跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宇阡
研究生(外文):Yu-Chien Chen
論文名稱:Torso訊息傳遞鏈調控轉錄開關以控制tailless基因的表現
論文名稱(外文):The Torso signaling pathway modulates a dual transcriptional switch to regulate tailless expression
指導教授:廖國楨
指導教授(外文):Gwo-Jen Liaw
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:149
中文關鍵詞:轉錄開關訊息傳遞鏈
外文關鍵詞:taillesshsftranscription
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
Torso (Tor) RTK訊號傳遞鏈 (signal transduction pathway) 是藉由促使下游的轉錄阻遏物 (transcriptional repressor) 失去抑制tailless (tll)基因表現的能力而促使tll基因的表現。許多的阻遏物,包括: Capicuo、Groucho 和Tramtrack69 (Ttk69) 已經被發現,但這些阻遏物都已經被證實不會和tll基因的Torso反應區域 (torso response element; tor-RE) 結合。且當這些基因的母體效應 (maternal effect) 被去除時,tll基因的抑制效應並沒辦法完全瓦解。由我的實驗結果顯示,當胚胎失去heat shock factor (hsf) 和 Trithorax-like (Trl) 基因的母體效應 (maternal effect),tll基因的表現有往胚胎中央延伸的現象;另外Hsf與由Trl所轉譯的GAF蛋白質形成的複合體可以座落到tor-RE上,而且Ttk69可以強化這個現象的發生。此外若同時降低hsf、Trl 和ttk69基因在母體效應中的活性,可以發現和胚胎持續且均勻表現Torso所造成tll基因在胚胎中央表現的現象極為相似。Hsf是mitogen- activated protein kinase的受體 (substrate) 之一,而且S378是主要被磷酸化的位置。當Hsf被磷酸化後,其角色將由一個抑制者轉變為一個促進者,而與GAF共同促使tll基因的表現。總而言之,GAF/Hsf/Ttk69這個複合體可以與tor-RE這個區域結合,並改變附近區域染色質 (chromatin) 的結構,進而達到抑制tll基因表現的目的;而Torso訊息傳遞鏈則是調控轉錄開關去活化tll基因的表現。
The Torso (Tor) signaling pathway activates tailless (tll) expression by relieving tll repression. None of the repressors identified so far, such as Capicuo, Groucho and Tramtrack69 (Ttk69), bind to the tor response element (tor-RE) or fully elucidate tll repression. In this study, an expanded tll expression pattern was shown in embryos with reduced heat shock factor (hsf) and Trithorax-like (Trl) activities. The GAGA factor, GAF encoded by Trl, was essential for Hsf binding to the tor-RE, and this binding was enhanced by Ttk69. A similar extent of expansion of tll expression was observed in embryos with simultaneous knock-down of hsf, Trl and ttk69 activities, and in embryos with constitutively active Tor. Hsf is a substrate of mitogen-activated protein kinase and S378 is the major phosphorylation site. Phosphorylation converts Hsf from a repressor to an activator that works with GAF to activate tll expression. In conclusion, the GAF/Hsf/Ttk69 complex binding to the tor-RE remodels local chromatin structure to repress tll expression and the Tor signaling pathway activate tll expression by modulating a dual transcriptional switch.
摘要 viii
Abstract ix
Chapter I: Background 1
I-1. The early embryogenesis of Drosophila melanogaster 2
I-2. The maternal effect gene activities 2
I-3. The tailless (tll) gene 4
I-3-1. tll mutant phenotypes and expression patterns 4
I-3-2. Tll structure and functions as activator and repressor to regulate expression of target genes 4
I-4. The maternal terminal system 5
I-4-1. The maternal terminal system specifies the terminal development in
Drosophila embryo 5
I-4-2. The maternal terminal system is a typical RTK pathway 5
I-5. The maternal terminal system regulates tll expression 6
I-5-1. tor is epistatic to tll. 6
I-5-2. Relieving repression of tll modulated by the Tor pathway is the key Regulatory mechanism 7
I-5-3. Multiple repressors are involved in tll repression 8
I-6. Significance 9
I-7. Specific aims 10

Chapter II: Trithorax-like (Trl) interacts with heat shock factor (hsf) to repress tll expression. 11
II-1. Introduction 11
II-1-1. The Trl gene 11
II-1-2. The heat shock facror (hsf) gene 12
II-1-3. Synergism between Trl and hsf in transcriptional activation. 13
II-1-4. The interaction between Trl and hsf might be involved in tll repression. 14
II-2. Results 16
II-2-1. hsf participates in tll repression. 16
II-2-2. Both hsf and Trl activities are required for the repression and activation of tll. 16
II-2-3. Hsf alters footprinting pattern over the tor-RE protected by GAF. 18
II-3. Discussion 21

Chapter III: GAF, Hsf and Ttk69 form a protein complex that binds tightly to the tor-RE and represses tll expression. 23
III-1. Introduction 23
III-2. Results 25
III-2-1. Ttk69 enhances Hsf/GAF binding to the tor-RE independent of TC5. 25
III-2-2. The expanded patterns of tll in embryos with simultaneous knock-down of hsf, Trl and ttk69 activities and constitutively active Tor are similar. 25
III-2-3. Rpd3 is involved in the repression of tll. 26
III-3. Discussion 28

Chapter IV. Phosphorylation of Mapk switches Hsf from a repressor into an activator. 32
IV-1. Introduction 32
IV-2. Results 34
IV-3. Discussion 36

