跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 19:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐詩涵
研究生(外文):Shih-Han Hsu
論文名稱:Coronin1B之基因調控與生理功能探討
論文名稱(外文):The Transcriptional Regulation and Biological Function of Coronin 1B
指導教授:游麗如
指導教授(外文):Li-Ru You
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
畢業學年度:97
語文別:英文
論文頁數:86
中文關鍵詞:細胞移動冷光報導基因染色質免疫沉澱
外文關鍵詞:Coronin 1BWt1Nkx2.5Luciferase reporter assayChromatin IPWound healingTranswellMatrigel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Coronins 是在演化上高度保留的 F-actin binding proteins ,在多種生物體中均發現其功能與細胞移動相關。 Coronin 1B 屬於 Coronins 家族成員之一,已有文獻指出它可抑制由 Arp2/3 complex 所造成的肌動蛋白聚合 (actin polymerization) ,並改變細胞骨架的結構,進而影響肌動蛋白的動態分解合成 (actin dynamics) 。在本實驗室先前的研究中,利用酵母菌雙雜合系統發現 Coronin 1B 會與 Tbx2 發生交互作用,並用共同免疫沉澱法加以確認。免疫組織染色結果顯示 Coronin 1B 與 Tbx2 會共同表現在胚胎時期小鼠心臟的 endocardial cushion ,此為心臟中隔發育與瓣膜生成的重要區域,暗示了 Coronin 1B 可能在心臟發育過程中參與調控細胞的移動,並且在心臟瓣膜的形成扮演重要角色。為了進一步探討 Coronin 1B 在心臟組織特異性表現的調控,我們分析了小鼠 Coronin 1B 之啟動子的功能。在不同區段的啟動子後接上螢火蟲冷光酶基因,經冷光活性測定結果顯示,從 -1038 至 -681 間的區段為 Coronin 1B 維持其基本活性的必要部份,而 -128 至 +130 間的區段為轉錄抑制子 (transcription repressors) 的結合位。再者,藉由冷光活性測定觀察與心臟發育相關之轉錄因子對 Coronin 1B 啟動子的影響,我們發現 Wt1 與 Nkx2.5 會活化 Coronin 1B 啟動子,且此活化現象隨轉錄因子的量增加而更加明顯。我們進一步利用染色質免疫沉澱技術分析,發現在小鼠細胞株 NIH3T3 中, Wt1 會直接結合到 Coronin 1B 啟動子的 -2340 、 -741 及 -661 位置; Nkx2.5 則會直接結合到 -2218 位置,來調控 Coronin 1B 的表現。為了探討此調控現象是否存在於活體當中,我們利用免疫螢光染色方法觀察胚胎時期的小鼠組織,結果顯示 Coronin 1B 與 Wt1 在心外膜 (epicardium) 位置有共位表現 (co-localization) ,而 Coronin 1B 與 Nkx2.5 則在小鼠的腦室附近、消化道區域有共位表現,說明 Wt1 及 Nkx2.5 對 Coronin 1B 的調控的確可能存在於發育時期的小鼠組織中。另一方面,我們建立了 Coronin 1B knockdown 的穩定 NIH3T3 細胞株來探討 Coronin 1B 所具有的生理功能。觀察結果發現,這些 Coronin 1B 基因弱化的細胞之移動能力明顯下降,只有正常細胞的 60% - 70% ;若將這些細胞置於 Matrigel 上培養,不但無法如正常細胞般形成管狀架構 (tube-like structure) ,且出現了大量的細胞堆聚 (cell aggregation) 現象,有待進一步探討。在本研究中,我們找到 Coronin 1B 啟動子的核心部分,確認 Coronin 1B 對於細胞移動的確扮演不可或缺的角色,且發現了在胚胎發育時期, Wt1 、 Nkx2.5 對 Coronin 1B 的調控現象。
Coronins are highly-conserved F-actin binding proteins that regulate cell motility in a variety of model organisms. Coronin 1B is known to inhibit the actin polymerization induced by Arp2/3 through direct binding in cell lamellipodia, altering cytoskeleton structure and actin dynamics. Recent data from our lab shows that Coronin 1B interacts with Tbx2 using yeast two-hybrid system, and the interaction was further confirmed by immunoprecipitation experiments. To get insight into the interaction in vivo, we examined the expression profiles of Coronin 1B and Tbx2 in mouse embryonic hearts. Coronin 1B and Tbx2 are co-localized in the endocardial cushions, which is crucial for cardiac septation and valve formation. This suggests that Coronin 1B may be involved in the regulation of cell migration, and even valve formation during cardiac development. To investigate the regulation mechanism underlying the endoardial- and epicardial- specific expression of Coronin 1B, functional analysis of the mouse Coronin 1B promoter was performed. The luciferase assay results in different cell lines revealed the importance of the region between positions -1038 and -681 for basal promoter activity, and the region between -218 and +130 for transcription repressor binding. By analyzing the effects of transcription factors involved in heart development on the Coronin 1B promoter, we found that Wt1 and Nkx2.5 activate the Coronin 1B promoter in a dose-dependent manner. Moreover, we found that Wt1 directly binds to the position -2340, -741 and -661 of Coronin 1B promoter, and Nkx2.5 directly binds to the position -2218 of Coronin 1B promoter using chromatin immunoprecipitation. To investigate the regulation in vivo, we examined Wt1, Nkx2.5 and Coronin 1B expression profiles in E10.5 embryos. Coronin 1B is co-localized with Wt1 in the epicardium of the heart and with Nkx2.5 in the brain vesicle and the abdominal region of E10.5 embryos, which suggests that the regulation of Wt1 and Nkx2.5 to Coronin 1B may exist in vivo. We also analyzed the biological function of Coronin 1B by generating Coronin 1B stable knockdown NIH3T3 cell lines. Depletion of Coronin 1B in NIH3T3 cells significantly reduces cell migration activity to 60% - 70% of normal cells, and the Coronin 1B knockdown cells were failed to form tube-like structures on Matrigel. In this study, we found the Coronin 1B core promoter, and that Coronin 1B is required for normal cell motility and regulated by Wt1 and Nkx2.5 during embryonic development.
Abstract in English (p.1)
Abstract in Chinese (p.3)
Introduction (p.5)
1.Cardiac development (p.5)
2.Transcription factors involved in cardiac development (p.6)
3.Tbx2 has been found to interact with Coronin 1B, which is an F-actin binding protein (p.11)
4.Co-localization of Coronin 1B with Tbx2 in the same cells of endocardial cushions in developing hearts (p.12)
5.Specific aims (p.13)
Materials and methods (p.14)
A)Materials (p.14)
1.Bacteria strain (p.14)
2.Cell lines (p.14)
3.Medium (p.14)
4.Plasmids (p.15)
5.Antibodies (p.18)
6.Chemicals and other supplies (p.18)
B)Methods (p.19)
1.Cell transfection (p.19)
2.Luciferase reporter assay (p.20)
3.Western blotting (p.22)
4.Immunocytochemistry (p.23)
5.Immunohistochemistry (p.23)
6.Site-directed mutagenesis (p.24)
7.Chromatin immunoprecipitation (ChIP) (p.25)
8.Wound-healing assay (p.27)
9.Transwell invasion assay (p.28)
10.Tube forming assay (p.29)
Results (p.30)
1.Analyzing the mouse Coronin 1B gene promoter using rVISTA and Transcription Element Search System (TESS) (p.30)
2.Functional delineation of the Coronin 1B promoter (p.30)
3.Dose-dependent activation of the Coronin 1B promoter by p53, Wt1 and Nkx2.5 transcription factors (p.32)
4.The site-directed mutagenesis products of Wt1 and Nkx2.5 fail to activate the Coronin 1B promoter (p.33)
5.Wt1 and Nkx2.5 directly bind to the Coronin 1B promoter in vivo (p.33)
6.Co-localization of Coronin 1B with Wt1 and Nkx2.5 in mouse E10.5 embryos (p.35)
7.Generation of Coronin 1B stable knockdown NIH3T3 cell lines (p.35)
8.Depletion of Coronin 1B has no obvious effects on the 刍-actin expression level and the F-actin structure in the whole cell (p.36)
9.Depletion of Coronin 1B reduces the speed of cell migration and invasion (p.37)
10.Coronin 1B knockdown cells fail to form tube-like structures on Matrigel.
