跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃郁涵
研究生(外文):Yu-Han Huang
論文名稱:低氧對3T3-L1脂肪細胞形成與胰島素敏感性效應
論文名稱(外文):Effects of hypoxia on adipogenesis and insulin sensitivity in 3T3-L1 adipocytes
指導教授:阮琪昌阮琪昌引用關係
指導教授(外文):Chi-Chang Juan
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:58
中文關鍵詞:低氧脂肪細胞胰島素
外文關鍵詞:hypoxiaadipogenesisinsulin sensitivity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
肥胖是胰島素阻抗以及胰島素阻抗併發相關疾病的危險因子。在過去
的研究中指出功能異常的脂肪細胞會進一步導致胰島素阻抗,除此之外其他許多證據也顯示相較於瘦者體內的脂肪細胞,肥胖的個體體內脂肪細胞處於低氧的環境之中。另一方面,過去的研究中也指出運動會重新分配組織當中的血流,使細胞處於低氧的狀態並且增加胰島素敏感性。根據以上的發現,低氧對於胰島素敏感性的影響仍然是具有爭議性。本篇論文最主要的目標為探討低氧對於3T3-L1前脂肪細胞分化以及分化完全脂肪細胞胰島素敏感性的影響及相關機轉。在實驗中先以低氧處理3T3-L1前脂肪細胞6小時再繼續於一般氧濃度下完成分化作用以觀察低氧對於脂肪細胞合成的影響,接著藉由檢測完全分化的脂肪細胞中三酸甘油酯 (Triglyceride; TG)累積以及脂肪細胞脂質結合蛋白 (Adipocyte lipid binding protein; ALBP/aP2) 表現量來檢測脂肪細胞分化的效能。其中利用檢測細胞中的三酸甘油酯含量以及油紅染色法來檢測細胞中脂質的累積,並進一步利用西方墨點法檢測重要的細胞分化轉錄因子前脂肪細胞因子 (Preadipocytefactor; Pref-1)、CCAAT/enhancer binding protein b (C/EBPb)、Peroxisome proliferator-activated receptor-g (PPARg)�n表現情形。另一部分的實驗則是利用分化完全的3T3-L1脂肪細胞經過低氧前處理6小時後再給予胰島素刺激,並檢測胰島素訊息傳遞分子的磷酸化以及胰島素所誘發的葡萄糖攝取。更進一步在實驗中利用低氧誘發因子 (Hypoxia-inducible factor-1a;
HIF-1a)�n抑制劑了解 HIF-1a 在脂肪細胞合成以及胰島素敏感度上參與的角色。實驗結果顯示相較於正常氧濃度的對照組,低氧會降低脂肪細胞分化效能,顯著的降低脂質的累積和脂肪細胞脂質結合蛋白的表現量。低氧所抑制的脂肪細胞生合成則是透過增加 Pref-1 表現量及抑制 PPARg�n的表現量。並且,相較於正常氧濃度環境,低氧會增加 3T3-L1 脂肪細胞胰島素所誘發的胰島素受器自主磷酸化表現及 Akt 的磷酸化和葡萄糖的攝取。而當 HIF-1a�n被其抑制劑 YC-1
所抑制時,低氧所抑制的脂肪細胞生成以及低氧所促進的胰島素受器磷酸化都會恢復,因此本實驗認為,低氧所抑制的3T3-L1脂肪細胞合成以及胰島素敏感度的增加是透過 HIF-1a�n所調控。
Obesity is a risk factor for development of insulin resistance (IR) and IR-associated metabolic disorders. Studies also demonstrated that adipose tissue dysfunction might cause insulin resistance in obesity. Besides, several
lines of evidence suggested that adipose tissues of obese individuals were in a low oxygen status compared with the lean control. On the other hand, studies demonstrated that exercise re-arranged tissue blood flow disposing cells to low oxygen concentration and increased insulin sensitivity. According to above findings, regulation of hypoxia on insulin sensitivity is still controversial. The purpose of present study was to investigate the regulatory mechanism of
hypoxia on adipogenesis and insulin sensitivity in 3T3-L1 adipocytes. To explore the effect of hypoxia on adiponenesis, 3T3-L1 preadipocytes were preincubated in hypoxia status for 6 hours and then induced adipocyte differentiation. Differentiation efficiency was determined by lipid accumulation and expression of adipocyte lipid-binding protein (ALBP/aP2). Lipid accumulation was valuated by measuring intracellular triglyceride content and