Chapter V. The genetic interaction between pipsqueak (psq) with Trl and ttk to repress tll expression 37
V-1. Introduction 37
V-1-1. Psq together with Pc complex represses gene expression 37
V-1-2. Psq is a candidate in the Tor mediated repression complex 37
V-2. Results
V-2-1. Psq is involved in the repression of tll 39
V-2-2. The binding of Psq in the tor-MRR. 39
V-2-3. psq genetically interact with Trl and ttk69 in regulated tll expression 40
V-3. Discussion 42

Chapter VI. Concluding remarks 44
VI-1. A model illustrates how the Tor pathway regulates tll expression. 44
VI-1-1. Establishment of tll repression. 44
VI-1-2. The Tor pathway modulates a dual transcription switch. 44

Chapter VII. Material and methods 45
VII-1. Fly work 45
VII-1-1. Fly stocks 45
VII-1-2. Fly genetics 45
VII-2. Embryonic staining 46
VII-2-1. X-gal staining of embryos 46
VII-2-2. in situ hybridization 47
VII-3. Generation of RNAi transgenic fly 49
VII-3-1. Generation of a new vector for producing dsRNA in germ line cells 49
VII-3-2. Construction of UAS-RNAi plasmids 50
VII-3-3. Generation of transgenic fly line by the P-element mediated germ-line transformation 51
VII-4. Bacterially expressed Hsf, GAF and Ttk69 and purification 52
VII-4-1. Synthesis and purification of Hsf, GAF and Ttk69 in bacteria 52
VII-4-2. SDS polyacrylamide gel electrophoresis (PAGE), silver staining and western blotting. 57
VII-5. Electromobility shift assay (EMSA) 59
VII-6. Shift-western blotting 60
VII-7. DNaseI footprinting experiment 61
VII-8. In vitro Pull-down assay 62

References 64
Figures 85
Appendix A. Preparation of Media, Buffer and Stock Solutions 120
Appendix B. Published paper
Aalfs, J. D. and Kingston, R. E. 2000. What does 'chromatin remodeling' mean? Trends Biochem Sci. 25(11):548-555

Adkins, N. L., Hagerman, T. A. and, Georgel, P. 2006. GAGA protein: a multi- faceted transcription factor. Biochem Cell Biol. 84(4):559-567.

Ahmad,K.F., Engel,C.K. and Prive,G.G. 1998. Crystal structure of the BTB domain from PLZF. Proc. Natl Acad. Sci. USA, 95, 12123–12128.

Albagli, O., Dhordain, F., Bernardin, S. Quief, J., Kerkaert, P. and Leprince, D. 1996. Multiple domains participate in distance-independent LAZ3/BCL6- mediated transcriptional repression. Biochem. Biophys Res Commun 220: 911-915.

Ambrosio, L., Mahowald, A. P. and Perrimon, N. 1989. Requirement of the Drosophila raf homologue for torso function. Nature 342(6247): 288-291.

Amin, J., Ananthan, J., and Voellmy, R. 1988. Key features of heat shock regulatory elements. Mol Cell Biol. 8(9): 3761-3769

Aranda, A. and Pascual, A. 2001. Nuclear hormone receptors and gene expression. Physiol Rev. 81(3): 1269-1304.

Ashe, H. L. and Briscoe, J. 2006. The interpretation of morphogen gradients. Development. 133(3):385-394.

Ausubel, F. M. 1991. Current Protocols in Molecular Biology, Vol. 2, New York: John Wiley & Sons, 10.6.1.

Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. 1994. Current Protocols in Molecular Biology. John Wiley & Sons, Inc., New York.

Baek, K.H. and Lee, K.Y. 1999. Signal transduction pathway for anterior-posterior development in Drosophila. Journal of biomedical science 6(5): 314-319.

Bantignies, F. and Cavalli, G. 2006. Cellular memory and dynamic regulation of polycomb group proteins. Curr Opin Cell Biol. 18(3):275-283.

Bardwell, V. J. and Treisman, R. 1994. The POZ domain: a conserved protein-protein interaction motif. Genes Dev. 8(14):1664-1677.

Barolo, S. and Posakony, J. W. 2002. Three habits of highy effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev. 16(10):1167-1181.

Bate, M. and Martinez Arias, A. 1993. The Development of Drosophila melanogas. Cold Spring Harbor Laboratory Press, Plainview, N. Y.

Bejarano, F. and Busturia, A. 2004. Function of the Trithorax-like gene during Drosophila development. Dev Biol. 268(2):327-341

Benyajati, C., Mueller, L., Xu, N., Pappano, M., Gao, J., Mosammaparast, M., Conklin, D., Granok, H., Craig, C. and Elgin, S. 1997. Multiple isoforms of GAGA factor, a critical component of chromatin structure. Nucleic Acid Res. 25(16): 3345-3353

Bernués, J., Piñeyro, D. and Kosoy, A. 2007. General, negative feedback mechanism for regulation of Trithorax-like gene expression in vivo: new roles for GAGA factor in flies. Nucleic Acids Res. 35(21):7150-7159.

Bhat, K. M., Farkas, G., Karch, F., Gyurkovics, H., Gausz, J. and Schedl, P. 1996. The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division. Development. 122(4):1113-1124

Biggin, M. D. and Tjian, R. 1988. Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell. 53(5):699-711.

Brönner, G. and Jäckle, H. 1991. Control and function of terminal gap gene activity in the posterior pole region of the Drosophila embryo. Mech. Dev. 35(3): 205-211.

