跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林惠文
研究生(外文):Hui-Wen Lin
論文名稱:p53及基因體甲基化的關係
論文名稱(外文):p53 and genome methylation
指導教授:徐明達徐明達引用關係
指導教授(外文):Ming-Ta Hsu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學暨基因體科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:62
中文關鍵詞:甲基化p53比較基因體雜合微陣列
外文關鍵詞:methylationp53microarray
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
附基因體的調控(epigenetic modification)對於基因的表現量有很大的
影響,而這些調控模式又包含DNA的甲基化(DNA methylation)及組蛋白的
修飾作用(histone modification)。p53是個已經廣為人知且研究透徹,存在
於人類基因體中的抑癌基因,它是一種DNA轉錄因子,在調控基因表現量的
層面上同時扮演著活化以及抑制的角色。有些研究指出,p53可能與基因體甲
基化的調控有很大的關係,阻斷p53下游基因的作用可能會造成基因體甲基化
的失調,因此造成基因體抑癌基因的活化、基因體不穩定(genome
instability)、癌症的形成。在這篇論文中,我利用TspRI-HpaII 比較基因體雜
合微陣列(array CGH)定出HCT116這個細胞株中,在有p53(p53 wildtype)
及沒有p53(p53 null),以及H1299p53溫度敏感細胞株中的情況下基因體甲
基化圖譜的分佈情形。發現在HCT116 p53缺失細胞株中存在大區塊的低程度
甲基化(hypomethylation)片段,但並不存在培養在38℃的H1299細胞株中,
這些低程度甲基化區塊中,有些是和基因的表現量成一致性,而這些區塊中
又包含參與細胞凋亡、細胞週期、轉錄調控、訊號傳導、細胞附著基因及其
他細胞生理作用相關的基因和轉錄因子結合位序列,推測這些基因的甲基化
情形可能是透過p53調控。經過基因的文獻分析探討,發現座落在低程度甲基
化區塊中的基因WWOX,參與p53下游細胞凋亡的調控路徑中,其甲基化情形
和基因的表現量成一致性,顯示其甲基化可能是藉由p53所調控。另外一個基
因,DNMT1,在HCT116 p53 野生型(p53 wildtype)表現量比在HCT116 p53
缺失(p53 null)細胞株中為低,這樣的結果和比較基因體雜合微陣列(array
CGH)呈現的結果剛好相反,即DNMT1在HCT116 p53缺失細胞株中表現量較
高,但基因體的甲基化分佈和p53野生型細胞株相較之下卻是呈現低甲基化的
情形,因此,推測p53調控基因體甲基化的方式可能不是透過DNMT1,因此
這個有趣的發現,有待進一步深入研究。
Epigenetic modifications, including DNA methylation and histone
modifications have impact on gene expression. p53 is a well-known tumor supressor
gene in human genome. As a DNA transcription factor, p53 plays a critical role in
both activation and repression of target genes. Some studies explore the possibility
that disruption of the p53 pathway may be related to the loss of regulation of DNA
methylation, with its downstream effects on tumor suppressor gene inactivation,
genome instability and tumor progression.
I mapped the DNA methylation pattern on a large scale by using TspRIHpaII
array CGH to compare the whole genome methylation pattern between HCT
116 p53 wild-type, p53 null cells and H1299 p53 temperature sensitive cell lines. I
found that there existed large hypomethylation regions in HCT116 p53 null cells but
not in H1299 cells cultured at 38°C. Some of these regions expression pattern were
consistent with methylation patterm. These regions contain genes involved in
apoptosis, cell cycle, transcription regulation, signal transduction, cell adhesion and
other biological pathways and conserved transcription factor binding sites. Genes
involved in these regions may regulated by p53 through DNA methylation. WWOX,
located on a large hypomethylation region, participated in p53 induced apoptosis
pathway. The expression of WWOX was consistent with methylation pattern. Another
gene DNMT1 repressed by p53 expresses higher in HCT116 p53 null cells than in
p53 wild-type cells. Intriguing, p53 contributes to whole genome hypomethylation of
HCT116 cell lines. Therefore, I suggested p53 may participate in genome methylation
through different way instead of through DNMT1.
