1171.
[59]J.M. Nedeljkovic, Z.V. Saponjic, Z. Rakocevic, V. Jokanovic, D.P. Uskokovic, Nanostructure Materials, 9 (1997) 125.
[60]P. Fortunato, A. Reller, H.R. Oswald, Solid State Ionics, 101-103 (1997) 85.
[61]O.N.M. Mc Callion, M.J. Patel, International Journal of Pharmaceutics 130 (1996) 245.
[62]Boucher, R.M.G., Kreuter, Ann. Allergy 26 (1968) 591.
[63]Lang, R.J., J. Acoust. Soc. Am., 34 (1962) 6.
[64]Mercer, T.T., Chest 80 (1981) 813.
[65]Gershenzon, E.L., Eknadiosyants, O.K., Sov. Phys. Acoust. 10 (1964) 156.
[66]R.W. Wood and A.L. Loomis, Phil. Mag., 22 (1927) 417.
[67]W. Liu, G.C. Farrington, F. Chaput, B. Dunn, J. Electrochem. Soc. 143 (3) (1996) 879.
[68]W. Ojczyk, J. Marzec, K. Świerczek, W. Zając, M. Molenda, R. Dziembaj, J. Molenda, J. Power Sources 173 (2007) 700.
[69]M. M. Doeff, Y. Hu. F. McLarnon, R. Kostec, Electrochem. Solid-State Lett., 6(10) (2005) A207.
[70]R. Kostecki, B. Schnyder, D. Alliata, X. Song, K. Kinoshita, R.Ko‥tz, Thin Solid Films 396 (2001), 36.
[71]K. Matsuda, I. Taniguchi, J. Power Sources 132, (2004) 156.
[72]I. Taniguchi, Materials Chemistry and Physics 92 (2005) 172.
[73]H. S. Kang, Y. C. Kang, H. D. Park, Y. G. Shul, Materials Letters 57 (2003) 1288.
[74]S. J. Kwon, C. W. Kim, W. T. Jeong, K. S. Lee, J. Power Sources 137 (2004) 93.
[75]H. T. Chunga, S. K. Janga, H. W. Ryub, K. B. Shimc, Solid State Communications 131 (8) (2004) 549.
[76]M. Gaberscek, R. Dominko, M. Bele, M. Remskar, D. Hanzel, J. Jamnik, Solid State Ionics 176 (2005) 1801.
[77]A. J.Bard, L.R. Faulkner, Electrochemical Methods, Wiley, New York, 1980, p.213.
[78]M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, Solid State Ionics 40 (2002) 283.
[79]H. Liu, C. Li, H.P. Zhang, L.J. Fu, Y.P. Wu, H.Q. Wu, J. Power Sources 159 (2006) 717.
[80]A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, Okada, and J. B. Goodenough, J. Electrochem. Soc., Vol.144 (5), 1609 (1997).
[81]J. M. Tarascon and M. Armand, NATURE, Vol. 414 15, 250, (2001).
[82]O. G. Moreno, M. A.Vega, F. G. Alvarado, J. G. Jaca,J. M. Gallardo-Amores, M. L. Sanjua and U. Amador, Chem. Mater.13 (2001) 1570.
[83]A. S. Andersson, J. O. Thomas, B. Kalska, L. Haggstrom, Electrochem. Solid-State Lett., 3(2) (2000) 66.
[84]S. Okada, S. Sawa, M. Egashira, J. I. Yamaki, M. Tabuchi, J. Power Sources, 97-98 (2001) 430.
[85]J. Molenda, A. Stoklosa, T. Bak, Solid State Ionics, 36 (1989) 53.
[86]Y. Shimakawas, T. Numata, K. Tabuchi, J. Solid Stat Chem., 131 (1997) 138.
[87]H. Kawaia, M. Nagatab, H. Kageyamac, H. Tukamoto, Electrochim. Acta 45 (1999) 315.
[88]M. C. Payne, M. P. Teter, D.C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys, 64 (1992) 1045.