Brown, J. L., Sonoda, S., Ueda, H., Scott, M. P. and Wu, C. 1991. Repression of the Drosophila fushi tarazu (ftz) segmentation gene. EMBO J. 10(3):665-674.

Brown, J. L. and Wu, C. 1993. Repression of Drosophila pair-rule segmentation genes by ectopic expression of tramtrack. Development. 117(1):45-58

Cahill, C.M., Waterman, W.R., Xie, Y., Auron, P.E., and Calderwood, S.K. 1996. Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J Biol. Chem. 271(40): 24874-24879.

Calderwood, S. K. 2005. Regulatory interfaces between the stress protein response and other gene expression programs in the cell. Methods. 35(2):139-148.

Campos-Ortega, J. A. and Hartenstein, V. 1985. The Embryonic Development of Drosophila melanogaster (Berlin; New York, Springer-verlag).

Carey, M. and Smale, S. T. 2000.Transcriptional Regulation in Eukaryotes (New York, Cold Spring Harbor Laboratory).

Casali, A. and Casanova, J. 2001. The spatial control of Torso RTK activation: a C-terminal fragment of the Trunk protein acts as a signal for Torso receptor in the Drosophila embryo. Development 128(9): 1709-1715.

Casanova, J. and Struhl, G. 1989. Localized surface activity of torso, a receptor tyrosine kinase, specifies terminal body pattern in Drosophila. Genes Dev. 3(12B):2025-2038

Casanova, J., Furriols, M., McCormick, C.A., and Struhl, G. 1995. Similarities between trunk and spatzle, putative extracellular ligands specifying body pattern in Drosophila. Genes Dev. 9(20): 2539-2544.

Chen, C., Xie, Y., Stevenson, M.A., Auron, P.E., and Calderwood, S.K. 1997. Heat shock factor 1 represses Ras-induced transcriptional activation of the c-fos gene. J Biol. Chem. 272(43): 26803-26806.

Chen, Y. J., Chiang, C. S., Weng, L. C., Lengyel, J. A. and Liaw, G. J. 2002. Tramtrack69 is required for the early repression of tailless expression. Mech Dev. 116(1-2):75-83.

Chu, B., Soncin, F., Price, B. D., Stevenson, M. A. and Calderwood, S. K. 1996. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem. 271(48):30847-30857.

Clos, J., Rabindran, S., Wisniewski, J. and Wu, C. 1993. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature. 364(6434):252-255.

Chou, T. B., Noll, E. and Perrimon, N. 1993. Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. Development. 119(4):1359-1369.

Chu, B., Soncin, F., Price, B. D., Stevenson, M. A., and Calderwood, S. K. 1996. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. The J Biol. Chem. 271(48): 30847-30857.

Cotto, J. J. and Morimoto, R. I. 1999. Stress-induced activation of the heat-shock response: cell and molecular biology of heat-shock factors. Biochem Soc Symp. 64:105-118.

Davis R. J. 1993. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 268(20):14553–14556

Demczuk,S., Harbers,M. and Vennstrom,B. 1993. Identification and analysis of all components of a gel retardation assay by combination with immunoblotting. Proc. Natl Acad. Sci. USA, 90: 2574–2578.

Dhordain, P., Albagli, O., Ansieau, S., Koken, M. H., Deweindt, C., Quief, S., Lantoine, D., Leutz, A., Kerckaert, J. P. and Leprince, D. 1995. The BTB/POZ domain targets the LAZ3/BCL6 oncoprotein to nuclear dots and mediates homomerisation in vivo. Oncogene. 11(12):2689-2697.

Diaz RJ, Harbecke R, Singer JB, Pignoni F, Janning W, Lengyel JA. 1996. Graded effect of tailless on posterior gut development: molecular basis of an allelic series of a nuclear receptor gene. Mech Dev. 54(1): 119-130

Dickson, B. 1995. Nuclear factors in sevenless signalling. Trends Genet. 11(3): 106- 111.

Doyle, H. J. and Bishop, J. M. 1993. Torso, a receptor tyrosine kinase required for embryonic pattern formation, shares substrates with the sevenless and EGF-R pathways in Drosophila. Genes Dev. 7: 633-646.

Duffy, J. B. and Perrimon, N. 1994. The torso pathway in Drosophila: lessons on receptor tyrosine kinase signaling and pattern formation. Dev Biol. 166(2):380-395

Espinás, M. L., Jiménez-García, E., Vaquero, A., Canudas, S., Bernués, J. and Azorín, F. 1999. The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. J Biol Chem. 274(23):16461-16469

Farkas, G., Gausz, J., Galloni, M., Reuter, G., Gyurkovics, H. and Karch, F. 1994. The Trithorax-like gene encodes the Drosophila GAGA factor. Nature. 371(6500): 806-808.

Farkas,T., Kutskova,Y.A. and Zimarino,V. 1998. Intramolecular repression of mouse heat shock factor 1. Mol. Cell Biol., 18, 906–918.

Faucheux, M., Roignant, J. Y., Netter, S., Charollais, J., Antoniewski, C. and Theodore. L. 2003. Batman interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor. Mol Cell Biol 23:1181-1195

Fazzio, T. G., Kooperberg, C., Goldmark, J. P., Neal, C., Basom, R., Delrow, J. and Tsukiyama, T. 2001. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol. 21(19):6450-6460.