Content
Abstract in Chinese----------------------------------- 1
Abstract in English------------------------------------2
Introduction-------------------------------------------- 3
Materials------------------------------------------------ 8
Methods------------------------------------------------ 11
Results------------------------------------------------- 16
Discussion--------------------------------------------- 25
Figures------------------------------------------------- 29
Appendix---------------------------------------------- 47
Reference---------------------------------------------- 55
Reference
1. Pierre-Olivier Este` ve, Hang Gyeong Chin, and Sriharsa Pradhan (2005) Human
maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of
p53-repressed promoters. PNAS 102: 1000-1005.
2. Shirley M. Taylor (2006) p53 and deregulation of DNA methylation in cancer.
Cellscience 2
3. Erica J. Peterson, Oliver Boler, and Shirley M. Taylor (2003) p53-mediated
repression of DNA methyltransferase 1 expression by specific DNA binding. Cancer
Res. 63: 6579-6582
4. A.J. Wood and A.J. Oakey (2006). Genomic imprinting in mammals: Emerging
themes and established theories. PLOS Genetics 2(11): 1677–1685
5. Pembrey ME, Bygren LO, Kaati G, et al.(2006) Sex-specific, male-line
transgenerational responses in humans. Eur J Hum Genet 14: 159-66
6. Michał W. Łuczak and Paweł P. Jagodzinski (2006) The role of DNA methylation
in cancer development.
7. Henikoff, S. (1984) Unidirectional digestion with exonuclease III creates targeted
breakpoints for DNA sequencing. Gene. 28: 351-359
8. Yih-Jyh Shann, Ching Cheng (2008) Genome-wide mapping and characterization of
hypomethylated sites in human tissues and breast cancer cell lines. Genome Res. 18:
791-801
9. Takai D, Jones PA (2002). Comprehensive analysis of CpG islands in human
chromosomes 21 and 22. Proc Natl Acad Sci USA 99 (6): 3740–5
10. Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, Jones PA
(2005). Footprinting of mammalian promoters: use of a CpG DNA methyltransferase
55
revealing nucleosome positions at a single molecular level. Nucleic Acids Res 33 (20):
e176
11. Saxonov S, Berg P, Brutlag DL (2006). A genome-wide analysis of CpG
dinucleotides in the human genome distinguishes two distinct classes of promoters.
Proc Natl Acad Sci USA 103 (5): 1412–1417
12. Larsen,F., Gundersen,G., Lopez,R. and Prydz,H. (1992) CpG islands as gene
markers in the human genome. Genomics, 13:1095–1107.
13. Cross,S.H. and Bird,A.P. (1995) CpG islands and genes. Curr. Opin. Genet. Dev., 5:
309–314.
14. Shinawi M, Cheung SW (2008). The array CGH and its clinical applications. Drug
Discov Today 13: 760-770
15. Y. Alan W, Yeugeniya K (2005) DNA methyltransferase-3a interacts with p53 and
represses p53-mediated gene expression. Cancer Biology & Therapy 4 (10): 1138-
1143
16. Agustin F. Fernandez, Cecilia Rosales (2009) The dynamic DNA methylomes of
double-stranded DNA viruses associated with human cancer. Genome Res.
17. Andrew P. Feinberg, Rolf Ohlsson (2006) The epigenetic progenitor origin of human
cancer. Nature Genetic 7: 21-33
18. Villagra A, Gutierrez J (2002) Reduced CpG methylation is associated with
transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J
Cell Biochem 85(1): 112-122
19. Wei, C.L. et al. (2006) A global map of p53-transcription-factor binding sites in
human genome. Cell 124:207-219
56
20. Tomasz Z., Szymon M. K (2009) Methylation and deamination of CpGs generate
p53-binding sites on a genomic scale. Trends Genet. 25(2):63-6
21. Costello, J.F., Fruhwald, M.C. (2000) Aberrant CpG-island methylation has nonrandom
and tumour-type-specific patterns. Nature Genet. 24: 132-138
22. Melanie Ehrlich (2002) DNA methylation in cancer: too much, but also too little.
Oncogene. 21: 5400-5413
23. Lain, S.,Lane, D. (2003) Improving cancer therapy by non-genotoxic activation of
p53. Eur J Cancer. 39: 1053-1060
24. Pogribny IP, Pogribna M. (2000) Single-site methylation within the p53 promoter
region reduces gene expression in a reporter gene construct: possible in vivo relevance
during tumorigenesis. Cancer Res. 60: 588-594
25. Barlev NA, Liu L. (2001) Acetylation of p53 activates transcription through
recruitment of coactivators/histone acetyltransferase. Mol Cell. 8(6): 1243-1254
26. Espinosa JM, Emerson BM. (2001) Transcriptional regulation by p53 through
intrinsic DNA/chromatin binding and site-directed cofactor recruitmant. Mol Cell.
