跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡恆正
研究生(外文):Hu, Heng-Cheng
論文名稱:阿拉伯芥硝酸鹽轉運蛋白CHL1與其下游訊息傳遞元件CIPK8對硝酸鹽轉運與訊息傳遞之生理影響
論文名稱(外文):Physiological Impacts of Nitrate Transporter CHL1 and Its Down-Stream Signaling Component CIPK8 in Nitrate Transport and Signaling
指導教授:蔡宜芳蔡宜芳引用關係
指導教授(外文):Tsay, Yi-Fang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:114
中文關鍵詞:阿拉伯芥硝酸鹽營養訊息傳遞轉運蛋白
外文關鍵詞:ArabidopsisNitrateCHL1CIPK8nutrient signaling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
氮素是植物含量最多的必要營養源,對植物生長與作物產量有極重大的影響。硝酸鹽是植物中氮源主要被吸收的形式,其本身也可以當作訊號分子,調控多種硝酸鹽代謝相關的代謝途徑,包括了快速誘發轉譯層次的主要硝酸鹽訊息。 為了能有效吸收在環境中濃度多變的硝酸鹽,高等植物發展出了兩群不同親合性的吸收系統,NRT1類型的轉運蛋白可吸收低親合性範圍的濃度,而NRT2則負責高親合性範圍的吸收。有趣的是,NRT1基因群中有一特殊的硝酸鹽轉運蛋白CHL1,可藉由第101位置的蘇胺酸是否被磷酸化的調控,快速轉換成高低兩種親合度的吸收活性,更有多篇文獻指出CHL1也參與在多種硝酸鹽的訊息調控,推論CHL1在整個硝酸鹽相關的生理扮演許多角色。然而,CHL1在植物整體生理功能以及訊息傳遞途徑的重要性仍尚未清楚,目前也沒有任何相關調控主要硝酸鹽訊息傳遞途徑的基因被找到,因此本論文以遺傳、生理和微陣列等策略,進行其相關研究。
本研究第一部分,以基因剔除株的方式將另一負責低親合性吸收的根部轉運蛋白NRT1.2與CHL1做比較,利用植物體內功能性分析與微陣列方式研究其兩蛋白在硝酸鹽轉運、代謝與訊息傳遞層次的差異。結果證明CHL1高度影響植物吸收硝酸鹽的能力,並主要參與調控與硝酸鹽馴化代謝、能量轉換、離子轉運、以及訊息傳遞相關的基因,即使在低親合性的環境下亦扮演比NRT1.2更重要的角色。本論文同時也比較其他類似的微陣列研究,也指出了數個信息傳遞元件可能參與在早期偵測硝酸鹽的訊息中。
第二部份則是尋找CHL1蛋白本身可能參與硝酸鹽訊息調控的基因。由微陣列資料中篩選出一群可藉由調控下游基因轉錄或是直接磷酸化轉運蛋白來適應環境改變的磷酸激酶CBL-interacting protein kianse(CIPK)。其中CIPK8基因只在早期被硝酸鹽快速誘發,藉由基因剔除株發現CIPK8參與在主要硝酸鹽訊息傳遞之轉錄調控中,能正向調控參與硝酸鹽馴化代謝途徑的基因群表現。酵素動力學的方式分析發現CIPK8只專一負責在低親合性範圍的訊息傳遞調控,說明了主要硝酸鹽訊息在基因層次上亦分有高低親合性兩類傳遞系統。另外,CIPK8亦參與了其它硝酸鹽參與的調控機制,包括了主根生長、調控其他離子平衡的轉運蛋白、花青素累積、硝酸鹽在根與莖葉的總量與分布比例,說明了CIPK8廣泛地影響了早期和後期整個硝酸鹽相關的生理調控。進一步探討CHL1與CIPK8在調控主要硝酸鹽訊息之間的機制,推測CIPK8可能藉由非直接性的調控CHL1第101位置之去磷酸化,參與在低親合性主要訊息傳遞之中。
Nitrogen is an essential macronutrient in plants which is important for plant growth and crop yields. Nitrate is not only the major nitrogen source, but also acts as a signal molecule to regulate several nitrate-associate signaling pathways, such as transcriptional expressions of the primary nitrate response. To efficiently acquire various concentrations of nitrate from environment, higher plants have to evolve two uptake systems with different affinity: NRT1s for the low-affinity; and NRT2s for the high-affinity. Interestingly, a special nitrate transporter of NRT1s, CHL1, can transport nitrate in both high- or low-affinity phase by switching the phosphorylation modes in threonine 101 residue. Several studies report that CHL1 also participate in several nitrate signaling pathways, suggest that CHL1 may play multiple roles in nitrate-associated regulations. However, the global physiological impacts of CHL1 and its roles in nitrate signaling are not clear so far. Moreover, none genes are reported to involved in regulating the primary nitrate response. To more clarify these aims, genetic, physiological, and transcriptomic approaches were performed in this study.
