跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 15:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅冠昕
研究生(外文):Guan-Shin Luo
論文名稱:利用非對稱外部共振腔建立電流調制鎖模半導體雷射
論文名稱(外文):mode-locking semiconductor laser by external current modulation in an asymmetric external cavity
指導教授:陳浩夫
指導教授(外文):How-Foo Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:62
中文關鍵詞:半導體雷射超短脈衝鎖模
外文關鍵詞:semiconductor laserultra-short pulsemode-locking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要利用半導體雷射產生超短脈衝,以期建立多光子螢光激發系統,這種非線性光學顯微術,其主要原理為:「利用高功率的雷射脈衝,在待測的生物體內會產生非線性光學訊號,並以此訊號成像。」
傳統用來產生超短脈衝,多利用鈦藍寶石雷射來達成,但因為晶體的造價昂貴、體積龐大、波長應用範圍有限等等缺失,使得在臨床的應用上相當不便。因此我們選擇半導體雷射當做光源,它擁有體積輕巧、價格便宜、涵蓋的波長範圍廣等等的優點,可以彌補鈦藍寶石雷射的不足。
架設上使用的雷射為「邊射型半導體雷射」:左右兩側發光面分別鍍上抗反射鍍膜,外加兩面反射鏡,以建立新的主共振腔。值得注意的是,舊有的文獻上大多使用單面抗反射鍍膜,本次實驗使用雙面抗反射鍍膜,可以有效降低單面抗反射鍍膜容易造成的多重反射問題。
本篇主要利用非對稱共振腔配置,進行電流調變主動式鎖模方法,來使半導體雷射產生超短脈衝,目前最佳的脈衝寬度可以達到200 ps ,而脈衝的平均功率約為 0.5mW ,這種非對稱共振腔配置產生脈衝的機制目前還無法推論,因此暫時將此視為一個新的現象。
Using semiconductor laser to generate ultra-short pulses is investigated in this study. It is expected to create a light source system to perform multi-photon excitation fluorescence in the future.
Traditionally, Ti-sapphire laser is used to generate ultra-short pulses for nonlinear microscopy imaging. However, since the cost of the crystal, bulky size, and limited range on wavelength for clinical applications, etc., using Ti-sapphire laser in bedside is considerably inconvenient. Therefore we have chosen a semiconductor laser as the light source to generate ultra-short pulses. It has the advantages of small size, low cost, and covering a wide range of wavelengths when compared to Ti-sapphire lasers.
Laser used in this study is an "edge-emitting semiconductor laser": the right and left facets are coating with anti-reflection coating to eliminate the longitudinal modes from the laser chip. Two external mirrors with different reflection are placed to form an external cavity as a new main cavity. It is worth noticing that most of the old literatures using one-side anti-reflection coating for mode-locked semiconductor lasers. Two-side anti-reflection coating can be better than one-side anti-reflection coating to reduce the problem of multiple reflections.
Different from normal mode-locking configuration, an asymmetric cavity configuration is used in this study. A sinusoidal current modulation actively mode-locks the semiconductor laser with external cavity to produce ultra-short pulses. The best pulse width generated under this configuration is about 200 ps, and the average power is about 0.5 mW. This mechanism of the asymmetric cavity configuration to generate the mode-locked pulses is still not clear. The study reported here is considered as a new phenomenon.
第一章 緒論 1
1-1研究動機 1
1-2研究目的 2
第二章 實驗原理 3
2-1 半導體雷射原理 3
2-2 雷射共振腔原理 6
2-3半導體雷射鏡面之抗反射鍍膜 11
2-4 節 鎖模原理 13
2-5 節 電流調變鎖模 18
2-5-1主動式鎖模 18
第三章 實驗系統、元件介紹與實驗流程 19
3-1 節 外腔耦合半導體雷射系統架設 19
3-1-1 半導體雷射鍍膜 19
3-1-2 主共振腔 20
3-1-3 調變頻率耦合導入半導體雷射 21
3-2 節 實驗元件介紹 22
3-2-1 光源及驅動儀器 22
3-2-2光學元件 25
3-2-3偵測元件及量測儀器 26
3-2-4廠牌型號列表 28
3-3 節 實驗流程 29
第四章 實驗結果與分析討論 30
4-1 節 建立外腔及雙面鍍膜的差異 30
4-1-1 建立外部主共振腔的差異 30
4-1-2 半導體雷射雙面鍍膜的差異 31
4-2 節 主共振的光強度-電流曲線、頻譜、光譜分析 33
4-2-1 光強度-電流曲線量測分析 33
4-2-2 頻譜及光譜的量測與相關性 35
4-3節 電流調變主動式鎖模的量測 37
4-3-1 主共振腔反射鏡配置 37
4-3-2 調移共振腔長、電流、頻率、頻率大小 43
第五章 結論與未來展望 49
5-1 節 結論 49
5-2 節 未來展望 50
5-2-1光電回饋式鎖模 51
5-2-2 光電轉換回饋至半導體雷射 53
參考文獻 54
1. 高甫仁, 超快雷射在共焦顯微技術的應用. 科儀新知17卷第六期, 1996.