Flores, G. V., Duan, H., Yan, H., Nagaraj, R., Fu, W., Zou, Y., Noll, M. and Banerjee, U. 2000. Combinatorial signaling in the specification of unique cell fates. Cell. 103(1): 75-85.

Furriols, M. and Casanova, J. 2003. In and out of Torso RTK signalling. EMBO J. 22(9):1947-1952.

Gaston, K. and Jayaraman, P. S. 2003. Transcriptional repression in eukaryotes: repressors and repression mechanisms. Cell Mol Life Sci. 60(4):721-741.

Glaser, R. L. and Lis, J. T. 1990. Multiple, compensatory regulatory elements specify spermatocyte-specific expression of the Drosophila melanogaster hsp26 gene. Mol. Cell. Biol. 10, 131–137

Glaser, R. L., Thomas, G. H., Siegfried, E., Elgin, S. C. R. and Lis, J. T. 1990. Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n.(GA)n repeats. J. Mol. Biol. 211, 751–761

Glover, D. M. 1991. Mitosis in the Drosophila in and out of control. Trends Genet 7:125-132

Godt, D. Couderc, J. L. Cramton, S. E. and Laski, F. A. 1993. Pattern formation in the limbs of Drosophila: bric-a-brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of tarsus. Development 119: 799-812.

Gonzalez, F. A., Raden, D. L. and Davis, R. J. 1991. Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem. 266(33):22159-22163.

Granok, H., Leibovitch, B. A., Shaffer, C. D. and Elgin, S. C. 1995. Chromatin. Gaga over GAGA factor. Curr Biol. 5(3):238-241.

Greenberg, A. J. and Schedl, P. 2001. GAGA factor isoforms have distinct but overlapping functions in vivo. Mol. Cell. Biol. 21(24): 8565-8574.

Greenspan,G. and Geiger,D. 2003. Model-based inference of haplotype block variation. Proceedings of the Seventh Annual International Conference on Computational Molecular Biology , pp. 131–137.

Greenspan, R.J. 2004. Fly Pushing: The Theory and Practice of Drosophila Genetics, 2nd edn. Cold Spring Harbor Laboratory Press, New York.

Guo, M., Jan, L. Y. and Jan Y. N. 1996. Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17: 27-41.

Halfon, M. S., Carmena, A., Gisselbrecht, S., Sackerson, C. M., Jiménez, F., Baylies, M. K. and Michelson, A. M. 2000. Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell. 103(1):63-74

Harrison, S.D. and Travers, A. A. 1990. The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. EMBO J. 9(1):207-216.

Harris, M. B., Mostecki, J. and Rothman, P. B. 2005. Repression of an interleukin-4- responsive promoter requires cooperative BCL-6 function. J Biol Chem. 280(13): 13114-13121.

Hashikawa, N., Mizukami, Y., Imazu, H. and Sakurai, H. 2006. Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation. J Biol Chem. 281(7):3936-3942.

Hill, C. S. and Treisman, R. 1995. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell. 80(2):199-211. Review.

Horowitz, H. and Berg, C. A. 1996. The Drosophila pipsqueak gene encodes a nuclear BTB-domain-containing protein required early in oogenesis. Development 122:1859-71.

Huang, J. D., Schwyter, D. H., Shirokawa, J. M. and Courey, A. J. 1993. The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. Genes Dev. 7(4):694-704

Huang, D. H., Chang, Y. L., Yang, C. C., Pan, I. C. and King, B. 2002. pipsqueak encodes a factor essential for sequence-specific targeting of a Polycomb group protein complex. Mol Cell Biol 22:6261-71.

Inouye, S., Fujimoto, M., Nakamura, T., Takaki, E., Hayashida, N., Hai, T. and Nakai, A. 2007. Heat shock transcription factor 1 opens chromatin structure of interleukin-6 promoter to facilitate binding of an activator or a repressor. J Biol Chem. 282(45): 33210-33217.

Jamenez, G., Guichet, A. Ephrussi, A. and Casanova, J. 2000. Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning.Genes Dev. 14: 224-231.

Janody, F., Reischl, J. and Dostatni, N. 2000. Persistence of Hunchback in the terminal region of the Drosophila blastoderm embryo impairs anterior development. Development, 127, 1573–1582.

Janssens, H., Hou, S., Jaeger, J., Kim, A. R., Myasnikova, E., Sharp, D. and Reinitz, J. 2006. Quantitative and predicitive model of transcriptional control of the Drosophila melanogaster even-skipped gene.Nat Genet. 38(10): 1159-1165.

Jedlicka, P., Mortin, M. A. and Wu, C. 1997. Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J. 16(9):2452-2462

Jiménez, G., Guichet, A., Ephrussi, A. and Casanova, J. 2000. Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. Genes Dev. 14(2):224-231.

Kadonaga, J. T., Carner, K. R., Masiarz, F. R. and Tjian, R. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell. 51(6):1079-1090

Kadosh, D. and Struhl, K. (1997). Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell. 89:365-71.

Kao, H.Y., Ordentlich, P., Koyano-Nakagawa, N., Tang, Z., Downes, M., Kintner, C.R., Evans, R.M., and Kadesch, T. 1998. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes & Dev.12: 2269–2277.

Katsani, K. R., Hajibagheri, M. A. and Verrijzer, C. P. 1999. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. EMBO J. 18(3):698-708.

