跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林容甫
研究生(外文):Rung-Fu Lin
論文名稱:發展督卜勒顯微術量測細胞膜之振動
論文名稱(外文):Development of Doppler microscopy for the detection of cell membrane vibration
指導教授:陳浩夫
指導教授(外文):How-Foo Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:47
中文關鍵詞:雷射督卜勒外差干涉希爾伯特黃轉換
外文關鍵詞:laser dopplerheterodyneHHT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
雷射督卜勒測速系統算是一項相當成熟的技術,其應用範圍遍及各大領域,工業界也有相當不錯的研究成果,近年來此項技術被廣泛的應用於生物醫學研究上,如生物組織的斷層掃描、量測生物組織的表面特性,本研究預計量測細胞膜表面之微小變化。
在微小距離之量測,督卜勒移頻訊號受限於量測距離必須大於光波長之一半,因此在設計本實驗之量測系統時,特地引進光學差頻訊號,以突破此光學限制,利用外差干涉的方式,將督卜勒移頻訊號調解出來,配合快速傅立業轉換(Fast Fourier Transform,FFT)及希爾伯特黃轉換(Hilbert Huang Transform,HHT)分析督卜勒訊號之頻率,為了確定架設之準確性,本實驗使用移動平台與壓電材料測試移動及振動訊號之速度,並簡單的對生物細胞做量測,只要由待測物反射250nW的光功率,就能被系統分析出。
Laser Doppler velocimetry system is a fairly mature technology, its applications across all major areas, the industrial sector is also quite good research results. In the recent years, this technology has been widely used in biomedical research, such as biological tissue tomography, measurement of the surface properties of biological tissues. This study is expected to measure small vibration of cell membranes.
In the sub-micro distance measurement, the Doppler signal is limited by λ/2: the displacement distance must be greater than half of optical wavelength for correct measurement. In order to overcome this optical limitation, the measurement system specifically induces a carried frequency signal and uses heterodyne interference to measure the Doppler signal. Fast Fourier Transform and Hilbert Huang Transform are used to analyze the Doppler signal. In order to determine the accuracy, motion stage and piezoelectric material are used to test the linear motion and vibration signals. Finally, we use this system to measure biological samples, HeLa cell. This system can detect and analyze the signal of reflection light from the sample, and the power needs 250nW only.
第一章 緒論 1
1.1 研究目的及背景 1
第二章 實驗基本原理 4
2.1 彈性係數 4
2.2 雷射督卜勒效應 (Laser Doppler Effect) 5
2.3 外差干涉術 (Heterodyne Interference) 8
2.4 外差光源 10
2.5 傅立葉轉換 (Fourier Transform) 12
2.6 希爾伯特黃轉換 (Hilbert Huang Transform) 14
2.6.1 經驗模態分解 (Empirical Mode Decomposition) 14
2.6.2 內建模態函數 (Intrinsic Mode Function) 15
2.6.3 即時頻率 (Instantaneous Frequency) 18
第三章 研究設備及方法 20
3.1 系統架設 20
3.2 訊號分析 26
3.3 生物樣本 33
第四章 實驗結果分析 35
4.1 移動測試 35
4.2 振動測試 38
4.3 弦波測試 42
4.4 細胞量測 43
第五章 結論與未來展望 46
5.1 結論 46
5.2 未來展望 47
參考文獻 48
1. Bao, G. and S. Suresh, Cell and molecular mechanics of biological materials. Nature Materials, 2003. 2(11): p. 715-725.
2. Suresh, S., Biomechanics and biophysics of cancer cells. Acta Materialia, 2007. 55(12): p. 3989-4014.
3. Guck, J., et al., Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophysical Journal, 2005. 88(5): p. 3689-3698.
4. Martin, M., et al. Feeling with light for cancer. 2006.
5. Lincoln, B., et al., Reconfigurable microfluidic integration of a dual-beam laser trap with biomedical applications. Biomedical Microdevices, 2007. 9(5): p. 703-710.
6. Maivald, P., et al., Using force modulation to image surface elasticities with the atomic force microscope. Nanotechnology, 1991. 2: p. 103-106.
7. Mathur, A.B., et al., Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. Journal of Biomechanics, 2001. 34(12): p. 1545-1554.
8. Yamada, H., et al., Atomic force microscopy studies of photosynthetic protein membrane Langmuir-Blodgett films. Thin Solid Films, 1994. 243(1): p. 455-458.
9. Cuenot, S., et al., Measurement of elastic modulus of nanotubes by resonant contact atomic force microscopy. Journal of Applied Physics, 2003. 93: p. 5650.
10. Chen, J., et al., Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. American Journal of Physiology- Cell Physiology, 2001. 280(6): p. 1475-1484.
11. Evans, E. and A. Yeung, Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophysical Journal, 1989. 56(1): p. 151-160.
12. Usami, S., et al., Design and construction of a linear shear stress flow chamber. Annals of biomedical engineering, 1993. 21(1): p. 77-83.
13. Bareil, P.B., et al., Calculation of spherical red blood cell deformation in a dual-beam optical stretcher. Optics Express, 2007. 15(24): p. 16029-16034.
14. Lee, C.H., H.Y. Mong, and W.C. Lin, Noninterferometric wide-field optical profilometry with nanometer depth resolution. Optics letters, 2002. 27(20): p. 1773-1775.
15. Lee, C.H. and J. Wang, Noninterferometric differential confocal microscopy with 2-nm depth resolution. Optics Communications, 1997. 135(4-6): p. 233-237.
16. Wang, C.C., J.Y. Lin, and C.H. Lee, Membrane ripples of a living cell measured by non-interferometric widefield optical profilometry. Optics Express, 2005. 13(26): p. 10665-10672.
17. Huang, S.W., H.Y. Mong, and C.H. Lee, Super-resolution bright-field optical microscopy based on nanometer topographic contrast. Microscopy research and technique, 2004. 65.
18. Kim, M.S. and S.W. Kim, Two-way frequency-conversion phase measurement for high-speed and high-resolution heterodyne interferometry. Measurement Science and Technology, 2004. 15(11): p. 2341-2348.
19. Hyun-Seung Choi, J.-P.L., Kyi-Hwan Park, Novel displacement measurement technique of the heterodyne laser interferometer for nano position. IEEE/ASME, 2005.
20. Wang, X., et al., Laser diode interferometer used for measuring displacements in large range with a nanometer accuracy. Optics and laser technology, 2001. 33(4): p. 219-223.
21. Liu, X., et al., Polarization interferometer for measuring small displacement. IEEE Transactions on Instrumentation and Measurement, 2001. 50(4): p. 868-871.
22. Lin, H.-H., Measurement of cell membrane movement within nano scale using laser doppler technology. 2006.
23. Scalise, L., et al., Self-mixing laser diode velocimetry: application to vibration and velocity measurement. IEEE Transactions on Instrumentation and Measurement, 2004. 53(1): p. 223-232.
24. Geibel, G., The Cell Membrane. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top