oil red O staining. Furthermore, expressions of key transcriptional regulators, including C/EBPa, PPARg, and preadipocyte factor-1 (Pref-1), were also measured by immunobloting. To explore the effect of hypoxia on insulin sensitivity, fully differentiated 3T3-L1 adipocytes were preincubated in hypoxia status for 6 hours and then the insulin-stimulated phosphorylation of insulin signaling molecules and glucose uptake were measured. To further elucidate the the underlying mechanism, we clarify the involvement of hypoxia inducible factor-1a (HIF-1a) on hypoxia-regulated adipogenesis and insulin sensitivity by using HIF-1a inhibitor. Our results showed that hypoxia significantly decreased lipid accumulation and aP2 expression compared with normoxia control. Inhibitory effects of hypoxia on adipocyte differentiation were associated with increased Pref-1 expression and decreased PPARg�nexpression. In addition, hypoxia treatment increased insulinstimulated
insulin receptor autophosphorylation and Akt phosphorylation and glucose uptake in 3T3-L1 adipocytes compared with normoxia control. Both hypoxia-inhibited adipogenesis and hypoxia-enhanced insulin sensitivity could
be prevented by pretreatment with HIF-1a inhibitor. In conclusion, hypoxia suppressed adipogenesis and enhanced insulin sensitivity through HIF-1a-dependent pathway in 3T3-L1 adipocytes.
目錄 1
重要中英文名詞與縮寫 3
中文摘要 4
Abstract 6
第一章、前言 8
第二章、文獻回顧 9
1. 低氧簡介 9
a. 何謂低氧 9
b. HIF-1簡介 9
2. 脂肪組織 10
a. 脂肪組織的簡介 10
b. 脂肪組織的合成 11
c. 脂肪組織的內分泌器官功能 12
3. 胰島素 13
a. 胰島素作用 13
b. 胰島素訊息傳遞 14
c. 胰島素阻抗 16
第三章、材料與方法 17
1. 實驗設計 17
2. 藥品及抗體來源 19
3. 3T3-L1 纖維母細胞之培養與分化 20
4. 低氧處理 20
5. MTT 細胞存活率檢測 21
6. 油紅染色法 (Oil red O staining) 21
7. 三酸甘油酯含量測定 22
8. 葡萄糖攝取測定法 22
9. 蛋白質樣本製備 23
10. 西方墨點法 23
11. 核蛋白萃取 24
12. 統計方法 25
第四章、結果 26
1. 低氧環境的基本檢測 26
(1) 實驗中的低氧環境 26
(2) 低氧刺激後的細胞存活率 26
2. 短時間低氧誘發 HIF-1�� 表現量上升 26
3.低氧處理抑制3T3-L1脂肪細胞分化 27
4.低氧刺激對於脂肪細胞分化效能的影響 27
(1)低氧刺激降低脂肪細胞分化效能 27
(2) 三酸甘油酯的累積顯著少於一般分化的細胞 28
(3) 成熟3T3-L1脂肪細胞的ALBP/aP2表現量下降 28
5. HIF-1���n抑制劑 YC-1 預防低氧刺激而下降的分化效能 28
6. 低氧處理增加胰島素刺激的胰島素受器磷酸化 29
7. 低氧處理增加胰島素刺激的葡萄糖攝取 29
8. HIF-1���n抑制劑 YC-1 降低低氧增加的胰島素受器敏感性 29
第五章 討論 31
參考文獻 34
圖與圖誌 38
1. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, and White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277: 1531-1537, 2002.
2. Ahima RS and Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinoletab 11: 327-332, 2000.
3. Baumann CA, Brady MJ, and Saltiel AR. Activation of glycogen synthase by insulin in 3T3-L1 adipocytes involves c-Cbl-associating protein (CAP)-dependent and CAP-independent signaling pathways. J Biol Chem 276: 6065-6068, 2001.