11.The beta-catenin expression patterns in the Coronin 1B-knockdown cells were different from the vector-stable transfected cells (p.38)
Discussion (p.39)
1.Functional analysis of the mouse Coronin 1B promoter (p.39)
2.Regulation of the Coronin 1B promoter by Wt1 and Nkx2.5 transcription factors in cell lines (p.40)
3.Regulation of Coronin 1B by Wt1 and Nkx2.5 transcription factors in mouse embryos (p.41)
4.F-actin structure in Coronin 1B-knockdown cells (p.42)
5.The biological function of Coronin 1B (p.43)
References (p.46)
Tables (p.56)
Figures (p.58)
Appendixes (p.78)
Achatz, G., Holzl, B., Speckmayer, R., Hauser, C., Sandhofer, F., and Paulweber, B. (1997). Functional domains of the human orphan receptor ARP-1/COUP-TFII involved in active repression and transrepression. Mol. Cell. Biol. 17, 4914-4932.
Akazawa, H., and Komuro, I. (2005). Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. Pharmacol. Ther. 107, 252-268.
Ameri, K., and Harris, A.L. (2008). Activating transcription factor 4. Int. J. Biochem. Cell Biol. 40, 14-21.
Armstrong, J.F., Pritchard-Jones, K., Bickmore, W.A., Hastie, N.D., and Bard, J.B. (1993). The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech. Dev. 40, 85-97.
Bhattacharya, S., Macdonald, S.T., and Farthing, C.R. (2006). Molecular mechanisms controlling the coupled development of myocardium and coronary vasculature. Clin. Sci. (Lond) 111, 35-46.
Biben, C., and Harvey, R.P. (1997). Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 11, 1357-1369.
Biben, C., Weber, R., Kesteven, S., Stanley, E., McDonald, L., Elliott, D.A., Barnett, L., Koentgen, F., Robb, L., Feneley, M., and Harvey, R.P. (2000). Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ. Res. 87, 888-895.
Bodmer, R., and Venkatesh, T.V. (1998). Heart development in Drosophila and vertebrates: conservation of molecular mechanisms. Dev. Genet. 22, 181-186.
Bollag, R.J., Siegfried, Z., Cebra-Thomas, J.A., Garvey, N., Davison, E.M., and Silver, L.M. (1994). An ancient family of embryonically expressed mouse genes sharing a conserved protein motif with the T locus. Nat. Genet. 7, 383-389.
Bruneau, B.G. (2008). The developmental genetics of congenital heart disease. Nature 451, 943-948.
Bruneau, B.G., Bao, Z.Z., Tanaka, M., Schott, J.J., Izumo, S., Cepko, C.L., Seidman, J.G., and Seidman, C.E. (2000). Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2-5 and dHand. Dev. Biol. 217, 266-277.
Buckingham, M., Meilhac, S., and Zaffran, S. (2005). Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6, 826-835.
Cai, C.L., Martin, J.C., Sun, Y., Cui, L., Wang, L., Ouyang, K., Yang, L., Bu, L., Liang, X., Zhang, X. et al. (2008). A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104-108.
Cai, L., Holoweckyj, N., Schaller, M.D., and Bear, J.E. (2005). Phosphorylation of coronin 1B by protein kinase C regulates interaction with Arp2/3 and cell motility. J. Biol. Chem. 280, 31913-31923.
Cai, L., Makhov, A.M., Schafer, D.A., and Bear, J.E. (2008). Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134, 828-842.
Cai, L., Marshall, T.W., Uetrecht, A.C., Schafer, D.A., and Bear, J.E. (2007). Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128, 915-929.
