跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 06:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昱帆
研究生(外文):Yu-Fan Chen
論文名稱:表面增強拉曼光譜結合奈米針尖基板應用於肌酐酸分子量測
論文名稱(外文):The Application of Surface-Enhanced Raman Scattering Combined with Nanotip plate in Creatinine Detection
指導教授:江惠華江惠華引用關係
指導教授(外文):Huihua Kenny Chiang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:肌酸酐表面增強拉曼奈米針尖矽基板
外文關鍵詞:CreatinineSurface-Enhanced RamanSilcon Nanotip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
肌酸酐分子為人體中腎臟狀況及功能的一個指標,同時它也是尿液檢測上可以矯正水份影響的一個物質。一般我們利用液態膠體金屬來增強拉曼訊號時會遭遇到樣本遭到稀釋濃度下降的問題,所以本研究利用固態的奈米金屬基板來偵測肌酸酐分子。
奈米針尖基板鋸齒狀的構造擴大奈米金屬與肌酸酐分子的接觸面積同時也增加單位面積雷射光點下可以接收到拉曼訊號的數目,藉由這兩點優勢來提升表面增強拉曼訊號的強度。與先前利用膠體奈米金屬相較,此基板的增強效果已提升102以上。我們利用氧氣電漿改變基板的疏水性,避免肌酸酐分子分佈不均勻或是針尖結構糾結的現象,但此操作亦會對基板結構有物理性的破壞。我們最終比較三種金屬顆粒粒徑及間距不同的基板表現,以長型針尖搭配銀粒子將原本的線性區域成功提升一百倍座落在生理濃度的範圍。在人工尿液的表現上,基板大部分增強為尿酸訊號,而代表肌酸酐在680cm-1的訊號也成功的出現在光譜上。然而,在成分複雜的真實尿液中,雖然經過稀釋以及光漂白等動作降低其他物質引發的螢光,我們僅能觀察到尿酸分子的表現,無法看到肌酸酐分子。
Creatinine is an index of the renal function. Simultaneously, it can correct the vibration of water quantity under the urine test. We came across the dilute problem when we used colloids to enhanced Raman signals, so we used solid state plate to measure creatinine in this study.
The zigzag structures of this nanotip plate enlarged the contact area between metal and creatinine. It also increased the amount of raman signal under an unit area of laser point. These two advantages could help to raise the Raman Intensity. Comparing to the spectrum enhanced by colloids, the strength of enhancement increased two more orders. We modified the surface nature by oxygen plasma to avoid inhomogeneous distributions of creatinine and link of nanotips. However this operation would damage the structure of the plate. We took three kinds of plates with different metal diameters and interception for comparison and finally took long tip with silver particles and successfully set a linear region under a physiology concentration. For urine control, we got mostly uric acid signals from plate and also found the 680cm-1 for creatinine. When we took real urine for detection, its complex components would interfere the outcome of spectrums. Even we diluted and photobleached the sample, we could only receive the signals of uric acid.
目錄
致謝 I
中文摘要 II
Abstract III
圖表目錄 VII
第一章 序論 1
1.1 研究背景 1
1.2 光學檢測方法及其特色 4
1.2.1 光學檢測方法之特色 4
1.2.2 常見振動光譜簡介 5
1.3 肌酸酐(creatinine) 7
1.4 文獻回顧 9
1.4.1 金屬奈米粒子 9
1.4.2 表面增強拉曼基板之應用 10
1.4.3 拉曼散射光譜尿液成分分析 11
理論基礎 12
2.1 拉曼散射 12
2.1.1 拉曼散射簡史 12
2.1.2 拉曼散射原理 13
2.2表面增強拉曼散射(Surface Enhanced Raman Scattering) 20
2.2.1 表面增強拉曼簡史 20
2.2.2 電磁場增益效應 21
2.2.3 化學增益效應 23
第三章 研究架構與方法 25
3.1 儀器簡介 25
3.1.1 拉曼散射光譜儀 25
3.1.2 紫外光/可見光吸收光譜儀 28
3.1.3 穿隧式電子顯微鏡 29
3.1.4 掃描式電子顯微鏡 30
3.2 基板製造及奈米金屬膠體溶液 31
3.2.1 奈米金屬基板 31
3.2.2 奈米膠體粒子製備 33
3.3測量方法流程 34
3.4 資料分析 36
3.4.1 宇宙射線的移除 36
3.4.2 背景的減贅 36
3.4.3 面積積分 37
第四章 結果與討論 39
4.1 膠體金屬與固態針尖基板增強比較 39
4.2 親疏水性問題 42
4.2.1 結晶分佈不均勻 42
4.2.2 尿液成分引發針尖聚集 44
4.3 氧電漿修飾 47
4.4 各種基板表現 51
4.5 肌酸酐分子線性表現區域 57
4.6人工尿液與真實尿液表現 63
第五章 結論 68
參考文獻 69
[1]J. Twardowski, P. Anzenbacher, and M. Masson, [Raman and IR spectroscopy in biology and biochemistry] Polish Scientific Publishers Warsaw, (1994).