4. Bernlohr DA, Bolanowski MA, Kelly TJ, Jr., and Lane MD. Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3-L1 preadipocytes. J Biol Chem 260: 5563-5567, 1985.
5. Birnbaum MJ. Turning down insulin signaling. J Clin Invest 108: 655-659, 2001.
6. Bluher M. Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117: 241-250, 2009.
7. Brook CG, Lloyd JK, and Wolf OH. Relation between age of onset of obesity and size and number of adipose cells. Br Med J 2: 25-27, 1972.
8. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, Bouloumie A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, and Clement K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54: 2277-2286, 2005.
9. Christy RJ, Kaestner KH, Geiman DE, and Lane MD. CCAAT/enhancer binding protein gene promoter: binding of nuclear factors during differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 88: 2593-2597, 1991.
10. Clarke SL, Robinson CE, and Gimble JM. CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator-activated receptor gamma 2 promoter. Biochem Biophys Res Commun 240: 99-103, 1997.
11. Cornelius P, Enerback S, Bjursell G, Olivecrona T, and Pekala PH. Regulation of lipoprotein lipase mRNA content in 3T3-L1 cells by tumour necrosis factor. Biochem J 249: 765-769, 1988.
12. Dreyer HC, Drummond MJ, Glynn EL, Fujita S, Chinkes DL, Volpi E, and Rasmussen BB. Resistance exercise increases human skeletal muscle AS160/TBC1D4 phosphorylation in association with enhanced leg glucose uptake during postexercise recovery. J Appl Physiol 105: 1967-1974, 2008.
13. Ezashi T, Das P, and Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 102: 4783-4788, 2005.
14. Friedmann B, Goodman EH, Jr., and Weinhouse S. Effects of insulin and fatty acids on gluconeogenesis in the rat. J Biol Chem 242: 3620-3627, 1967.
15. Geloen A, Roy PE, and Bukowiecki LJ. Regression of white adipose tissue in diabetic rats. Am J Physiol 257: E547-553, 1989.
16. Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 94: 206-218, 2008.
17. Gregoire FM, Smas CM, and Sul HS. Understanding adipocyte differentiation. Physiol Rev 78: 783-809, 1998.
18. Hartell NA, Archer HE, and Bailey CJ. Insulin-stimulated endothelial nitric oxide release is calcium independent and mediated via protein kinase B. Biochem Pharmacol 69: 781-790, 2005.
19. He T, Ai M, Zhao XH, and Xing YQ. Inducible nitric oxide synthase mediates hypoxia-induced hypoxia-inducible factor-1 alpha activation and vascular endothelial growth factor expression in oxygen-induced retinopathy. Pathobiology 74: 336-343, 2007.
20. Helmlinger G, Yuan F, Dellian M, and Jain RK. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3: 177-182, 1997.
21. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, and Shimomura I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56: 901-911, 2007.
22. Juan CC, Chang CL, Lai YH, and Ho LT. Endothelin-1 induces lipolysis in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 288: E1146-1152, 2005.
23. Juan CC, Chuang TY, Chang CL, Huang SW, and Ho LT. Endothelin-1 regulates adiponectin gene expression and secretion in 3T3-L1 adipocytes via distinct signaling pathways. Endocrinology 148: 1835-1842, 2007.
24. Kahn BB and Flier JS. Obesity and insulin resistance. J Clin Invest 106: 473-481, 2000.
25. Kasanicki MA and Pilch PF. Regulation of glucose-transporter function. Diabetes Care 13: 219-227, 1990.
26. Kovacs P and Stumvoll M. Fatty acids and insulin resistance in muscle and liver. Best Pract Res Clin Endocrinol Metab 19: 625-635, 2005.
27. Lin Q, Lee YJ, and Yun Z. Differentiation arrest by hypoxia. J Biol Chem 281: 30678-30683, 2006.
28. Liu X, Miller YD, Burton NW, and Brown WJ. A preliminary study of the effects of Tai Chi and Qigong medical exercise on indicators of metabolic syndrome, glycaemic control, health related quality of life, and psychological health in adults with elevated blood glucose. Br J Sports Med, 2008.