Chen, C.Y., and Schwartz, R.J. (1995). Identification of novel DNA binding targets and regulatory domains of a murine tinman homeodomain factor, nkx-2.5. J. Biol. Chem. 270, 15628-15633.
Chen, F., Kook, H., Milewski, R., Gitler, A.D., Lu, M.M., Li, J., Nazarian, R., Schnepp, R., Jen, K., Biben, C. et al. (2002). Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713-723.
Chen, J.N., and Fishman, M.C. (1996). Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122, 3809-3816.
Cho, S.Y., and Klemke, R.L. (2002). Purification of pseudopodia from polarized cells reveals redistribution and activation of Rac through assembly of a CAS/Crk scaffold. J. Cell Biol. 156, 725-736.
Christoffels, V.M., Hoogaars, W.M., Tessari, A., Clout, D.E., Moorman, A.F., and Campione, M. (2004). T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev. Dyn. 229, 763-770.
Chun, S.Y., Chen, F., Washburn, J.G., MacDonald, J.W., Innes, K.L., Zhao, R., Cruz-Correa, M.R., Dang, L.H., and Dang, D.T. (2007). CDX2 promotes anchorage-independent growth by transcriptional repression of IGFBP-3. Oncogene 26, 4725-4729.
Condeelis, J., Hall, A., Bresnick, A., Warren, V., Hock, R., Bennett, H., and Ogihara, S. (1988). Actin polymerization and pseudopod extension during amoeboid chemotaxis. Cell Motil. Cytoskeleton 10, 77-90.
Coppes, M.J., Liefers, G.J., Paul, P., Yeger, H., and Williams, B.R. (1993). Homozygous somatic Wt1 point mutations in sporadic unilateral Wilms tumor. Proc. Natl. Acad. Sci. U. S. A. 90, 1416-1419.
Cripps, R.M., and Olson, E.N. (2002). Control of cardiac development by an evolutionarily conserved transcriptional network. Dev. Biol. 246, 14-28.
de Hostos, E.L., Rehfuess, C., Bradtke, B., Waddell, D.R., Albrecht, R., Murphy, J., and Gerisch, G. (1993). Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility. J. Cell Biol. 120, 163-173.
Di Giovanni, S., De Biase, A., Yakovlev, A., Finn, T., Beers, J., Hoffman, E.P., and Faden, A.I. (2005). In vivo and in vitro characterization of novel neuronal plasticity factors identified following spinal cord injury. J. Biol. Chem. 280, 2084-2091.
Didichenko, S.A., Segal, A.W., and Thelen, M. (2000). Evidence for a pool of coronin in mammalian cells that is sensitive to PI 3-kinase. FEBS Lett. 485, 147-152.
Dobrovolskaia-Zavadskaia, N. (1927). Sur la mortification spontanée de la que chez la souris nouveau-née sur l’existence d’un caractere (facteur) héréditaire, non viable. Seanc. Soc. Biol. 97, 114-116.
Drummond, I.A., Rupprecht, H.D., Rohwer-Nutter, P., Lopez-Guisa, J.M., Madden, S.L., Rauscher, F.J.,3rd, and Sukhatme, V.P. (1994). DNA recognition by splicing variants of the Wilms' tumor suppressor, WT1. Mol. Cell. Biol. 14, 3800-3809.
Ferrari, G., Langen, H., Naito, M., and Pieters, J. (1999). A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97, 435-447.
Foger, N., Rangell, L., Danilenko, D.M., and Chan, A.C. (2006). Requirement for coronin 1 in T lymphocyte trafficking and cellular homeostasis. Science 313, 839-842.
Gittenberger-de Groot, A.C., Vrancken Peeters, M.P., Mentink, M.M., Gourdie, R.G., and Poelmann, R.E. (1998). Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ. Res. 82, 1043-1052.
Goodall, J., Carreira, S., Denat, L., Kobi, D., Davidson, I., Nuciforo, P., Sturm, R.A., Larue, L., and Goding, C.R. (2008). Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. Cancer Res. 68, 7788-7794.