[2]K. Kneipp, H. Kneipp, I. Itzkan et al., “Surface-enhanced Raman scattering and biophysics,” Journal of Physics Condensed Matter, 14(18), 597-597 (2002).
[3]X. Dou, Y. Yamaguchi, H. Yamamoto et al., “Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer,” Vibrational spectroscopy, 13(1), 83-89 (1996).
[4]J. McMurdy, and A. Berger, “Raman spectroscopy-based creatinine measurement in urine samples from a multipatient population,” Applied spectroscopy, 57(5), 522-525 (2003).
[5]T. Le Bricon, E. Thervet, M. Froissart et al., [Plasma cystatin C is superior to 24-h creatinine clearance and plasma creatinine for estimation of glomerular filtration rate 3 months after kidney transplantation] Am Assoc Clin Chem, (2000).
[6]W. Premasiri, R. Clarke, and M. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers in surgery and medicine, 28(4), (2001).
[7]J. Baena, and B. Lendl, “Raman spectroscopy in chemical bioanalysis,” Current opinion in chemical biology, 8(5), 534-539 (2004).
[8]G. Trachta, B. Schwarze, B. Sagmuller et al., “Combination of high-performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine,” Journal of Molecular Structure, 693(1-3), 175-185 (2004).
[9]R. Jarvis, and R. Goodacre, “Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria,” FEMS microbiology letters, 232(2), 127-132 (2004).
[10]D. Skoog, D. Weat, and F. Holler, “Fundamentals of Analytical Chemistry, Thomson Learning,” Inc., Belmont, CA, USA, (1996).
[11]D. Leary, and J. Leary, [Principles of Instrumental Analysis] Harcourt Brace College Publishers. New York, (1992).
[12]K. Nakanishi, and P. Solomon, “Infrared Absorption Spectroscopy, HOLDED-DAY,” INC. Press: San Francisco, (1977).
[13]R. Drago, “Physical methods in chemistry,” (1977).
[14]R. Petry, M. Schmitt, and J. Popp, “Raman spectroscopy-a prospective tool in the life sciences,” ChemPhysChem, 4(1), (2003).
[15]T. Koo, [Measurement of blood analytes in turbid biological tissue using near-infrared Raman spectroscopy] Massachusetts Institute of Technology, Dept. of Mechanical Engineering, (2001).
[16]R. McCreery, [Raman Spectroscopy for Chemical Analysis. Vol. 157] New York. Editora John Wiley & Sons, Inc, (2000).
[17]S. Sekulic, H. Ward, D. Brannegan et al., “On-line monitoring of powder blend homogeneity by near-infrared spectroscopy,” Anal. Chem, 68(3), 509-513 (1996).
[18]S. Fox, [Human Physiology , WCB] McGraw-Hill, Boston, (1999).
[19]何敏夫, [臨床化學] 合記 臺北市, (1998).
[20]曾永德, [臨床鏡檢學] 藝軒圖書文具公司總經銷 臺北市, (2004).
[21]D. Paschal, V. Burt, S. Caudill et al., “Exposure of the U. S. population aged 6 years and older to cadmium: 1988-1994,” Archives of environmental contamination and toxicology(Print), 38(3), 377-383 (2000).
[22]H. Shi, and Y. Ma, “A simple and fast method to determine and quantify urinary creatinine,” Analytica Chimica Acta, 312(1), 79-83 (1995).