8(1): 57-69
27. Esteve PO, Chin HG. (2007) Molecular mechanisms of transactivation and
doxorubicin-mediated repression of survivin gene in cancer cells. J Bio Chem.
282(4):2615-2625
28. Imbriano C, Gurtner A. (2005) Direct p53 transcriptional repression: in vivo
analysis of CCAAT-containing G2/M promoters. Mol Cell Biol. 25(9): 3737-3751
29. Hollstein M, Hergenhaha M. (1999) New approaches to understanding p53 gene
tumor mutation spectra. Mutat. Res. 431: 199-209
57
30. Isobe M, Emanuel BS, Givol D, Oren M, Croce CM (1986). Localization of gene
for human p53 tumour antigen to band 17p13. Nature 320 (6057): 84–5
31. Jin, S., Levine, A.J.(2001) The p53 functional curcuit. J Cell Sci. 114: 4139-4140
32. el-Deiry W. (2002) Regulation of p53 downstream genes. Semin Cancer Biol. 8: 345-
347
33. Kern SE, Kinzler KW, Bruskin A, Jarosz D, Friedman P, Prives C, Vogelstein B
(1991). Identification of p53 as a sequence-specific DNA-binding protein. Science
252 (5013): 1708–11
34. Harms KL, Chen X (2005).The C terminus of p53 family proteins is a cell fate
determinant. Mol. Cell. Biol. 25 (5): 2014–30
35. Lin J, Chen J, Elenbaas B, Levine AJ (1994). Several hydrophobic amino acids in
the p53 amino-terminal domain are required for transcriptional activation, binding to
mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8 (10): 1235–46.
36. Venot C, Maratrat M, Sierra V, Conseiller E, Debussche L (1999). Definition of a
p53 transactivation function-deficient mutant and characterization of two independent
p53 transactivation subdomains. Oncogene 18 (14): 2405–10.
37. Jean C. B., Kenneth F. (2005) p53 isoforms can regulate p53 transcriptional activity.
Genes Dev. 19: 2122-2137.
38. Murphy, M., Ahn, J. (1999) Transcriptional repression by wild-type p53 utilizes
histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13:2490-2501
39. Nasr AF; Nutini M (2003) Mutations of TP53 induce loss of DNA methylation and
amplification of the TROP1 gene. Oncogene. 22(11): 1668-1677
40. Tannapfel A, Busse C (2001). INK4a-ARF alterations and p53 mutations in
hepatocellular carcinomas. Oncogene. 20: 7104–7109
58
41. NH Nabilsi, RR Broaddus (2009) DNA methylation inhibits p53-mediated survivin
repression. Oncogene. 28: 2046–2050
42. Marc M Oshiro, George S Watts (2003) Mutant p53 and aberrant cytosine
methylation cooperate to silence gene expression. Oncogene. 22: 3624-3634
43. Bernard H. Ramsahoye, Detlev Biniszkiewicz (2000) Non-CpG methylation is
prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a.
PNAS 97:5237-5242
44. Di CL, et al. (2002) Methyltransferase recruitment and DNA hypermethylation of
target promoters by an oncogenic transcription factor. Science. 295: 1079-1082
45. F. Bunz, et al. (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA
damage. Science. 282, 1497
46. Friedlander P, et al (1996) A mutant p53 that discriminates between p53-responsive
genes cannot induce apoptosis. Mol Cell Biol 16:4961–71.
47. Pang-Kuo Lo, et al (2004) The prosurvival activity of p53 protects cells from UVinduced
apoptosis by inhibiting c-Jun NH2-terminal kinase activity and mitochondrial
death signaling. Cancer Res. 64: 8736-8745
48. Aimee K. Ryan and Michael G. Rosenfeld (1997) POU domain family values:
flexibility, partnerships, and developmental codes. Genes Dev. 11: 1207-1225
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