29. Nobusue H, Endo T, and Kano K. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res 332: 435-446, 2008.
30. Ntambi JM and Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr 130: 3122S-3126S, 2000.
31. O'Neil RG, Wu L, and Mullani N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol Imaging Biol 7: 388-392, 2005.
32. Olijhoek JK, Martens FM, Banga JD, and Visseren FL. [The metabolic syndrome: a cluster of vascular risk factors]. Ned Tijdschr Geneeskd 149: 859-865, 2005.
33. Perreault M and Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med 7: 1138-1143, 2001.
34. Plutzky J, Viberti G, and Haffner S. Atherosclerosis in type 2 diabetes mellitus and insulin resistance: mechanistic links and therapeutic targets. J Diabetes Complications 16: 401-415, 2002.
35. Ratcliffe PJ. HIF-1 and HIF-2: working alone or together in hypoxia? J Clin Invest 117: 862-865, 2007.
36. Regazzetti C, Peraldi P, Gremeaux T, Najem-Lendom R, Ben-Sahra I, Cormont M, Bost F, Le Marchand-Brustel Y, Tanti JF, and Giorgetti-Peraldi S. Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes 58: 95-103, 2009.
37. Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, and MacDougald OA. Inhibition of adipogenesis by Wnt signaling. Science 289: 950-953, 2000.
38. Saltiel AR and Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414: 799-806, 2001.
39. Schneider SH and Elouzi EB. The role of exercise in type II diabetes mellitus. Prev Cardiol 3: 77-82, 2000.
40. Scott RE, Hoerl BJ, Wille JJ, Jr., Florine DL, Krawisz BR, and Yun K. Coupling of proadipocyte growth arrest and differentiation. II. A cell cycle model for the physiological control of cell proliferation. J Cell Biol 94: 400-405, 1982.
41. Semenza GL. Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology (Bethesda) 19: 176-182, 2004.
42. Shah OJ, Wang Z, and Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14: 1650-1656, 2004.
43. Shao D and Lazar MA. Peroxisome proliferator activated receptor gamma, CCAAT/enhancer-binding protein alpha, and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem 272: 21473-21478, 1997.
44. Shetty GK, Economides PA, Horton ES, Mantzoros CS, and Veves A. Circulating adiponectin and resistin levels in relation to metabolic factors, inflammatory markers, and vascular reactivity in diabetic patients and subjects at risk for diabetes. Diabetes Care 27: 2450-2457, 2004.
45. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 106: 171-176, 2000.
46. Smith PJ, Wise LS, Berkowitz R, Wan C, and Rubin CS. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 263: 9402-9408, 1988.
47. Standaert ML, Bandyopadhyay G, Perez L, Price D, Galloway L, Poklepovic A, Sajan MP, Cenni V, Sirri A, Moscat J, Toker A, and Farese RV. Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J Biol Chem 274: 25308-25316, 1999.
48. Student AK, Hsu RY, and Lane MD. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem 255: 4745-4750, 1980.
49. Wu Y, Yang X, and Li Y. [Exercise induces increased CLUT4 gene expression and protein content in diabetic rats]. Zhonghua Yi Xue Za Zhi 80: 172-174, 2000.
50. Yasukawa T, Tokunaga E, Ota H, Sugita H, Martyn JA, and Kaneki M. S-nitrosylation-dependent inactivation of Akt/protein kinase B in insulin resistance. J Biol Chem 280: 7511-7518, 2005.
51. Ye J, Gao Z, Yin J, and He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293: E1118-1128, 2007.
52. Yoshida H, Hirowatari Y, Kurosawa H, and Tada N. Implications of decreased serum adiponectin for type IIb hyperlipidaemia and increased cholesterol levels of very-low-density lipoprotein in type II diabetic patients. Clin Sci (Lond) 109: 297-302, 2005.
53. Yun Z, Maecker HL, Johnson RS, and Giaccia AJ. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2: 331-341, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