跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 16:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張馨尹
研究生(外文):Hsin-Yin Chang
論文名稱:探討果蠅基因female sterile (l) homeotic轉譯之蛋白質FSH-S
論文名稱(外文):The study of FSH-S, a protein encoded by Drosophila female sterile (l) homeotic
指導教授:黃德華黃德華引用關係
指導教授(外文):Der-Hwa Huang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:52
中文關鍵詞:同源異性轉變
外文關鍵詞:Drosophila female sterile (1) homeoticfs(1)h
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
果蠅中的基因 female sterile (1) homeotic (fs(1)h) 可產生兩個蛋白質產物,FSH-S 及 FSH-L。由於它們帶有兩個 Bromodoamin (BDI and BDII) 和一個 extra terminal (ET) domain, 屬於 BET 蛋白質家族。 雖然 FSH-S 的序列和 FSH-L N-terminal 端上的序列完全相同,根據實驗室先前的研究發現,這兩個蛋白質的功能並不相同。大量表現 FSH-S 或是 FSH-L ,僅有 FSH-S 會造成果蠅同源基因 (HOX gene) 的異位表現並產生同源異性轉變 (homeotic transformation),使果蠅的觸角芒轉化成果蠅的腳。由此可知此蛋白質FSH-S參與在果蠅同源基因的活化。此外,果蠅體外研究 (In vitro) 發現 FSH-S 帶有如同磷酸激酶 (kinase) 的能力。到目前為止,並無任何針對FSH-S 上不同 domain 帶有何種功能的研究。為了瞭解這些domain和磷酸激酶能力對於 FSH-S 參與在活化果蠅同源基因的的功能上是否重要,因此研究了帶有不同 domain 缺失,預測的ATP-binding motif 缺失及蛋白質磷酸化位置 (phosphorylation site) 缺失的基因轉殖果蠅。本篇研究中發現 FSH-S 的兩個 BD 對於FSH-S 參與在活化果蠅同源基因的功能影響很大,特別是 BDI 。此外 BD 的存在與否並不影響 FSH-S 結合在染色體上能力。另一方面,大量表現的 FSH-S 除了會造成果蠅體節的異常之外,也會影響果蠅腳的形態。更進一步的研究發現,大量表現的 FSH-S會對與腳及觸角芒發育有關的基因 Distal-less (Dll) 表現產生負面的影響。這樣的影響也有可能是大量表現的 FSH-S 造成同源異性轉變及腳缺陷的原因之一。
The Drosophila female sterile (1) homeotic (fs(1)h) gene encodes two isoforms, FSH-S and FSH-L, that constitute the Drosophila members of the BET protein family. They contain two bromodomains (BD) and an extra terminal (ET) domain. Based on previous studies, although the sequence of FSH-S is identical to the half of FSH-L, they act differently. Overexpression of FSH-S, but not FSH-L, can induce ectopic HOX gene expression and shows homeotic transformation of arista converts into leg, indicating that FSH-S is involved in HOX gene activation. Furthermore, In vitro study indicated that FSH-S act as a kinase. However, there is no functional study of the BET domains in FSH-S so far. To determine the importance of these domains and the putative kinase activity, phenotypes of a series of transgenic fly containing different domain, putative ATP-binding motif and phosphorylation site deletions were investigated. Here we show that BDs are critical for the FSH-S, especially BDI. However, BDs are not crucial for the chromosome binding ability of FSH-S. In addition to homeotic transformation, FSH-S overexpression can induce leg defect. Further investigation had found that FSH-S overexpression had a negative impact on the expression of Distal-less (Dll), which is required for the development of leg and antenna. This is probably one of the reasons that lead to homeotic transformation and leg defect.
Chinese Abstract.....2
English Abstract.....3
Introduction.........4
Result...............9
Discussion...........17
Material and Method..22
Reference............29
Figure...............34
Casares, F., and Mann, R.S. (1998). Control of antennal versus leg development in Drosophila. Nature 392, 723-726.

Caspari, E.W., and Kitzmiller, J.B. (1976). Advances in Genetics, Vol 18 (Academic Press).

Chang, Y.L., King, B., Lin, S.C., Kennison, J.A., Huang, D.H., Wu, S.Y., and Chiang, C.M. (2007). A double-bromodomain protein, FSH-S, activates the homeotic gene ultrabithorax through a critical promoter-proximal region. Molecular Cellular Biology 27, 5486-5498.

Collins, R.T., Furukawa, T., Tanese, N., and Treisman, J.E. (1999). Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. EMBO Journal 18, 7029–7040.

Crosby, M.A., Miller, C., Alon, T., Watson, K.L., Verrijzer, C.P., Goldman-Levi, R., and Zak, N.B. (1999). The trithorax group gene moira encodes a Brahma associated putative chromatin-remodeling factor in Drosophila melanogaster. Molecular and Cellular Biology 19, 1159–1170.

Denis, G.V., and Green, M.R. (1996). A novel, mitogen-activated nuclear kinase is related to a Drosophila developmental regulator. Genes Development 10, 261–271.

Dey, A., Chitsaz, F., Abbasi, A., Misteli, T., and Ozato, K. (2003). The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. The Proceedings of the National Academy of Sciences 100, 8758–8763

Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., and Zhou, M.-M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496.

Digan, M.E., Haynes, S.R., Mozer, B.A., Dawid, I.B., Forquignon, F., and Gans, M. (1986). Genetic and molecular analysis of fs(1)h, a maternal effect homeotic gene in Drosophila. Developmental Biology 114, 161–169.
Dong, P.D.S., Chu, J., and Panganiban, G. (2000). Coexpression of the homeobox genes Distal-less and homothorax determines Drosophila antennal identity. Development 127, 209-216.