Kerman, B. E., Cheshire, A. M., Myat, M. M. and Andrew, D. J. 2008. Ribbon modulates apical membrane during tube eleongation through Crumbs and Moesin. Dev Biol. 320: 278-288

Kerrigan, L. A., Croston, G. E., Lira, L. M. and Kadonaga, J. T. 1991. Sequence- specific transcriptional antirepression of the Drosophila Krüppel gene by the GAGA factor. J Biol Chem. 266(1):574-582.

Kispert, A., Herrmann, B.G., Leptin, M., and Reuter, R. 1994. Homologs of the mouse Brachyury gene are involved in the specification of posterior terminal structures in Drosophila, Tribolium, and Locusta. Genes Dev. 8(18): 2137-2150.

Kroeger, P. E., Sarge, K. D. and Morimoto, R. I. 1993. Mouse heat shock transcription factors 1 and 2 prefer a trimeric binding site but interact differently with the HSP70 heat shock element. Mol Cell Biol. 13(6):3370-3383.

Lai, Z. C., Fetchko, M. and Li, Y. 1997. Repression of Drosophila photoreceptor cell fate through cooperative action of two transcriptional repressors Yan and Tramtrack. Genetics. 147(3):1131-1137.

Lebrecht, D., Foehr, M., Smith, E., Lopes, F. J., Vanario-Alonso, C. E., Reinitz, J., Burz, D. S. and Hanes, S. D. 2005. Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila. Proc Natl Acad Sci U S A. 102(37):13176-13181

Lee, Y. S. and Carthew, R. W. 2003. Making a better RNAi vector for Drosophila: use of intron spacers. Methods. 30(4):322-329.

Lee, H-S., Kraus, K. W., Wolfner, M. F. and Lis, J. T. 1992. DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev. 6: 284–295

Leevers, S.J., Paterson, H.F., and Marshall, C.J. 1994. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369(6479): 411-414.

Lehmann M., Siegmund T., Lintermann K.G. and Korge G. 1998. The Pipsqueak protein of Drosophila melanogaster binds to GAGA sequences through a novel DNA-binding domain. J Biol Chem. 273(43): 28504-28509.

Lehmann, M. 2004. Anything else but GAGA: a nonhistone protein complex reshapes chromatin structure. Trends Genet. 20(1):15-22.

Lewin, B. 2004. Genes VIII. Pearson Prentice Hall, Upper Saddle River, NJ.

Li, S., Li, Y., Carthew, R. W. and Lai, Z. C. 1997. Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack. Cell. 90: 469-478

Li, W. X., Agaisse, H., Mathey-Prevot, B. and Perrimon, N. 2002. Differential requirement for STAT by gain-of-function and wild-type receptor tyrosine kinase Torso in Drosophila. Development. 129, 4241–4248.

Li, W. X. 2005. Functions and mechanisms of receptor tyrosine kinase Torso signaling: lessons from Drosophila embryonic terminal development. Dev Dyn. 232(3):656-672.

Liaw, G. J. and Lengyel, J. A. 1993. Control of tailless expression by bicoid, dorsal and synergistically interacting terminal system regulatory elements. Mech Dev. 40(1-2): 47-61.

Liaw, G. J., Steingrimsson, E., Pignoni, F., Courey, A. J. and Lengyel, J. A. 1993. Characterization of downstream elements in a Raf-1 pathway. Proc Natl Acad Sci USA. 90(3):858-862.

Liaw, G. J., Rudolph, K. M., Huang, J. D., Dubnicoff, T., Courey, A. J. and Lengyel, J. A. 1995. The torso response element binds GAGA and NTF-1/Elf-1, and regulates tailless by relief of repression. Genes Dev. 9(24):3163-3176.

Lu, X., Chou, T. B., Williams, N. G., Roberts, T. and Perrimon, N. 1993. Control of cell fate determination by p21ras/Ras1, an essential component of torso signaling in Drosophila. Genes Dev. 7:621-632.

Luo, W. and Skalnik, D. G. 1996. CCAAT displacement protein competes with multiple transcriptional activators for binding to four sites in the proximal gp91phox promoter. J Biol Chem. 271(30):18203-18210.

Mahoney, P. A. and Lengyel, J. A. 1987. The zygotic segmentation mutant tailless alters the blastoderm fate map of the Drosophila embryo. Dev Biol. 122(2): 464-70.

Margolis, J.S., Borowsky, M.L., Steingrimsson, E., Shim, C.W., Lengyel, J.A., and Posakony, J.W. 1995. Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. Development 121(9): 3067-3077.

Mason, P., Jr. B. and Lis, J. T. 1997. Cooperative and competitive protein interactions at the hsp70 promoter. J Biol Chem. 272(52):33227-33233

McGinnis W. and Krumlauf R. 1992. Homeobox genes and axial patterning. Cell. 68(2):283-302.

Méthot N. and Basler K. 1999. Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor form of Cubitus interruptus. Cell. 96(6): 819-831.

Mishra, M. and Deora, R. 2005. Mode of action of the Bordetella BvgA protein: transcriptional activation and repression of the Bordetella bronchiseptica bipA promoter. J Bacteriol. 187(18):6290-6299.

Morimoto, R. I. 1993.Cells in stress: transcriptional activation of heat shock genes. Science. 259(5100):1409-1410.

Morimoto, R. I. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12(24):3788-3796.

Mottus, R., Sobel1 R. E. and Thomas A. G. 2000. Mutational analysis of a histone deacetylase in Drosophila melanogaster: missense mutations suppress gene silencing associated with position effect variegation. Genetics 154: 657–668

Müller, J. and Kassis, J. A. 2006. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev. 16(5):476-484.

