|
1. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, and White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277: 1531-1537, 2002. 2. Ahima RS and Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinoletab 11: 327-332, 2000. 3. Baumann CA, Brady MJ, and Saltiel AR. Activation of glycogen synthase by insulin in 3T3-L1 adipocytes involves c-Cbl-associating protein (CAP)-dependent and CAP-independent signaling pathways. J Biol Chem 276: 6065-6068, 2001. 4. Bernlohr DA, Bolanowski MA, Kelly TJ, Jr., and Lane MD. Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J Biol Chem 260: 5563-5567, 1985. 5. Birnbaum MJ. Turning down insulin signaling. J Clin Invest 108: 655-659, 2001. 6. Bluher M. Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117: 241-250, 2009. 7. Brook CG, Lloyd JK, and Wolf OH. Relation between age of onset of obesity and size and number of adipose cells. Br Med J 2: 25-27, 1972. 8. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, Bouloumie A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, and Clement K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54: 2277-2286, 2005. 9. Christy RJ, Kaestner KH, Geiman DE, and Lane MD. CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 88: 2593-2597, 1991. 10. Clarke SL, Robinson CE, and Gimble JM. CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma 2 promoter. Biochem Biophys Res Commun 240: 99-103, 1997. 11. Cornelius P, Enerback S, Bjursell G, Olivecrona T, and Pekala PH. Regulation of lipoprotein lipase mRNA content in 3T3-L1 cells by tumour necrosis factor. Biochem J 249: 765-769, 1988. 12. Dreyer HC, Drummond MJ, Glynn EL, Fujita S, Chinkes DL, Volpi E, and Rasmussen BB. Resistance exercise increases human skeletal muscle AS160/TBC1D4 phosphorylation in association with enhanced leg glucose uptake during postexercise recovery. J Appl Physiol 105: 1967-1974, 2008. 13. Ezashi T, Das P, and Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102: 4783-4788, 2005. 14. Friedmann B, Goodman EH, Jr., and Weinhouse S. Effects of insulin and fatty acids on gluconeogenesis in the rat. J Biol Chem 242: 3620-3627, 1967. 15. Geloen A, Roy PE, and Bukowiecki LJ. Regression of white adipose tissue in diabetic rats. Am J Physiol 257: E547-553, 1989. 16. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 94: 206-218, 2008. 17. Gregoire FM, Smas CM, and Sul HS. Understanding adipocyte differentiation. Physiol Rev 78: 783-809, 1998. 18. Hartell NA, Archer HE, and Bailey CJ. Insulin-stimulated endothelial nitric oxide release is calcium independent and mediated via protein kinase B. Biochem Pharmacol 69: 781-790, 2005. 19. He T, Ai M, Zhao XH, and Xing YQ. Inducible nitric oxide synthase mediates hypoxia-induced hypoxia-inducible factor-1 alpha activation and vascular endothelial growth factor expression in oxygen-induced retinopathy. Pathobiology 74: 336-343, 2007. 20. Helmlinger G, Yuan F, Dellian M, and Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3: 177-182, 1997. 21. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, and Shimomura I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56: 901-911, 2007. 22. Juan CC, Chang CL, Lai YH, and Ho LT. Endothelin-1 induces lipolysis in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 288: E1146-1152, 2005. 23. Juan CC, Chuang TY, Chang CL, Huang SW, and Ho LT. Endothelin-1 regulates adiponectin gene expression and secretion in 3T3-L1 adipocytes via distinct signaling pathways. Endocrinology 148: 1835-1842, 2007. 24. Kahn BB and Flier JS. Obesity and insulin resistance. J Clin Invest 106: 473-481, 2000. 25. Kasanicki MA and Pilch PF. Regulation of glucose-transporter function. Diabetes Care 13: 219-227, 1990. 26. Kovacs P and Stumvoll M. Fatty acids and insulin resistance in muscle and liver. Best Pract Res Clin Endocrinol Metab 19: 625-635, 2005. 