Dong, P.D.S., Chu, J., and Panganiban, G. (2001). Proximodistal domain specification and interactions in developing Drosophila appendages. Development 128, 2365-2372.

Duncan, I.M. (1982). Polycomblike: A genethat that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila melanogaster. Genetics 102, 49-70.

Fanti, L., Perrini, B., Piacentini, L., Berloco, M., Marchetti, E., Palumbo, G., and Pimpinelli, S. (2008). The trithorax group and Pc group proteins are differentially involved in heterochromatin formation in Drosophila. Chromosoma 117, 25–39

Forquignon, F. (1981). A maternal effect mutation leading to deficiencies of organs and homeotic transformations in the adults of Drosophila. Development Genes and Evolution 190, 132-138.

Gans M, A.C., Masson M (1975). Isolation and characterization of sex-linked female-sterile mutants in Drosophila melanogaster. Genetics 81, 683–704

Gans, M., Forquignon, F., and Masson, M. (1980). The role of dosage of the region 7D1-7D5-6 of the X chromosome in the production of homeotic transformation in Drosophila melanogaster. Genetics 96, 887–902.

Hanks, S.K., and Hunter, T. (1995). Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB Journal 9, 576-596.

Haynes, S.R., Dollard, C., Winston, F., Beck, S., Trowsdale, J., and Dawid, I.B. (1992). The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Research 20, 2603.

Huang, H., Zhang, J., Shen, W., Wang, X., Wu, J., Wu, J., and Shi, Y. (2007). Solution structure of the second bromodomain of Brd2 and its specific interaction with acetylated histone tails. BMC Structural Biology 7, 57-73.
Jürgens, G. (1985). A group of genes controlling the spatial expression of the bithorax complex in Drosophila. Nature 316, 153 - 155

Jacobson, R.H., A. G. Ladurner, D. S. King, and R. Tjian (2000). Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425.

Kanno, T., Kanno, Y., Siegel, R.M., Jang, M.K., Lenardo, M.J., and Ozato, K. (2004). Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Molecular Cell 13, 33–43

Kennison, J.A. (1995). The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annual Review of Genetics 29, 289-303.

LeRoy, G., Rickards, B., and Flint, S.J. (2008). The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Molecular Cell 30, 51-60.

Matangkasombut, O., Buratowski, R.M., N.W., S., and S., B. (2000). Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Development 14, 951-962.

McGinnis, W., and Krumlauf, R. (1992). Homeobox genes and axial patterning. Cell 68, 283-302.

Mujtaba, S., Zeng, L., and Zhou, M.M. (2007). Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26, 5521–5527.

Nakamura, Y., Umehara, T., Nakano, K., Jang, M.K., Shirouzu, M., Morita, S., Uda-Tochio, H., Hamana, H., Terada, T., Adachi, N., et al. (2007). Crystal structure of
the human BRD2 bromodomain: insights into dimerization and recognition of acetylated histone H4. J Biol Chem 282, 4193-4201.

Ottinger, M., Christalla, T., Nathan, K., Brinkmann, M.M., Viejo-Borbolla, A., and Schulz, T.F. (2006). Kaposi's sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest. Journal of Virology 80, 10772–10786.

Ottinger, M., Christalla, T., Nathan, K., Brinkmann, M.M., Viejo-Borbolla, A., and Schulz, T.F. (2006). Kaposi’s Sarcoma-Associated Herpesvirus LANA-1 Interacts with the Short Variant of BRD4 and Releases Cells from a BRD4- and BRD2/RING3-Induced G1 Cell Cycle Arrest. JOURNAL OF VIROLOGY 80, 10772–10786.

Platt, G.M., Simpson, G.R., Mittnacht, S., and Schulz, T.F. (1999). Latent nuclear antigen of Kaposi's sarcoma-associated herpesvirus interacts with RING3, a homolog of the Drosophila female sterile homeotic (fsh) gene. Journal of Virology 73, 9789-9795

Platt, G.M., Simpson, G.R., Mittnacht, S., and Schulz, T.F. (1999). Latent Nuclear Antigen of Kaposi’s Sarcoma-Associated Herpesvirus Interacts with RING3, a Homolog of the Drosophila Female Sterile Homeotic (fsh)Gene. JOURNAL OF VIROLOGY 73, 9789-9795

Ringrose, L., and Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annual Review of Genetics 38, 413–443.

Sawa, C., Nedea, E., Krogan, N., Wada, T., Handa, H., Greenblatt, J., and Buratowski, S. (2004). Bromodomain Factor 1 (Bdf1) is phosphorylated by protein kinase CK2. Molecular and Cellular Biology 24, 4734–4742.

Sigrist, C.J.A., and Pirrotta, V. (1997). Chromatin insulator elements block the silencing of a target tene by the Drosophila Polycomb Response Element (PRE) but allow trans interactions between PREs on different chromosomes. Genetics 147, 209-221.

Simon, J. (1995). Locking in stable states of gene expression: transcriptional control during Drosophila development. Current Opinion in Cell Biology 7, 376-385.

Smith, C.L., and Peterson, C.L. (2005). ATP-dependent chromatin remodeling. Current Topics In Developmental Biology 65, 115–148

Snodgrass, R.E. (1935). Principles of Insect Morphology. McGraw Hill,New York.

Sunkel, C.E., and Whittle, J.R.S. (1987). Brista: A gene involved in the specification and differentiation of distal cephalic and thoracic structures in Drosophila melanogaster. Roux's Archives of Developmental Biology 196, 124–132.

Wu, S.Y., and Chiang, C.M. (2007). The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. Journal of Biological Chemistry 282, 13141-13145.

Zeng, L., and Zhou, M.M. (2002). Bromodomain: an acetyl-lysine binding domain. FEBS Letters 513, 124–128.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top