Grogan, A., Reeves, E., Keep, N., Wientjes, F., Totty, N.F., Burlingame, A.L., Hsuan, J.J., and Segal, A.W. (1997). Cytosolic phox proteins interact with and regulate the assembly of coronin in neutrophils. J. Cell. Sci. 110 ( Pt 24), 3071-3081.
Haber, D.A., Sohn, R.L., Buckler, A.J., Pelletier, J., Call, K.M., and Housman, D.E. (1991). Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc. Natl. Acad. Sci. U. S. A. 88, 9618-9622.
Habets, P.E., Moorman, A.F., Clout, D.E., van Roon, M.A., Lingbeek, M., van Lohuizen, M., Campione, M., and Christoffels, V.M. (2002). Cooperative action of Tbx2 and Nkx2.5 inhibits ANF expression in the atrioventricular canal: implications for cardiac chamber formation. Genes Dev. 16, 1234-1246.
Hamilton, T.B., Barilla, K.C., and Romaniuk, P.J. (1995). High affinity binding sites for the Wilms' tumour suppressor protein WT1. Nucleic Acids Res. 23, 277-284.
Harrelson, Z., Kelly, R.G., Goldin, S.N., Gibson-Brown, J.J., Bollag, R.J., Silver, L.M., and Papaioannou, V.E. (2004). Tbx2 is essential for patterning the atrioventricular canal and for morphogenesis of the outflow tract during heart development. Development 131, 5041-5052.
Harvey, R.P. (2002). Patterning the vertebrate heart. Nat. Rev. Genet. 3, 544-556.
Harvey, R.P. (1996). NK-2 homeobox genes and heart development. Dev. Biol. 178, 203-216.
Hastie, N.D. (1994). The genetics of Wilms' tumor--a case of disrupted development. Annu. Rev. Genet. 28, 523-558.
Hiroi, Y., Kudoh, S., Monzen, K., Ikeda, Y., Yazaki, Y., Nagai, R., and Komuro, I. (2001). Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat. Genet. 28, 276-280.
Hombria, J.C., and Sotillos, S. (2006). JAK/STAT signalling: STAT cannot play with Ken and Barbie. Curr. Biol. 16, R98-100.
Hoshino, H., Kobayashi, A., Yoshida, M., Kudo, N., Oyake, T., Motohashi, H., Hayashi, N., Yamamoto, M., and Igarashi, K. (2000). Oxidative stress abolishes leptomycin B-sensitive nuclear export of transcription repressor Bach2 that counteracts activation of Maf recognition element. J. Biol. Chem. 275, 15370-15376.
Huang, N., and Miller, W.L. (2005). LBP proteins modulate SF1-independent expression of P450scc in human placental JEG-3 cells. Mol. Endocrinol. 19, 409-420.
Iwasaki, K., Hailemariam, K., and Tsuji, Y. (2007). PIAS3 interacts with ATF1 and regulates the human ferritin H gene through an antioxidant-responsive element. J. Biol. Chem. 282, 22335-22343.
Jarvis, S. (1991). Junior doctors' hours--the chance for change? Br. J. Gen. Pract. 41, 486.
Joziasse, I.C., van de Smagt, J.J., Smith, K., Bakkers, J., Sieswerda, G.J., Mulder, B.J., and Doevendans, P.A. (2008). Genes in congenital heart disease: atrioventricular valve formation. Basic Res. Cardiol. 103, 216-227.
Kapoor, M., Liu, S., Shi-wen, X., Huh, K., McCann, M., Denton, C.P., Woodgett, J.R., Abraham, D.J., and Leask, A. (2008). GSK-3beta in mouse fibroblasts controls wound healing and fibrosis through an endothelin-1-dependent mechanism. J. Clin. Invest. 118, 3279-3290.
Kasahara, H., Lee, B., Schott, J.J., Benson, D.W., Seidman, J.G., Seidman, C.E., and Izumo, S. (2000). Loss of function and inhibitory effects of human CSX/NKX2.5 homeoprotein mutations associated with congenital heart disease. J. Clin. Invest. 106, 299-308.