In the first part, to characterize the physiological impacts of CHL1, a low-affinity nitrate transporter NRT1.2 was chosen to compare against their functional differences in transport, metabolic, and signaling levels using in vivo and transcriptomic analyses by knock mutants. The results showed that, even in the low-affinity phase, CHL1 plays more important roles in nitrate uptake rather than NRT1.2 does, and mainly regulates pathways related in nitrate-assimilation, energy usage, transport, and signal transduction. In addition, by comparing other microarray studies, several signaling components are suggested to be involved in the core nitrate signaling in the early stage.
Second aim is to find out if genes involved in CHL1-regulated nitrate signaling. A few CBL-interacting protein kinases (CIPKs) were screed from the microarray data, which are known to participate in adapting environmental changes by regulating transcriptional expressions and/or by directly phosphorylating target transporters. One of them, CIPK8, can be rapidly and transiently induced by nitrate. Analysis of knockout mutants showed that CIPK8 positively and transcriptionally regulated the genes required for assimilation of the primary nitrate response. Kinetic analysis of nitrate induction levels of these genes in wild-type plants indicated that there are two response phases. As cipk8 mutants were defective mainly in the low-affinity response, the high-affinity and low-affinity nitrate signaling systems are proposed to be genetically distinct, with CIPK8 involved in the low-affinity system. In addition, CIPK8 was found to be involved in nitrate-modulated primary root growth, gene expressions of transporters required for ion homeostasis, anthocyanin accumulation, nitrate content, and root-to-shoot partition, indicating that CIPK8 wildely participates in both short-term and long-term nitrate regulations. We further characterized the regulating mechanisms of CHL1 and CIPK8 in the primary nitrate response. Our preliminary data suggest that CIPK8 may regulate the phosphorylation status on T101 of CHL1 through an indirect signal process to switch the primary signaling into the low-affinity phase.
口試委員會審定書……………………………………………………..……….…………. 1
誌謝……………………………………………………………………...……………….…. 5
中文摘要…………………………………………………………………………….………. 11
Abstract……………………………………………………………..………………………. 13
Part I Physiological Impacts of Two Root Nitrate Transporters, CHL1 and NRT1.2………………………………………………..…………………………………….. 15
Abstract…………………………………………...…………………………..……….. 16
Introduction……………………………………….…………………………………… 17
Materials and Methods……………………………………………..………………….. 20
Results……………………………………………………………………………….… 24
Discussion………………………………………………………………………...…… 32
Figures………………………………………………………………….……………… 35
Tables……………………………………………………………………..…………… 43
Part II AtCIPK8, a CBL-interacting Protein Kinase, Regulates the Low-Affinity Phase of the Primary Nitrate Response and Multiple Nitrate-Accociated Regulation... 50
Abstract……………………….…………………………………………………..…… 51
Introduction……………………….…………………………………………………… 52
Materials and Methods………………………………………………………………… 55
Results……………..………...……………………………….…………………...…… 62
Discussion………………………..…………………………………………………… 75
Figures…………………………………………………………………………...…….. 81
Tables………………………………………………………………………………….106
References………………..………………………………………………………….……108
Appendix……………………………………………………………………………………114
Alboresi, A., Gestin, C., Leydecker, M.T., Bedu, M., Meyer, C. and Truong, H.N. (2005) Nitrate, a signal relieving seed dormancy in Arabidopsis. Plant Cell Environ, 28, 500-512.