2. 王雍舜, 王., 高甫仁, 非線性光學於顯微技術上的應用-雙光子共焦顯微
鏡. 物理雙月刊20卷6期, 1998.
3. 詹國禎, 雷射掃描共焦顯微術及其應用. 光訊77期,p.19, 1999.
4. wikipedia-semicondnctor laser.
5. 李彥德, "外腔耦合半導體雷射之不穩定性探討",碩士論文,陽明大學 生醫光電所. 2007.
6. Silfvast, W.T., Laser Fundamentals. 1996.
7. Kuhn, K.J., Laser Engineering 1998.
8. semiconductor laser Science Development, 2002 Jan, 349.
9. Shigihara, K., et al., Antireflection coating for laser diodes. Electronics Letters, 1995. 31(18): p. 1574-1576.
10. Braun, D. and R. Jungerman, Broadband multilayer antireflection coating for semiconductor laser facets. Optics Letters, 1995. 20(10): p. 1154-1156.
11. Eisenstein, G., L. Stulz, and L. Van Uitert, Antireflection coatings on semiconductor laser facets using sputtered lead silicate glass. Lightwave Technology, Journal of, 1986. 4(9): p. 1373-1375.
12. Schell, M., et al., Fundamental limits of sub-ps pulse generation by active modelocking of semiconductor lasers: the spectral gain width and the facetreflectivities. IEEE Journal of Quantum Electronics, 1991. 27(6): p. 1661-1668.
13. Zah, C., et al., 1.3 μm GaInAsP near-travelling-wave laser amplifiers made bycombination of angled facets and antireflection coatings. Electronics Letters, 1988. 24(20): p. 1275-1276.
14. Barnsley, P., J. Isaac, and D. Elton, Ultra-low reflectivity broadband 1.5 mu m GaInAsP semiconductor optical amplifiers. Electronics Letters, 1990. 26(12): p. 825-827.
15. Hargrove, L., R. Fork, and M. Pollack, Locking of He-Ne laser modes induced by synchronous intracavity modulation Appl. Phys. Lett., 1964. 5: p. 4-5.
16. P.T.Ho, et al., Picosecond pulse generation with a CW GaAlAs laser diodes. Appl. Phys. Lett, 1978. 33: p. 241-242.
17. Glasser, L., Cw modelocking of a GaInAsP diode laser. Electronics Letters, 1978. 14(23): p. 725-726.
18. Haus, H. and T. Moss, Mode-Locked Semiconductor Diode Lasers [and Discussion]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1980: p. 257-266.
19. Haus, H., Mode-locking of lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2000. 6(6): p. 1173-1185.
20. Kuizenga, D. and A. Siegman, FM and AM mode locking of the homogeneous laser--Part I: Theory. IEEE Journal of Quantum Electronics, 1970. 6(11): p. 694-708.
21. Chesnoy, J., Model for microwave mode-locking of a laser diode by currentmodulation. IEE Proceedings J Optoelectronics [see also IEE Proceedings-Optoelectronics], 1991. 138(1): p. 47-51.
22. AuYeung, J., Theory of active mode locking of a semiconductor laser in an external cavity. IEEE Journal of Quantum Electronics, 1981. 17(3): p. 398-404.
23. Petermann, K. External optical feedback phenomena in semiconductor lasers. 1995.
24. Bowers, J., et al., Actively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics, 1989. 25(6): p. 1426-1439.
25. Morton, P., R. Helkey, and J. Bowers, Dynamic detuning in actively mode-locked semiconductor lasers. IEEE Journal of Quantum Electronics, 1989. 25(12): p. 2621-2633.
26. Huggett, G., MODE LOCKING OF CW LASERS BY REGENERATIVE RF FEEDBACK. Applied Physics Letters, 1968. 13: p. 186.
27. Paulus, P., R. Langenhorst, and D. Jager, Stable pulsations of semiconductor lasers by optoelectronic feedback with avalanche photodiodes. Electronics Letters, 1987. 23(9): p. 471-472.
28. Nietzke, R., et al., Mode locking of a semiconductor laser by self-synchronising optoelectronic feedback of the longitudinal mode beats. Electronics Letters, 1990. 26(14): p. 1016-1018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top