Narlikar, G. J., Fan, H. Y. and Kingston, R. E. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 108(4):475-487.

Nightingale, K. P., Wellinger, R. E., Sogo, J. M. and Becker, P. B. 1998. Histone acetylation facilitates RNA polymerase II transcription of the Drosophila hsp26 gene in chromatin. EMBO J. 17(10):2865-76.

Nusslein-Volhard, C., Wieschaus, E. and Kluding, H. 1990.Mutations affecting segment number and polarity in Drosophila. Nature. 287:795-801.

O’Brien, T., Wilkins, R. C., Giardina, C., and Lis, J. T. 1995. Distribution of GAGA protein on Drosophila genes in vivo. Genes Dev. 9, 1098–1110

Okada, M. and Hirose, S. 1998. Chromatin remodeling mediated by Drosophila GAGA factor and ISWI activates fushi tarazu gene transcription in vitro. Mol Cell Biol. 18(5):2455-2461

Olivier, J.P., Raabe, T., Henkemeyer, M., Dickson, B., Mbamalu, G., Margolis, B., Schlessinger, J., Hafen, E., and Pawson, T. 1993. A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73(1): 179-191.

Omichinski, J. G., Pedone, P. V., Felsenfeld, G., Gronenborn, A. M. and Clore, G. M. 1997. The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nat Struct Biol. 4(2):122-132.

Pagans, S., Ortiz-Lombardia, M., Espinas, M. L., Bernues, J. and Azorin, F. 2002. The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax-like (GAGA) and represses GAGA mediated activation. Nucleic Acids Res., 30, 4406–4413.

Pagans, S., Piñeyro, D., Kosoy, A., Bernués, J. and Azorín, F. 2004. Repression by TTK69 of GAGA-mediated activation occurs in the absence of TTK69 binding to DNA and solely requires the contribution of the POZ/BTB domain of TTK69. J Biol Chem. 279(11):9725-9732.

Paolo V. Pedone, Rodolfo Ghirlando, G. Marius Clore, Angela M. Gronenborn, Gary Felsenfeld, and James G. Omichinski. 1996. The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding. Proc Natl Acad Sci USA. 93: 2822-2826.

Paroush, Z., Wainwright, S. M. and Ish-Horowicz, D. 1997. Torso signalling regulates terminal patterning in Drosophila by antagonising Groucho-mediated repression. Development. 124(19):3827-3834.

Pedone,P.V., Ghirlando,R., Clore,G.M., Gronenborn,A.M., Felsenfeld,G. and Omichinski,J.G. 1996. The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding. Proc. Natl Acad. Sci. USA, 93, 2822–2826.

Pelham, H.R.B. 1982. A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Ceil 30: 517-528.

Pelham, H.R.B. and M. Bienz. 1982. A synthetic heat-shock promoter element confers heat inducibility on the herpes simplex virus thymidine kinase gene. EMBO ]. 1: 1473--1477.

Perisic, O., Xiao, H. and Lis, J. T. 1989. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell. 59(5):797-806.

Pignoni, F., Baldarelli, R. M., Steingrímsson, E., Diaz, R. J., Patapoutian, A., Merriam, J. R. and Lengyel, J. A. 1990. The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell. 62(1): 151-163

Pignoni, F., Steingrímsson, E. and Lengyel, J. A. 1992. bicoid and the terminal system activate tailless expression in the early Drosophila embryo. Development. 115(1): 239-251.

Pile, L. A. and Wassarman, D. A. 2000. Chromosomal localization links the SIN3- RPD3 complex to the regulation of chromatin condensation, histone acetylation and gene expression. EMBO J. 19(22):6131-6140.

Platero, J. S., Csink, A. K., Quintanilla, A. and Henikoff, S. 1998. Changes in chromosomal localization of heterochromatin-binding proteins during the cell cycle in Drosophila. J Cell Biol. 140(6):1297-1306.

Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J. and Wu, C. 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259(5092): 230-234

Raff, J. W., Kellum, R. and Alberts, B. 1994. The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle. EMBO J. 13(24): 5977-5983

Read. D. and Manley, J. L. 1992. Alternatively spliced transcripts of the Drosophila tramtrack gene encode zinc finger proteins with distinct DNA binding specificities. EMBO J. 11(3):1035-1044.

Rebay, I. 2002. Keeping the receptor tyrosine kinase signaling pathway in check: lessons from Drosophila. Dev Biol. 251(1):1-17.

Rivera-Pomar R. and Jäckle H. 1996. From gradients to stripes in Drosophila embryogenesis: filling in the gaps. Trends Genet. 12(11): 478-83.

Roose, J., Molenaar, M., Peterson, J., Hurenkamp, J., Brantjes, H., Moerer, P., van de Wetering, M., Destrée, O. and Clevers, H. 1998. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature. 395(6702):608-12.

Rorth, P. 1998. Gal4 in the Drosophila female germline. Mech Dev. 78(1-2):113-118.

Rothwell,W.F. and Sullivan,W. 2000. In Sullivan,W., Ashbourner,M. and Hawley,R.S. (eds), Drosophila Protocols, Cold Spring Harbor Laboratory Press, New York, pp. 141–157.

Rubin, G. M. and Spradling, A. C. 1982. Genetic transformation of Drosophila with transposable element vectors. Science.218(4570):348-353.

Rubin,G.M. and Spradling,A.C. 1983. Vectors for P element mediated gene transfer in Drosophila. Nucleic Acids Res., 11, 6341–6351.