27. Lin Q, Lee YJ, and Yun Z. Differentiation arrest by hypoxia. J Biol Chem 281: 30678-30683, 2006. 28. Liu X, Miller YD, Burton NW, and Brown WJ. A preliminary study of the effects of Tai Chi and Qigong medical exercise on indicators of metabolic syndrome, glycaemic control, health related quality of life, and psychological health in adults with elevated blood glucose. Br J Sports Med, 2008. 29. Nobusue H, Endo T, and Kano K. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res 332: 435-446, 2008. 30. Ntambi JM and Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr 130: 3122S-3126S, 2000. 31. O'Neil RG, Wu L, and Mullani N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol Imaging Biol 7: 388-392, 2005. 32. Olijhoek JK, Martens FM, Banga JD, and Visseren FL. [The metabolic syndrome: a cluster of vascular risk factors]. Ned Tijdschr Geneeskd 149: 859-865, 2005. 33. Perreault M and Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med 7: 1138-1143, 2001. 34. Plutzky J, Viberti G, and Haffner S. Atherosclerosis in type 2 diabetes mellitus and insulin resistance: mechanistic links and therapeutic targets. J Diabetes Complications 16: 401-415, 2002. 35. Ratcliffe PJ. HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest 117: 862-865, 2007. 36. Regazzetti C, Peraldi P, Gremeaux T, Najem-Lendom R, Ben-Sahra I, Cormont M, Bost F, Le Marchand-Brustel Y, Tanti JF, and Giorgetti-Peraldi S. Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 58: 95-103, 2009. 37. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, and MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 289: 950-953, 2000. 38. Saltiel AR and Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799-806, 2001. 39. Schneider SH and Elouzi EB. The role of exercise in type II diabetes mellitus. Prev Cardiol 3: 77-82, 2000. 40. Scott RE, Hoerl BJ, Wille JJ, Jr., Florine DL, Krawisz BR, and Yun K. Coupling of proadipocyte growth arrest and differentiation. II. A cell cycle model for the physiological control of cell proliferation. J Cell Biol 94: 400-405, 1982. 41. Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19: 176-182, 2004. 42. Shah OJ, Wang Z, and Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14: 1650-1656, 2004. 43. Shao D and Lazar MA. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem 272: 21473-21478, 1997. 44. Shetty GK, Economides PA, Horton ES, Mantzoros CS, and Veves A. Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care 27: 2450-2457, 2004. 45. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 106: 171-176, 2000. 46. Smith PJ, Wise LS, Berkowitz R, Wan C, and Rubin CS. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 263: 9402-9408, 1988. 47. Standaert ML, Bandyopadhyay G, Perez L, Price D, Galloway L, Poklepovic A, Sajan MP, Cenni V, Sirri A, Moscat J, Toker A, and Farese RV. Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem 274: 25308-25316, 1999. 48. Student AK, Hsu RY, and Lane MD. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem 255: 4745-4750, 1980. 49. Wu Y, Yang X, and Li Y. [Exercise induces increased CLUT4 gene expression and protein content in diabetic rats]. Zhonghua Yi Xue Za Zhi 80: 172-174, 2000. 50. Yasukawa T, Tokunaga E, Ota H, Sugita H, Martyn JA, and Kaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J Biol Chem 280: 7511-7518, 2005. 51. Ye J, Gao Z, Yin J, and He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293: E1118-1128, 2007. 52. Yoshida H, Hirowatari Y, Kurosawa H, and Tada N. Implications of decreased serum adiponectin for type IIb hyperlipidaemia and increased cholesterol levels of very-low-density lipoprotein in type II diabetic patients. Clin Sci (Lond) 109: 297-302, 2005. 53. Yun Z, Maecker HL, Johnson RS, and Giaccia AJ. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2: 331-341, 2002.
|