[89]D. Vanderbilt, Phys. Rev. B, 41 (1992) 7892.
[90]G. Kresse, J. Hafner, Phys. Rev. B, 47 (1993) 558.
[91]G. Kresse, J. Hafner, Phys. Rev. B, 49 (1994) 14 251.
[92]G. Kresse, J. Furthmöller, Comput. Mater. Sci., 6(1996)15.
[93]G. Kresse, J. Furthmöller, Comput. Phys. Rev. B,54 (1996)11 169.
[94]V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, R. H. Nobes, Int. J. Quantum Chem.,77 (2000) 895.
[95]C. Wang, Q. M. Zhang, J. Bernholc, Phys. Rev. Lett., 69 (1992) 3789.
[96]Q. M. Zhang, C, Roland, P. Boguslawski, J. Bernholc, Phys. Rev. Lett., 75 (1995) 101.
[97]M.S. Islam, D.J. Driscoll, C.A. J. Fisher, Peter R. Slater, Chem. Mater., 17 (2005) 5085.
[98]K. S. Nanjundaswamy, A. K. Padhi, J. B. Goodenough, S. Okada, H. Ohtsuka, H. Arai, J. Yamaki, Solid State Ionics, 92 (1996) 1.
[99]M. D. Levi, G. Salitra, B. Markovsky, H. Teller, D. Aurbach,a, U. Heider, L. Heiderb, J. Electrochem. Soc., 146 (4) (1999) 1279.
[100]M. D. Levi, D. Aurbach, J. Phys. Chem. B, 101 (1997) 4630.
[101]P. P. Prosini, M. Lisi b, D. Zane, M. Pasquali, Solid State Ionics, 148 (2002) 45.
[102]D. Zane, M. Carewska, S. Scaccia, F. Cardellini, P. P. Prosini, Electrochim. Acta 49 (2004) 4259.
[103]E.M. Bauer, C. Bellitto, M. Pasquali, P.P. Prosini, G. Righini, Electrochem.Solid State Lett. 7 (2004) A85.
[104]Z. Chen, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A1189.
[105]X. Z. Liao, Z. F. Ma, Y.S. He, X. M. Zhang, L. Wang, Y. Jiang, J. Electrochem. Soc., 152 (10) (2005) A1969.
[106]C. Delacourt, C. Wurm, L. Laffont, J. B. Leriche, C. Masquelier, Solid State Ionics, 177(2006) 333.
[107]J. Barker, M.Y. Saidi, J.L. Swoyer, Electrochem. Solid-State Lett. 6 (2003) 53.
[108]S.Q. Shi, Unpublished work.
[109]C. Wang, I. kakwan, A.J. Appleby, F.E. Little, J. Electroanal. Chem. 489 (2000) 55.
[110]J. Hong, C. Wang, U. Kasavajjula, J. Power Sources, 162 (2006) 1289.
[111]V. Srinivasan, J. Newman, J. Electrochem. Soc. 151 (2004) A1517.
[112]M. Yonemura, A. Yamada, Y. Takei, N. Sonoyyama, R. Kanno, J. Electrochem. Soc. 151 (2004) A1352.
[113]V. Srinivasan, J. Newman, Electrochem. Solid State Lett. 9 (2006) A110.
[114]A. Yamada, H. Koizumi, Z. Sonoyama, R. Kanno, Eelectrochem. Solid State Lett. 8 (2005) A409.
[115]A. Funabiki, M. Inaba, T. Abe, Z. Ogumi, J. Electrochem. Soc. 146 (1999) 2443.
[116]S.-I. Pyun, Y.-G. Ryu, J. Power Sources 70 (1998) 34.
[117]J.R. Dahn, Phys. Rev. B 44 (1991) 9170.
[118]T. Ohzuku, Y. Iwakashi, K. Sawai, J. Electrochem. Soc. 140 (1993) 2490.
[119]K. Zaghib, V. Battaglia, P. Charest, V. Srinivasan, A. Guerfi, R. Kostecki, IBA-HBC Meeting, Wailoloa, Hawaii, 2006, Extend abstract 35.