Rusch, J. and Levine, M. 1994. Regulation of the dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev. 8(11):1247-57.

Sakurai, H. and Takemori, Y. 2007. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1. J Biol Chem. 282(18):13334-13341

Sambrook, J. and Russell, D. W. 2001. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Sandaltzopoulos, R., Mitchelmore, C., Bonte, E., Wall, G. and Becker, P. B. 1995. Dual regulation of the Drosophila hsp26 promoter in vitro. Nucleic Acids Res. 23(13): 2479-2487.

Sanger, F., Nicklen, S. and Coulson, A. R. 1977. DNA sequencing with chain- terminating inhibitors. Proc Natl Acad Sci USA. 74(12):5463-5467.

Schlessinger, J. 2000. Cell signaling by receptor tyrosine kinases. Cell. 103(2): 211-225. Review

Schubot, F. D., Tropea, J. E. and Waugh, D. S. 2006. Structure of the POZ domain of human LRF, a master regulator of oncogenesis. Biochem Biophys Res Commun 351:1-6

Schupbach, T. and Wieschaus, E. 1986. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Developmental biology 113(2): 443-448.

Schwendemann A. and Lehmann M. (2002). Pipsqueak and GAGA factor act in concert as partners at homeotic and many other loci. Proc Natl Acad Sci USA. 99(20): 12883-12888.

Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. and Gaul, U. 2008. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature. 451(7178):535-540

Shi, Y., Mosser, D. D., Morimoto, R. I. 1998. Molecular chaperones as HSF1-specific transcriptional repressors. Genes Dev. 12(5):654-666

Shimada, T., Fujita, N., Maeda, M. and Ishihama, A. 2005. Systematic search for the Cra-binding promoters using genomic SELEX system. Genes Cells. 10(9):907-918.

Siegel, V., Jongens, T. A., Jan, L. Y. and Jan, Y. N. 1993. pipsqueak, an early acting member of the posterior group of genes, affects vasa level and germ cell-somatic cell interaction in the developing egg chamber. Development. 119(4):1187-202.

Siegmund, T. and Lehmann, M. 2002. The Drosophila Pipsqueak protein defines a new family of helix-turn-helix DNA-binding proteins. Dev Genes Evol. 212(3):152-157.

Simon, M.A., Dodson, G.S., and Rubin, G.M. 1993. An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73(1): 169-177.

Singer, J.B., Harbecke, R., Kusch, T., Reuter, R., and Lengyel, J.A. 1996. Drosophila brachyenteron regulates gene activity and morphogenesis in the gut. Development 122(12): 3707-3718.

Singh, A., Kango, M. and Sinha, P. 1995. An improved method for chemical devitellinization of X-gal stained Drosophila embryos. Indian J Exp Biol. 33(2): 150-152.

Singh, I.S., Viscardi, R.M., Kalvakolanu, I., Calderwood, S., and Hasday, J.D. 2000. Inhibition of tumor necrosis factor-alpha transcription in macrophages exposed to febrile range temperature. A possible role for heat shock factor-1 as a negative transcriptional regulator. J Biol. Chem. 275(13): 9841-9848.

Singh, I. S., He, J. R., Calderwood, S. and Hasday, J. D. 2002. A high affinity HSF-1 binding site in the 5'-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J Biol Chem. 277(7):4981-4988.

Singh, I. S., He, J. R., Hester, L., Fenton, M. J. and Hasday, J. D. 2004. Bacterial endotoxin modifies heat shock factor-1 activity in RAW 264.7 cells: implications for TNF-alpha regulation during exposure to febrile range temperatures. J Endotoxin Res. 10(3):175-184

Soeller, W. C., Poole, S. J., Kornberg T. B. 1988. In vitro transcription of the Drosophila engrailed gene. Genes Dev. 2(1):68-81.

Soeller, W. C., Oh, C. E. and Kornberg, T. B. 1993. Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol Cell Biol. 13(12):7961-7970.

Sorger, P.K. and Pelham, H.R. 1988. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell 54(6): 855-864.

Spradling, A. C. and Rubin, G. M. 1982. Transposition of cloned P elements into Drosophila germ line chromosomes. Science. 218(4570):341-347.

Spradling, A. C. and Rubin,G.M. 1983. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell, 34, 47–57

Spradeling, A. C. 1993. Developmental genetics of oogenesis. Cold Spring Harbor Laboratory.

Sprenger, F., Stevens, L. M. and Nüsslein-Volhard, C. 1989. The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature. 338(6215):478-83.

Sprenger, F. and Nüsslein-Volhard, C. 1992. Torso receptor activity is regulated by a diffusible ligand produced at the extracellular terminal regions of the Drosophila egg. Cell. 71(6):987-1001.

Sprenger, F., Trosclair, M. M. and Morrison, D. K. 1993. Biochemical analysis of torso and D-raf during Drosophila embryogenesis: implications for terminal signal transduction. Mol. Cell. Biol, 13: 1163-1172.

St Johnston, D. and Nusslein-Volhard, C. 1992. The origin of pattern and polarity in the Drosophila embryo. Cell, 68, 201–219.

St Johnston, D. 2005. Moving messages: the intracellular localization of mRNAs. Nat Rev Mol Cell Biol. 6(5):363-75.

Steingrimsson, E., Pignoni, F., Liaw, G. J. and Lengyel, J. A. 1991. Dual role of the Drosophila pattern gene tailless in embryonic termini. Science 254: 418-421.

