跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王雅榕
研究生(外文):Ya-Jung Wang
論文名稱:改善光相位解析式表面電漿共振生物感測器之靈敏度及表面電漿共振影像系統之發展
論文名稱(外文):Improvement of the sensitivity of surface plasmon resonance biosensors based on phase detection techniques and the development toward
指導教授:陳浩夫
指導教授(外文):How-Foo Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:61
中文關鍵詞:表面電漿共振生物感測器相位影像系統
外文關鍵詞:surface plasmon resonancebiosensorphaseimage system
相關次數:
  • 被引用被引用:13
  • 點閱點閱:798
  • 評分評分:
  • 下載下載:244
  • 收藏至我的研究室書目清單書目收藏:1
表面電漿共振 (surface plasmon resonance) 生物感測器對於待測物之折射率變化非常靈敏,運用特殊的相位檢測方式,以532nm之綠光雷射為光源可提供較寬之動態解析範圍、較好之影像空間解析度及良好的靈敏度。本研究提出共光程的方式來減少光程差及外在環境擾動對於相位分析時所造成的誤差。利用蔗糖溶液來驗證系統對於微小折射率變化之靈敏度,並且可用於待測物之動態量測,系統對於折射率之解析度有所改善而可達到2×10P-6 PRI。接著利用改良之表面電漿共振感測器結合CCD影像擷取系統,可量測出折射率之空間分布影像,對於折射率之解析度可達到4×10P-6 PRI。由於在影像之相位分析上尚有誤差存在,未來克服誤差因素後,希望能夠對於解析度加以提升,以期能應用於環境變化對於微生物之影響。
Surface plasmon resonance (SPR) biosensor has high sensitivity for detecting refractive index changes of the samples. Using 532nm green laser as light source based on a special phase detection technique provides a wide dynamic range, better resolution of image spatial resolution, and good sensitivity. In this study, we proposed a common-path method to reduce the inaccuracy of the phase analysis due to the optical path difference and the disturbance from the external environment. The use of sucrose solution validates the resolution of our system for small changes in refractive index with wide dynamic range. The resolution of our system for the refractive index can be improved down to 2×10P-6P RI. Then we combine the improved SPR biosensor with a CCD video camera to form a SPR image system that could measure the spatial distribution of refractive index in the image, and the best resolution of the image system for refractive index could reach 4×10P-6P RI. Since there are still some errors in the phase analysis of the image system, we hope that we could overcome the factors of errors and improve the resolution of the image system, and then use the SPR image system to investigate the influence of environmental changes on microorganism.
致謝 i
Abstract iii
目錄 iv
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機 5
第二章 表面電漿共振理論 6
2.1 簡介 6
2.2 共振理論 7
2.3 激發表面電漿波的方式 11
2.4 SPR反射率及相位 15
2.5 SPR影像解析度 18
第三章 改良表面電漿共振生物感測器及影像系統之架構 20
3.1 表面電漿共振感測器 20
3.1.1 光學架設 20
3.1.2 訊號擷取與分析 21
3.1.3 旋轉平台控制 21
3.1.4 程式設計 22
3.2 表面電漿共振影像系統 24
3.2.1 光學架設 24
3.2.2 影像擷取與分析 25
3.3 光相位之數學推導 27
3.4 實驗校正 30
3.4.1 入射角度選擇 30
3.4.2 光感測器與CCD之訊號穩定性 32
3.5 實驗材料與製備 34
3.5.1 實驗晶片 34
3.5.2 蔗糖溶液 34
3.5.3 影像校正晶片 34
第四章 實驗結果與討論 36
4.1 表面電漿共振感測器 36
4.1.1 蔗糖溶液動態相位變化測量 36
4.1.2 蔗糖溶液相位變化分析 38
4.1.3 系統解析度分析 39
4.2 表面電漿共振影像系統 41
4.2.1 影像校正晶片之量測 41
4.2.2 蔗糖溶液相位變化量測 43
4.2.3 系統解析度分析 45
4.2.4 影像之相位誤差 46
第五章 結論 47
第六章 參考文獻 48
附錄 53
P1P Ahmad, A., Ramakrishnan, A., McLean, M., & Breau, A., Use of surface plasmon resonance biosensor technology as a possible alternative to detect differences in binding of enantiomeric drug compounds to immobilized albumins. Biosensors and Bioelectronics 18 (4), 399-404 (2003).
P2P Komolov, K., Senin, I., Philippov, P., & Koch, K., Surface plasmon resonance study of G protein/receptor coupling in a lipid bilayer-free system. Anal. Chem 78 (4), 1228-1234 (2006).
P3P Pei, R., Yang, X., & Wang, E., Enhanced surface plasmon resonance immunosensing using a streptavidin–biotinylated protein complex. The Analyst 126 (1), 4-6 (2001).
P4P Nordin, H., Jungnelius, M., Karlsson, R., & Karlsson, O., Kinetic studies of small molecule interactions with protein kinases using biosensor technology. Analytical biochemistry 340 (2), 359-368 (2005).
P5P Wegner, G. et al., Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Biochemistry 37, 8735-8742 (1998).
P6P Nygren-Babol, L., Sternesjo, A., Jagerstad, M., & Bjorck, L., Affinity and rate constants for interactions of bovine folate-binding protein and folate derivatives determined by optical biosensor technology. Effect of stereoselectivity. J. Agric. Food Chem 53 (13), 5473-5478 (2005).