Albrecht, V., Ritz, O., Linder, S., Harter, K. and Kudla, J. (2001) The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. Embo J, 20, 1051-1063.
Batistic, O. and Kudla, J. (2004) Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network. Planta, 219, 915-924.
Bernreiter, A., Ramon, A., Fernandez-Martinez, J., Berger, H., Araujo-Bazan, L., Espeso, E.A., Pachlinger, R., Gallmetzer, A., Anderl, I., Scazzocchio, C. and Strauss, J. (2007) Nuclear export of the transcription factor NirA is a regulatory checkpoint for nitrate induction in Aspergillus nidulans. Mol Cell Biol, 27, 791-802.
Burger, G., Tilburn, J. and Scazzocchio, C. (1991) Molecular cloning and functional characterization of the pathway-specific regulatory gene nirA, which controls nitrate assimilation in Aspergillus nidulans. Mol Cell Biol, 11, 795-802.
Camacho-Cristobal, J.J. and Gonzalez-Fontes, A. (2007) Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta, 226, 443-451.
Cavicchioli, R., Chiang, R.C., Kalman, L.V. and Gunsalus, R.P. (1996) Role of the periplasmic domain of the Escherichia coli NarX sensor-transmitter protein in nitrate-dependent signal transduction and gene regulation. Mol Microbiol, 21, 901-911.
Chai, W. and Stewart, V. (1998) NasR, a novel RNA-binding protein, mediates nitrate-responsive transcription antitermination of the Klebsiella oxytoca M5al nasF operon leader in vitro. J Mol Biol, 283, 339-351.
Chang, C., Kwok, S.F., Bleecker, A.B. and Meyerowitz, E.M. (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science, 262, 539-544.
Cheng, N.H., Pittman, J.K., Zhu, J.K. and Hirschi, K.D. (2004) The protein kinase SOS2 activates the Arabidopsis H(+)/Ca(2+) antiporter CAX1 to integrate calcium transport and salt tolerance. J Biol Chem, 279, 2922-2926.
Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T. and Sheen, J. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell, 14, 2723-2743.
Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J. and Luan, S. (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell, 15, 1833-1845.
Cheong, Y.H., Pandey, G.K., Grant, J.J., Batistic, O., Li, L., Kim, B.G., Lee, S.C., Kudla, J. and Luan, S. (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J, 52, 223-239.
Chiang, R.C., Cavicchioli, R. and Gunsalus, R.P. (1997) 'Locked-on' and 'locked-off' signal transduction mutations in the periplasmic domain of the Escherichia coli NarQ and NarX sensors affect nitrate- and nitrite-dependent regulation by NarL and NarP. Mol Microbiol, 24, 1049-1060.
Chiu, C.C., Lin, C.S., Hsia, A.P., Su, R.C., Lin, H.L. and Tsay, Y.F. (2004) Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant Cell Physiol, 45, 1139-1148.
Clarkson, D.T., Gojon, A., Saker, L.R., Wiersema, P.K., Purves, J.V., Tillard, P., Arnold, G.M., Paans, A.J.M., Vaalburg, W. and Stulen, I. (1996) Nitrate and ammonium influxes in soybean (Glycine max) roots: direct comparison of 13N and 15N tracing. Plant Cell Environ, 19, 859-868.
Crawford, N.M. (1995) Nitrate: nutrient and signal for plant growth. Plant Cell, 7, 859-868.
Crawford, N.M. and Glass, A.D.M. (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3, 389-395.
Davies, D.D. (1986) The fine control of cytosolic pH. Physiol. Plant, 67, 702-706.
Deng, M., Moureaux, T. and Caboche, M. (1989) Tungstate, a Molybdate Analog Inactivating Nitrate Reductase, Deregulates the Expression of the Nitrate Reductase Structural Gene. Plant Physiol, 91, 304-309.
Emmerlich, V., Linka, N., Reinhold, T., Hurth, M.A., Traub, M., Martinoia, E. and Neuhaus, H.E. (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Natl Acad Sci U S A, 100, 11122-11126.
Frommer, W.B., Hummel, S. and Rentsch, D. (1994) Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett, 347, 185-189.