Steinhauer, J. and Kalderon, D. 2006. Microtubule polarity and axis formation in the Drosophila oocyte. Dev Dyn. 235(6):1455-68

Stevens, L.M., Frohnhofer, H.G., Klingler, M., and Nusslein-Volhard, C. 1990. Localized requirement for torso-like expression in follicle cells for development of terminal anlagen of the Drosophila embryo. Nature 346(6285): 660-663.

Strecker, T. R., Kongsuwan, K., Lengyel, J. A. and Merriam, J. R. 1986. The zygotic mutant tailless affects the anterior and posterior ectodermal regions of the Drosophila embryo. Dev Biol. 113(1):64-76.

Stogios, P. J., Chen L. and Prive G. G. 2007. Crystal structure of the BTB domain from the LRF/ZBTB7 transcriptional regulator. Protein Sci 16:336-42.

Stokoe, D., Macdonald, S.G., Cadwallader, K., Symons, M., and Hancock, J.F. 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science 264(5164): 1463-1467.

Strutt, H., Cavalli, G. and Paro, R. 1997. Co-localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J.16(12):3621-32.

Studier, F. W. and Moffatt, B. A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 189(1): 113- 130.

Studier, F. W., Rosenberg, A. H., Dunn, J. J. and Dubendorff, J. W. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol.185:60-89.

Sullivan, B. T., Clarke, G. A., Akiyama, T., Osborne, N., Ranger, M., Dobrowolski, J. A., Howe, L., Matsumoto, A., Song, Y. and Kikuchi, K. 2000. High-rate automated deposition system for the manufacture of complex multilayer coatings. Appl Opt. 39(1):157-67.

Tautz, D. and Pfeifle, C. 1989. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma. 98(2):81-85.

TenHarmsel, A., Austin, R. J., Savenelli, N. and Biggin, M. D. 1993. Cooperative binding at a distance by even-skipped protein correlates with repression and suggests a mechanism of silencing. Mol Cell Biol. 13(5):2742-2752

Treisman, J. E. and Rubin, G. M. 1995. wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development. 121(11):3519-3527.

Tsukiyama, T., Becker, P. B. and Wu, C. 1994. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature. 367(6463):525-532.

Tsukiyama, T. and Wu, C. 1995. Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell. 83(6):1011-1020.

Van Doren, M., Williamson, A. L., and Lehmann, R. 1998.Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol. 8(4): 243-246

Van Steensel, B., Delrow, J. and Bussemaker, H. J. 2003. Genome wide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proc Natl Acad Sci USA. 100(5):2580-2585.

Weber, U., Siegel, V. and Mlodzik, M. 1995. Pipsqueak encodes a novel nuclear protein required downstream of seven-up for the development of photoreceptors R3 and R4. EMBO J. 14(24): 6247-6257.

Weigel, D., Jurgens, G., Kuttner, F., Seifert, E., and Jackle, H. 1989. The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57(4): 645-658.

Weigel, D., Jurgens, G., Klingler, M., and Jackle, H. 1990. Two gap genes mediate maternal terminal pattern information in Drosophila. Science 248(4954): 495-498.

Wen, Y., Nguyen, D., Li, Y. and Lai, Z. C. 2000. The N-terminal BTB/POZ domain and C-terminal sequences are essential for Tramtrack69 to specify cell fate in the developing Drosophila eye. Genetics. 156(1):195-203.

Wiederrecht, G., Seto, D., and Parker, C.S. 1988. Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54(6): 841-853

Wilkins, R. C. and Lis, J. T. 1998. GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Res. 26(11):2672-2678.

Wu, C. 1995. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol.11:441-469.

Xiao, H. and Lis, J.T. 1988. Germline transformation used to define key features of heat-shock response elements. Science 239(4844): 1139-1142.

Xiao, X., Zuo, X., Davis, A. A., McMillan, D. R., Curry, B. B., Richardson, J. A. and Benjamin, I. J. 1999. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. The EMBO journal 18(21): 5943-5952

Xie, Y., Chen, C., Stevenson, M.A., Auron, P.E., and Calderwood, S.K. 2002. Heat shock factor 1 represses transcription of the IL-1beta gene through physical interaction with the nuclear factor of interleukin 6. J Biol. Chem. 277(14): 11802-11810.

Xie, Y., Zhong, R., Chen, C., and Calderwood, S. K. 2003. Heat shock factor 1 contains two functional domains that mediate transcriptional repression of the c-fos and c-fms genes. J. Biol. Chem. 278(7): 4687-4698.

Xiong, W. C. and Montell, C. 1993. tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye. Genes Dev. 7(6):1085-1096

Xu, C., Kauffmann, R. C., Zhang, J., Kladny, S. and Carthew, R. W. 2000. Overlapping activators and repressors delimit transcriptional response to receptor tyrosine kinase signals in the Drosophila eye. Cell. 103(1): 87-97.

Yamamoto, A., Mizukami, Y. and Sakurai, H. 2005. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem. 280(12):11911-11919.

Yan, Y. L. and Postlethwait J. H. 1990. Vitellogenesis in Drosophila: Sequestration of a yolk polypeptide/invertase fusion protein into developing oocytes. Dev. Biol. 140: 281-290

Zhong, M. and Wu, C. 1996. Proteolytic mapping of heat shock transcription factor domains. Protein Sci. 5: 2592–2599.

Zuo, J., Baler, R., Dahl, G., and Voellmy, R. 1994. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. cell. Biol. 14(11): 7557-7568.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top