[120]K. Zaghib, N.Ravet, M. Gauthier, F. Gendron, A. Mauger, J.B. Goodenough, C.M. Julien J. Power Sources 163 (2006) 560.
[121]P.S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nat. Mater. 3 (2004) 147.
[122]N. J. Yun, H.W. Ha, K. H. Jeong, H. Y. Park, K. Kim, J. Power Sources 160 (2006) 1361.
[123]Y. Xu, Y. Lu, L. Yan, Z. Yang, R. Yang, J. Power Sources 160 (2006) 570.
[124]B. Ellis, P. S. Herle, L. F. Nazar, Abstract No. 1074, 203rd Electrochemical Society Spring Meeting, Paris (Electrochemical Society, Pennington, New Jersey, 2003).
[125]A. J. P. Meyer, M. C. Cadeville, J. Phys. Soc. Jpn, 17 (1962) 223.
[126]A. Audemer, C. Wurm, M. Morcrette, S. Gwizdala, C. Masquelier, World Patent WO 2004/001881 A2.
[127]J. D. Axe, L. Passell, C. C. Tsuei, AIP Conf. Proc., 24 (1974)119.
[128]A. Ait Salah, P. Jozwiak, J. Garbarczyk, F. Gendron, A. Mauger, C.M. Julien, Ext. Abstracts of the 207th ESC Meeting, Québec-City, 2005, Extend abstract 1343.
[129] M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Electrochem, Solid State Lett. 6 (2003) A207.
[130]A. Ait Salah, A. Mauger, F. Gendron, C.M. Julien, Phys. Status Solidi (a) 203 (2006) R1.
[131]A. Ait-Salah, A. Mauger, C.M. Julien, F. Gendron, Mater. Sci. Eng. B 129 (2006) 232.
[132]S. Yang, Y. Song, K. Ngala, P.Y. Zavalij, M.S. Whittingham, J. Power Sources 119–121 (2003) 239.
[133]N. Ravet, A. Abouimrane, M. Armand, Nat. Mater. 2 (2003) 702.
[134]Y. Lin, M.X. Gao, D. Zhu, Y.F. Liu, H.G. Pan, J. of Power Sources 184 (2008) 444.
[135]A. Ait Salah, P. Jozwiak, K. Zaghib, J. Garbarczyk, F. Gendron, A. Maugerd, C.M. Julien, Spectrochimica Acta Part A 65 (2006) 1007.
[136]M.T. Paques-Ledent, P. Tarte, Spectrochim. Acta 30A (1973) 673.
[137]A. Ait Salah, P. Jozwiak, J. Garbarczyk, K. Benkhouja, K. Zaghib, F. Gendron, C.M. Julien, J. Power Sources 140 (2005) 370.
[138]C.M. Burma, R. Frech, J. Electrochem. Soc. 151 (2004) A1032.
[139]K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley & Sons, New York, 1978.
[140]P. Tarte, Spectrochim. Acta 20 (1964) 238.
[141]K. Zaghib, C.M. Julien, J. Power Sources 142 (2005) 279.
[142]C. M. Burba, R. Frech, Spectrochim. Acta A 65 (2006) 44.
[143]P. Jozwiak, J.E. Garbarczyk, M. Wasiucionek, I. Gorzkowska, F. Gendron, A. Mauger, C.M. Julien, Solid State Ionics 179 (2008) 46.
[144]P. Jozwiak, J. Garbarczyk, F. Gendron, A. Mauger, C.M. Julien J. Non-Crystalline Solids 354 (2008) 1915.
[145]A. Kuwahara, S. Suzuki, M. Miyayama. Ceramics International 34 (2008) 863.
[146]J. K. Kim, G. Cheruvally, J. H. Ahn, H. J. Ahn, J. Physics and Chemistry of Solids 69 (2008) 1257.
[147]P. Tarte, Spectrochim. Acta 18 (1962) 467.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