Fu, Y.H., Kneesi, J.Y. and Marzluf, G.A. (1989) Isolation of nit-4, the minor nitrogen regulatory gene which mediates nitrate induction in Neurospora crassa. J Bacteriol, 171, 4067-4070.
Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-Ferriere, N., Thibaud, J.B. and Sentenac, H. (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell, 94, 647-655.
Glass, A.D., Britto, D.T., Kaiser, B.N., Kinghorn, J.R., Kronzucker, H.J., Kumar, A., Okamoto, M., Rawat, S., Siddiqi, M.Y., Unkles, S.E. and Vidmar, J.J. (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot, 53, 855-864.
Gong, D., Gong, Z., Guo, Y., Chen, X. and Zhu, J.K. (2002a) Biochemical and functional characterization of PKS11, a novel Arabidopsis protein kinase. J Biol Chem, 277, 28340-28350.
Gong, D., Guo, Y., Schumaker, K.S. and Zhu, J.K. (2004) The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol, 134, 919-926.
Gong, D., Zhang, C., Chen, X., Gong, Z. and Zhu, J.K. (2002b) Constitutive activation and transgenic evaluation of the function of an arabidopsis PKS protein kinase. J Biol Chem, 277, 42088-42096.
Gowri, G., Kenis, J.D., Ingemarsson, B., Redinbaugh, M.G. and Campbell, W.H. (1992) Nitrate reductase transcript is expressed in the primary response of maize to environmental nitrate. Plant Mol Biol, 18, 55-64.
Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M.L. and Eide, D. (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci U S A, 95, 7220-7224.
Guo, F.Q., Wang, R., Chen, M. and Crawford, N.M. (2001) The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell, 13, 1761-1777.
Guo, F.Q., Young, J. and Crawford, N.M. (2003) The nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis. Plant Cell, 15, 107-117.
Guo, Y., Xiong, L., Song, C.P., Gong, D., Halfter, U. and Zhu, J.K. (2002) A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell, 3, 233-244.
Huang, N.C., Chiang, C.S., Crawford, N.M. and Tsay, Y.F. (1996) CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots. Plant Cell, 8, 2183-2191.
Huang, N.C., Liu, K.H., Lo, H.J. and Tsay, Y.F. (1999) Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. Plant Cell, 11, 1381-1392.
Hurth, M.A., Suh, S.J., Kretzschmar, T., Geis, T., Bregante, M., Gambale, F., Martinoia, E. and Neuhaus, H.E. (2005) Impaired pH homeostasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol, 137, 901-910.
Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K. and Kakimoto, T. (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 409, 1060-1063.
Jackson, R.B. and Caldwell, M.M. (1993) The scale of nutrient heterogeneity around individual plants and its quantification with geostatistics. Ecology, 74, 612-614.
Kaiser, W.M. and Huber, S.C. (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot, 52, 1981-1989.
Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K. and Luan, S. (2003) CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 15, 411-423.
Krouk, G., Tillard, P. and Gojon, A. (2006) Regulation of the high-affinity NO3- uptake system by NRT1.1-mediated NO3- demand signaling in Arabidopsis. Plant Physiol, 142, 1075-1086.
Lejay, L., Tillard, P., Lepetit, M., Olive, F., Filleur, S., Daniel-Vedele, F. and Gojon, A. (1999) Molecular and functional regulation of two NO3- uptake systems by N- and C-status of Arabidopsis plants. Plant J, 18, 509-519.
Leonhardt, N., Kwak, J.M., Robert, N., Waner, D., Leonhardt, G. and Schroeder, J.I. (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell, 16, 596-615.
Li, L., Kim, B.G., Cheong, Y.H., Pandey, G.K. and Luan, S. (2006a) A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proc Natl Acad Sci U S A, 103, 12625-12630.
Li, W., Wang, Y., Okamoto, M., Crawford, N.M., Siddiqi, M.Y. and Glass, A.D. (2007) Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol, 143, 425-433.
Li, Y., Lee, K.K., Walsh, S., Smith, C., Hadingham, S., Sorefan, K., Cawley, G. and Bevan, M.W. (2006b) Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Res, 16, 414-427.