[23]M. Jaffe, “Ueber den niederschlag welchen pikrinsaure in normalen harn erzeugt und uber eine neue reaction des kreatinins,” Z Physiol Chem, 10, 391-400 (1886).
[24]L. Lu, H. Wang, Y. Zhou et al., “Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties,” Chemical Communications, 2002(2), 144-145 (2002).
[25]T. Vo-Dinh, “Surface-enhanced Raman spectroscopy using metallic nanostructures,” Trends in analytical chemistry, 17(8-9), 557-582 (1998).
[26]N. Jana, “Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration,” The Analyst, 128(7), 954-956 (2003).
[27]Y. Xia, and N. Halas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bull, 30(5), (2005).
[28]I. Sztainbuch, “The effects of Au aggregate morphology on surface-enhanced Raman scattering enhancement,” The Journal of chemical physics, 125, 124707 (2006).
[29]R. Alvarez-Puebla, E. Arceo, P. Goulet et al., “Role of nanoparticle surface charge in surface-enhanced Raman scattering,” J. Phys. Chem. B, 109(9), 3787-3792 (2005).
[30]C. Haynes, and R. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” Journal of Physical Chemistry B, 107(30), 7426-7433 (2003).
[31]H. Xu, J. Aizpurua, M. Kall et al., “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Physical Review E, 62(3), 4318-4324 (2000).
[32]F. Garcia-Vidal, and J. Pendry, “Collective theory for surface enhanced Raman scattering,” Physical review letters, 77(6), 1163-1166 (1996).
[33]S. Stewart, and P. Fredericks, “Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 55(7-8), 1641-1660 (1999).
[34]S. P?nzaru, I. Pavel, N. Leopold et al., “Identification and characterization of pharmaceuticals using Raman and surface-enhanced Raman scattering,” J. Raman Spectrosc, 35, 338-346 (2004).
[35]C. Yonzon, C. Haynes, X. Zhang et al., “Richard P. Van Duyne. A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layer, temporal stability, reversibility, and resistance to serum protein interference,” Anal. Chem, 76, 78-85 (2004).
[36]X. Dou, Y. Yamaguchi, H. Yamamoto et al., “A highly sensitive, compact Raman system without a spectrometer for quantitative analysis of biological samples,” Vibrational spectroscopy, 14(2), 199-205 (1997).
[37]T. Wang, H. Chiang, H. Lu et al., “Semi-quantitative Surface Enhanced Raman Scattering Spectroscopic Creatinine Measurement in Human Urine Samples,” Optical and Quantum Electronics, 37(13), 1415-1422 (2005).
[38]E. Carter, and H. Edwards, “Biological applications of Raman spectroscopy,” Infrared and Raman Spectroscopy of Biological Materials. H.-U. Gremlich and B. Yan, eds. Prac. Spectrosc, 24, 421-475 (2001).
[39]G. Thomas Jr, “Raman spectroscopy of protein and nucleic acid assemblies,” Annual review of biophysics and biomolecular structure, 28(1), 1-27 (1999).
[40]B. Schrader, D. Bougeard, and W. InterScience, [Infrared and Raman spectroscopy: methods and applications] VCH Weinheim, (1995).
[41]A. Tu, [Raman spectroscopy in biology: principles and applications] Wiley New York, (1982).
[42]M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett, 26(2), 163–166 (1974).
[43]J. Creighton, C. Blatchford, and M. Albrecht, “Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength,” Journal of the Chemical Society, Faraday Transactions 2, 75, 790-798 (1979).
[44]R. Van Duyne, “Chemical and Biochemical Applications of Lasers,” CB MOORE (Edit.), 4.
[45]E. Betzig, and J. Trautman, “Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit,” Science, 257(5067), 189-195 (1992).
[46]D. Maxwell, S. Emory, and S. Nie, “Nanostructured thin-film materials with surface-enhanced optical properties,” Chem. Mater, 13(3), 1082-1088 (2001).
[47]A. Ferrari, B. Kleinsorge, N. Morrison et al., “Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon,” Journal of Applied Physics, 85, 7191 (1999).
[48]C. Hsu, K. Wang, and L. Wang, “Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps*,” Adv. Mater, 18, 491-495 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top