Kawauchi, J., Zhang, C., Nobori, K., Hashimoto, Y., Adachi, M.T., Noda, A., Sunamori, M., and Kitajima, S. (2002). Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription. J. Biol. Chem. 277, 39025-39034.
Kemler, R. (1993). From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet. 9, 317-321.
Kim, Y., and Nirenberg, M. (1989). Drosophila NK-homeobox genes. Proc. Natl. Acad. Sci. U. S. A. 86, 7716-7720.
Kimura, T., Kaneko, Y., Yamada, S., Ishihara, H., Senda, T., Iwamatsu, A., and Niki, I. (2008). The GDP-dependent Rab27a effector coronin 3 controls endocytosis of secretory membrane in insulin-secreting cell lines. J. Cell. Sci. 121, 3092-3098.
Kispert, A., and Herrmann, B.G. (1993). The Brachyury gene encodes a novel DNA binding protein. EMBO J. 12, 3211-3220.
Kobielak, A., Pasolli, H.A., and Fuchs, E. (2004). Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat. Cell Biol. 6, 21-30.
Koh, E., Clair, T., Hermansen, R., Bandle, R.W., Schiffmann, E., Roberts, D.D., and Stracke, M.L. (2007). Sphingosine-1-phosphate initiates rapid retraction of pseudopodia by localized RhoA activation. Cell. Signal. 19, 1328-1338.
Komuro, I., and Yazaki, Y. (1993). Control of cardiac gene expression by mechanical stress. Annu. Rev. Physiol. 55, 55-75.
Kreidberg, J.A., Sariola, H., Loring, J.M., Maeda, M., Pelletier, J., Housman, D., and Jaenisch, R. (1993). WT-1 is required for early kidney development. Cell 74, 679-691.
Lambrechts, D., and Carmeliet, P. (2004). Sculpting heart valves with NFATc and VEGF. Cell 118, 532-534.
Lange, P.S., Chavez, J.C., Pinto, J.T., Coppola, G., Sun, C.W., Townes, T.M., Geschwind, D.H., and Ratan, R.R. (2008). ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J. Exp. Med. 205, 1227-1242.
Larsson, S.H., Charlieu, J.P., Miyagawa, K., Engelkamp, D., Rassoulzadegan, M., Ross, A., Cuzin, F., van Heyningen, V., and Hastie, N.D. (1995). Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 81, 391-401.
Lee, J.J., Kwak, H.J., Lee, Y.M., Lee, J.W., Park, M.J., Ko, Y.G., Choi, H.D., Kim, N., Pack, J.K., Hong, S.I., and Lee, J.S. (2008). Acute radio frequency irradiation does not affect cell cycle, cellular migration, and invasion. Bioelectromagnetics 29, 615-625.
Lilien, J., Balsamo, J., Arregui, C., and Xu, G. (2002). Turn-off, drop-out: functional state switching of cadherins. Dev. Dyn. 224, 18-29.
Lin, H.B., Jurk, M., Gulick, T., and Cooper, G.M. (1999). Identification of COUP-TF as a transcriptional repressor of the c-mos proto-oncogene. J. Biol. Chem. 274, 36796-36800.
Lints, T.J., Parsons, L.M., Hartley, L., Lyons, I., and Harvey, R.P. (1993). Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119, 419-431.
Little, M.H., Prosser, J., Condie, A., Smith, P.J., Van Heyningen, V., and Hastie, N.D. (1992). Zinc finger point mutations within the WT1 gene in Wilms tumor patients. Proc. Natl. Acad. Sci. U. S. A. 89, 4791-4795.
Lyons, I., Parsons, L.M., Hartley, L., Li, R., Andrews, J.E., Robb, L., and Harvey, R.P. (1995). Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev. 9, 1654-1666.
Ma, K.K., Banas, K., and de Bold, A.J. (2005). Determinants of inducible brain natriuretic peptide promoter activity. Regul. Pept. 128, 169-176.
Mahlapuu, M., Ormestad, M., Enerback, S., and Carlsson, P. (2001). The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 128, 155-166.