Little, D.Y., Rao, H., Oliva, S., Daniel-Vedele, F., Krapp, A. and Malamy, J.E. (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci U S A, 102, 13693-13698.
Liu, K.H., Huang, C.Y. and Tsay, Y.F. (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, 11, 865-874.
Liu, K.H. and Tsay, Y.F. (2003) Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. Embo J, 22, 1005-1013.
Munos, S., Cazettes, C., Fizames, C., Gaymard, F., Tillard, P., Lepetit, M., Lejay, L. and Gojon, A. (2004) Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell, 16, 2433-2447.
Noguchi, K., Yasumori, M., Imai, T., Naito, S., Matsunaga, T., Oda, H., Hayashi, H., Chino, M. and Fujiwara, T. (1997) bor1-1, an Arabidopsis thaliana mutant that requires a high level of boron. Plant Physiol, 115, 901-906.
Pandey, G.K., Cheong, Y.H., Kim, K.N., Grant, J.J., Li, L., Hung, W., D'Angelo, C., Weinl, S., Kudla, J. and Luan, S. (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell, 16, 1912-1924.
Pardo, J.M., Cubero, B., Leidi, E.O. and Quintero, F.J. (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot, 57, 1181-1199.
Paulsen, I.T. and Skurray, R.A. (1994) The POT family of transport proteins. Trends Biochem Sci, 19, 404.
Pirie, A. and Mullins, M.G. (1976) Changes in Anthocyanin and Phenolics Content of Grapevine Leaf and Fruit Tissues Treated with Sucrose, Nitrate, and Abscisic Acid. Plant Physiol, 58, 468-472.
Pouteau, S., Cherel, I., Vaucheret, H. and Caboche, M. (1989) Nitrate Reductase mRNA Regulation in Nicotiana plumbaginifolia Nitrate Reductase-Deficient Mutants. Plant Cell, 1, 1111-1120.
Price, J., Laxmi, A., St Martin, S.K. and Jang, J.C. (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell, 16, 2128-2150.
Redinbaugh, M.G. and Campbell, W.H. (1991) Higher plant responses to environmental nitrate. Physiol. Plant, 82, 640-650.
Redinbaugh, M.G. and Campbell, W.H. (1993) Glutamine Synthetase and Ferredoxin-Dependent Glutamate Synthase Expression in the Maize (Zea mays) Root Primary Response to Nitrate (Evidence for an Organ-Specific Response). Plant Physiol, 101, 1249-1255.
Redinbaugh, M.G. and Campbell, W.H. (1998) Nitrate regulation of the oxidative pentose phosphate pathway in maize (Zea mays L.) root plastids: induction of 6-phosphogluconate dehydrogenase activity, protein and transcript levels. Plant Sci, 134, 129-140.
Remans, T., Nacry, P., Pervent, M., Filleur, S., Diatloff, E., Mounier, E., Tillard, P., Forde, B.G. and Gojon, A. (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci U S A, 103, 19206-19211.
Rodriguez-Navarro, A. and Rubio, F. (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot, 57, 1149-1160.
Sakakibara, H., Kobayashi, K., Deji, A. and Sugiyama, T. (1997) Partial Characterization of the Signaling Pathway for the Nitrate-Dependent Expression of Genes for Nitrogen-Assimilatory Enzymes Using Detached Maize Leaves. Plant Cell Physiol, 38, 837-843.
Sakakibara, H., Takei, K. and Sugiyama, T. (1996) Isolation and characterization of a cDNA that encodes maize uroporphyrinogen III methyltransferase, an enzyme involved in the synthesis of siroheme, which is a prosthetic group of nitrite reductase. Plant J, 10, 883-892.
Scheible, W.R., Gonzalez-Fontes, A., Lauerer, M., Muller-Rober, B., Caboche, M. and Stitt, M. (1997) Nitrate Acts as a Signal to Induce Organic Acid Metabolism and Repress Starch Metabolism in Tobacco. Plant Cell, 9, 783-798.
Scheible, W.R., Morcuende, R., Czechowski, T., Fritz, C., Osuna, D., Palacios-Rojas, N., Schindelasch, D., Thimm, O., Udvardi, M.K. and Stitt, M. (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol, 136, 2483-2499.