P7P Kukanskis, K. et al., Detection of DNA hybridization using the TISPR-1 surface plasmon resonance biosensor. Analytical biochemistry 274 (1), 7-17 (1999).
P8P Chen, S., Su, Y., Hsiu, F., Tsou, C., & Chen, Y., Surface plasmon resonance phase-shift interferometry: real-time DNA microarray hybridization analysis. Journal of Biomedical Optics 10, 034005 (2005).
P9P Wood, R., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Proceedings of the Physical Society of London 18, 269-275 (1902).
P10P Fano, U., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). Journal of the Optical Society of America 31 (3), 213-222 (1941).
P11P Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift fur Physik A Hadrons and Nuclei 216 (4), 398-410 (1968).
P12P Kretschmann, E., Die bestimmung optischer konstanten von metallen durch anregung von oberfl chenplasmaschwingungen. Zeitschrift f r Physik A Hadrons and Nuclei 241 (4), 313-324 (1971).
P13P Nylander, C., Liedberg, B., & Lind, T., Gas detection by means of surface plasmon resonance. Sens. Actuators 3, 79-88 (1982).
P14P Liedberg, B., Nylander, C., & Lundstrom, I., Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4 (2), 299–304 (1983).
P15P Yeatman, E. & Ash, E., Surface plasmon microscopy. Electronics Letters 23 (20), 1091-1092 (1987).
P16P Rothenhaeusler, B. & Knoll, W., Surface plasmon microscopy. (1988).
P17P Giebel, K. et al., Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophysical journal 76 (1), 509-516 (1999).
P18P Raether, H., Surface plasmons on smooth and rough surfaces and on gratings. New York (1988).
P19P Salamon, Z., Macleod, H., & Tollin, G., Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. II: Applications to biological systems. BBA-Reviews on Biomembranes 1331 (2), 131-152 (1997).
P20P Kooyman, R., Kolkman, H., Van Gent, J., & Greve, J., Surface plasmon resonance immunosensors: sensitivity considerations. Analytica chimica acta. 213 (1-2), 35-45 (1988).
P21P Stenberg, E., Persson, B., Roos, H., & Urbaniczky, C., Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. Journal of colloid and interface science 143 (2), 513-526 (1991).
P22P Homola, J., Koudela, I., & Yee, S., Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sensors & Actuators: B. Chemical 54 (1-2), 16-24 (1999).
P23P Otsuki, S., Tamada, K., & Wakida, S., Wavelength-scanning surface plasmon resonance imaging. Applied Optics 44 (17), 3468-3472 (2005).
P24P Chen, K., Hsu, C., & Su, D., Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry. Optics Communications 209 (1), 167-172 (2002).
P25P Kuo, W., Chou, C., & Wu, H., Optical heterodyne surface-plasmon resonance biosensor. Optics Letters 28 (15), 1329-1331 (2003).
P26P Nelson, S., Johnston, K., & Yee, S., High sensitivity surface plasmon resonace sensor based on phase detection. Sensors & Actuators: B. Chemical 35 (1-3), 187-191 (1996).
P27P Kabashin, A. & Nikitin, P., Surface plasmon resonance interferometer for bio-and chemical-sensors. Optics Communications 150 (1-6), 5-8 (1998).
P28P Nikitin, P., Beloglazov, A., Kochergin, V., Valeiko, M., & Ksenevich, T., Surface plasmon resonance interferometry for biological and chemical sensing. Sensors & Actuators: B. Chemical 54 (1-2), 43-50 (1999).
P29P Sivakumar, N., Hui, W., Venkatakrishnan, K., & Ngoi, B., Large surface profile measurement with instantaneous phase-shifting interferometry. Optical Engineering 42, 367 (2003).
P30P Naraoka, R. & Kajikawa, K., Phase detection of surface plasmon resonance using rotating analyzer method. Sensors & Actuators: B. Chemical 107 (2), 952-956 (2005).
P31P Homola, J., Yee, S., & Gauglitz, G., Surface plasmon resonance sensors: review. Sensors & Actuators: B. Chemical 54 (1-2), 3-15 (1999).
P32P Wu, S., Wu, L., Ho, H., & Lin, C., 2003 (unpublished).
P33P Ho, H., Lam, W., & Wu, S., Surface plasmon resonance sensor based on the measurement of differential phase. Review of Scientific Instruments 73, 3534 (2002).
P34P 許瑋真, "發展具寬動態範圍的光相位檢測式表面電漿波生物晶片". 國立陽明大學生醫光電研究所 碩士論文 (2008).
P35P Ong, B., Yuan, X., Tjin, S., Zhang, J., & Ng, H., Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sensors & Actuators: B. Chemical 114 (2), 1028-1034 (2006).
P36P L vesque, L., Paton, B., & Payne, S., Precise thickness and refractive index determination of polyimide films using attenuated total reflection. Applied Optics 33 (34), 8036-8040 (1994).
P37P Berger, C., Kooyman, R., & Greve, J., Resolution in surface plasmon microscopy. Review of Scientific Instruments 65, 2829 (1994).
P38P Brockman, J., Nelson, B., & Corn, R., SURFACE PLASMON RESONANCE IMAGING MEASUREMENTS OF ULTRATHIN ORGANIC FILMS. Annual Review of Physical Chemistry 51 (1), 41-63 (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