Malik, S., and Karathanasis, S. (1995). Transcriptional activation by the orphan nuclear receptor ARP-1. Nucleic Acids Res. 23, 1536-1543.
Mishima, M., and Nishida, E. (1999). Coronin localizes to leading edges and is involved in cell spreading and lamellipodium extension in vertebrate cells. J. Cell. Sci. 112 (Pt 17), 2833-2842.
Moore, A.W., McInnes, L., Kreidberg, J., Hastie, N.D., and Schedl, A. (1999). YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126, 1845-1857.
Moore, A.W., Schedl, A., McInnes, L., Doyle, M., Hecksher-Sorensen, J., and Hastie, N.D. (1998). YAC transgenic analysis reveals Wilms' tumour 1 gene activity in the proliferating coelomic epithelium, developing diaphragm and limb. Mech. Dev. 79, 169-184.
Nal, B., Carroll, P., Mohr, E., Verthuy, C., Da Silva, M.I., Gayet, O., Guo, X.J., He, H.T., Alcover, A., and Ferrier, P. (2004). Coronin-1 expression in T lymphocytes: insights into protein function during T cell development and activation. Int. Immunol. 16, 231-240.
Pelletier, J., Bruening, W., Kashtan, C.E., Mauer, S.M., Manivel, J.C., Striegel, J.E., Houghton, D.C., Junien, C., Habib, R., and Fouser, L. (1991). Germline mutations in the Wilms' tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67, 437-447.
Plageman, T.F.,Jr, and Yutzey, K.E. (2005). T-box genes and heart development: putting the "T" in heart. Dev. Dyn. 232, 11-20.
Pohl, B.S., and Knochel, W. (2001). Overexpression of the transcriptional repressor FoxD3 prevents neural crest formation in Xenopus embryos. Mech. Dev. 103, 93-106.
Pritchard-Jones, K., Fleming, S., Davidson, D., Bickmore, W., Porteous, D., Gosden, C., Bard, J., Buckler, A., Pelletier, J., and Housman, D. (1990). The candidate Wilms' tumour gene is involved in genitourinary development. Nature 346, 194-197.
Provost, E., and Rimm, D.L. (1999). Controversies at the cytoplasmic face of the cadherin-based adhesion complex. Curr. Opin. Cell Biol. 11, 567-572.
Rackley, R.R., Flenniken, A.M., Kuriyan, N.P., Kessler, P.M., Stoler, M.H., and Williams, B.R. (1993). Expression of the Wilms' tumor suppressor gene WT1 during mouse embryogenesis. Cell Growth Differ. 4, 1023-1031.
Reecy, J.M., Li, X., Yamada, M., DeMayo, F.J., Newman, C.S., Harvey, R.P., and Schwartz, R.J. (1999). Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5. Development 126, 839-849.
Rivkees, S.A., Chen, M., Kulkarni, J., Browne, J., and Zhao, Z. (1999). Characterization of the murine A1 adenosine receptor promoter, potent regulation by GATA-4 and Nkx2.5. J. Biol. Chem. 274, 14204-14209.
Ryan, K., and Chin, A.J. (2003). T-box genes and cardiac development. Birth Defects Res. C. Embryo. Today 69, 25-37.
Scholz, H., Wagner, K.D., and Wagner, N. (2009). Role of the Wilms' tumour transcription factor, Wt1, in blood vessel formation. Pflugers Arch. 458, 315-323.
Schwartz, R.J., and Olson, E.N. (1999). Building the heart piece by piece: modularity of cis-elements regulating Nkx2-5 transcription. Development 126, 4187-4192.
Seo, S.J., Kim, I.Y., Choi, Y.J., Akaike, T., and Cho, C.S. (2006). Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/galactosylated chitosan scaffold. Biomaterials 27, 1487-1495.
Shiow, L.R., Roadcap, D.W., Paris, K., Watson, S.R., Grigorova, I.L., Lebet, T., An, J., Xu, Y., Jenne, C.N., Foger, N. et al. (2008). The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat. Immunol. 9, 1307-1315.