Song, W., Steiner, H.Y., Zhang, L., Naider, F., Stacey, G. and Becker, J.M. (1996) Cloning of a second Arabidopsis peptide transport gene. Plant Physiol, 110, 171-178.
Steiner, H.Y., Naider, F. and Becker, J.M. (1995) The PTR family: a new group of peptide transporters. Mol Microbiol, 16, 825-834.
Stitt, M. (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol, 2, 178-186.
Takano, J., Noguchi, K., Yasumori, M., Kobayashi, M., Gajdos, Z., Miwa, K., Hayashi, H., Yoneyama, T. and Fujiwara, T. (2002) Arabidopsis boron transporter for xylem loading. Nature, 420, 337-340.
Thayer, J.R. and Huffaker, R.C. (1980) Determination of nitrate and nitrite by high-pressure liquid chromatography: comparison with other methods for nitrate determination. Anal Biochem, 102, 110-119.
Tian, Q., Chen, F., Liu, J., Zhang, F. and Mi, G. (2007) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. Plant Physiol, 165, 942.
Touraine, B., Grignon, N. and Grignon, C. (1988) Charge Balance in NO(3)-Fed Soybean: Estimation of K and Carboxylate Recirculation. Plant Physiol, 88, 605-612.
Tsay, Y.F., Chiu, C.C., Tsai, C.B., Ho, C.H. and Hsu, P.K. (2007) Nitrate transporters and peptide transporters. FEBS Lett, 581, 2290-2300.
Tsay, Y.F., Schroeder, J.I., Feldmann, K.A. and Crawford, N.M. (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell, 72, 705-713.
Tusher, V.G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A, 98, 5116-5121.
van Beusichem, M.L., Baas, R., Kirkby, E.A. and Nelemans, J.A. (1985) Intracellular pH Regulation during NO(3) Assimilation in Shoot and Roots of Ricinus communis. Plant Physiol, 78, 768-773.
Walch-Liu, P. and Forde, B.G. (2008) Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises l-glutamate-induced changes in root architecture. Plant J, 54, 820-828.
Walch-Liu, P., Neumann, G., Bangerth, F. and Engels, C. (2000) Rapid effects of nitrogen form on leaf morphogenesis in tobacco. J Exp Bot, 51, 227-237.
Wang, R., Guegler, K., LaBrie, S.T. and Crawford, N.M. (2000) Genomic Analysis of a Nutrient Response in Arabidopsis Reveals Diverse Expression Patterns and Novel Metabolic and Potential Regulatory Genes Induced by Nitrate. Plant Cell, 12, 1491-1510.
Wang, R., Liu, D. and Crawford, N.M. (1998) The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci U S A, 95, 15134-15139.
Wang, R., Okamoto, M., Xing, X. and Crawford, N.M. (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol, 132, 556-567.
Wang, R., Tischner, R., Gutierrez, R.A., Hoffman, M., Xing, X., Chen, M., Coruzzi, G. and Crawford, N.M. (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol, 136, 2512-2522.
Wilkinson, J.Q. and Crawford, N.M. (1991) Identification of the Arabidopsis CHL3 gene as the nitrate reductase structural gene NIA2. Plant Cell, 3, 461-471.
Wintz, H., Fox, T., Wu, Y.-Y., Feng, V., Chen, W., Chang, H.-S., Zhu, T. and Vulpe, C. (2003) Expression Profiles of Arabidopsis thaliana in Mineral Deficiencies Reveal Novel Transporters Involved in Metal Homeostasis. J Biol Chem, 278, 47644-47653.
Xu, J., Li, H.D., Chen, L.Q., Wang, Y., Liu, L.L., He, L. and Wu, W.H. (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 125, 1347-1360.
Zhang, H. and Forde, B.G. (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science, 279, 407-409.
Zhou, J.J., Theodoulou, F.L., Muldin, I., Ingemarsson, B. and Miller, A.J. (1998) Cloning and functional characterization of a Brassica napus transporter that is able to transport nitrate and histidine. J Biol Chem, 273, 12017-12023.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