Spoerl, Z., Stumpf, M., Noegel, A.A., and Hasse, A. (2002). Oligomerization, F-actin interaction, and membrane association of the ubiquitous mammalian coronin 3 are mediated by its carboxyl terminus. J. Biol. Chem. 277, 48858-48867.
Srivastava, D., and Olson, E.N. (2000). A genetic blueprint for cardiac development. Nature 407, 221-226.
Stennard, F.A., and Harvey, R.P. (2005). T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132, 4897-4910.
Storesund, T., Hayashi, K., Kolltveit, K.M., Bryne, M., and Schenck, K. (2008). Salivary trefoil factor 3 enhances migration of oral keratinocytes. Eur. J. Oral Sci. 116, 135-140.
Sun, W.B., Wang, J., Lu, C., and Tang, G.X. (2005). Effects of secretive bone morphogenetic protein 2 induced by gene transfection on the biological changes of NIH3T3 cells. Chin. Med. J. (Engl) 118, 1703-1709.
Suri, M., Kelehan, P., O'neill, D., Vadeyar, S., Grant, J., Ahmed, S.F., Tolmie, J., McCann, E., Lam, W., Smith, S. et al. (2007). WT1 mutations in Meacham syndrome suggest a coelomic mesothelial origin of the cardiac and diaphragmatic malformations. Am. J. Med. Genet. A. 143A, 2312-2320.
Symons, M.H., and Mitchison, T.J. (1991). Control of actin polymerization in live and permeabilized fibroblasts. J. Cell Biol. 114, 503-513.
Tanaka, M., Chen, Z., Bartunkova, S., Yamasaki, N., and Izumo, S. (1999). The cardiac homeobox gene Csx/Nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development 126, 1269-1280.
Tomic-Canic, M., Mamber, S.W., Stojadinovic, O., Lee, B., Radoja, N., and McMichael, J. (2007). Streptolysin O enhances keratinocyte migration and proliferation and promotes skin organ culture wound healing in vitro. Wound Repair Regen. 15, 71-79.
Uetrecht, A.C., and Bear, J.E. (2006). Coronins: the return of the crown. Trends Cell Biol. 16, 421-426.
Wagner, K.J., and Roberts, S.G. (2004). Transcriptional regulation by the Wilms' tumour suppressor protein WT1. Biochem. Soc. Trans. 32, 932-935.
Wagner, N., Wagner, K.D., Theres, H., Englert, C., Schedl, A., and Scholz, H. (2005). Coronary vessel development requires activation of the TrkB neurotrophin receptor by the Wilms' tumor transcription factor Wt1. Genes Dev. 19, 2631-2642.
Yamada, M., Revelli, J.P., Eichele, G., Barron, M., and Schwartz, R.J. (2000). Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev. Biol. 228, 95-105.
Yan, M., Collins, R.F., Grinstein, S., and Trimble, W.S. (2005). Coronin-1 function is required for phagosome formation. Mol. Biol. Cell 16, 3077-3087.
Yang, L., Han, Y., Suarez Saiz, F., and Minden, M.D. (2007). A tumor suppressor and oncogene: the WT1 story. Leukemia 21, 868-876.
Zhang, X.A., Kazarov, A.R., Yang, X., Bontrager, A.L., Stipp, C.S., and Hemler, M.E. (2002). Function of the tetraspanin CD151-alpha6beta1 integrin complex during cellular morphogenesis. Mol. Biol. Cell 13, 1-11.
Zhou, B., Ma, Q., Rajagopal, S., Wu, S.M., Domian, I., Rivera-Feliciano, J., Jiang, D., von Gise, A., Ikeda, S., Chien, K.R., and Pu, W.T. (2008). Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109-113.
Zipfel, P.F., Decker, E.L., Holst, C., and Skerka, C. (1997). The human zinc finger protein EGR-4 acts as autoregulatory transcriptional repressor. Biochim. Biophys. Acta 1354, 134-144.
Zou, Y., Evans, S., Chen, J., Kuo, H.C., Harvey, R.P., and Chien, K.R. (1997). CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 124, 793-804.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top