跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 04:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:石佑翎
研究生(外文):Yu-Ling Shih
論文名稱:小腦與感覺訊息擷取:執行時間區辨作業時大小腦互動模式之功能性磁振造影研究
論文名稱(外文):Sensory acquisition in the cerebellum: Cerebrocerebellar interaction during duration discrimination
指導教授:謝仁俊謝仁俊引用關係
指導教授(外文):Jen-Chuen Hsieh
學位類別:博士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:193
中文關鍵詞:小腦感覺擷取時間區辨大小腦互動
外文關鍵詞:cerebellumsensory acquisitionduration discriminationcerebrocerebellar interaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:1
近二十年來,小腦研究已由動作學習與控制進展至非動作功能的探討,而小腦的非動作理論也獲得在演化、發展及神經造影多方面的研究支持。由小腦結構的一致性推論,無論是動作或是非動作的功能,小腦內部皆以相同的訊息處理模式處理其所接收到的訊息輸入。關於小腦的訊息處理模式,事件時間理論與感覺擷取理論為兩大最常受到研究者討論之小腦訊息處理理論。本論文利用同時具有時間及感覺訊息處理的時間區辨作業,探討在執行此項作業時大腦與小腦的互動模式,藉以進一步了解小腦如何處理時間與感覺訊息。
首先,經由比較時間區辨作業(聽覺及視覺時間區辨)與非時間區辨作業(聽覺強度與視覺大小),結果發現時間區辨作業與非時間區辨作業在以功能性磁振造影所量測之腦部活化反應並無顯著差異。現今對於時間處理的神經機制仍未有定論,此實驗結果與認為時間訊息很可能在處理感覺訊息的過程中直接註冊,因此不需額外的訊息處理歷程介入的觀點一致。
再者,藉由比較聽覺與視覺時間區辨作業,我們發現以視覺處理時間訊息會激發較多的腦區活化。由於聽覺系統的時間解析度較視覺系統佳,本實驗的結果也意味著執行視覺時間區辨作業時,時間/感覺處理的需求較高,故需要較多的腦區參與。
最後,我們在兩個不同的實驗中分別操弄時間及感覺訊息困難度,藉以觀察大腦與小腦如何因應作業困難度的增加,及其兩者間互動模式的改變。實驗結果發現,無論增加時間或是感覺訊息處理的困難度,都可以在小腦的前小葉發現活化的增加。當時間訊息處理的困難度增加時,小腦前小葉與大腦負責處理時間訊息的區域連結增強。而當感覺訊息處理的困難度增加時,小腦前小葉則與大腦負責處理感覺相關訊息的區域連結增強。相反地,當藉由提供另一種感覺訊息(視覺大小)來幫助處理時間訊息時,小腦後小葉藉由與其他小腦區域連結的增強,提供經整合之後的感覺資訊給予大腦負責處理時間訊息的區域作進一步地利用。
綜合本論文的四個實驗結果,符合感覺擷取理論的預測,在執行時間區辨作業時,小腦可以提供經調節整合的感覺訊息給予大腦利用。而大腦可以藉由與小腦連結的增強,節省本身處理訊息所需的資源,提升訊息處理之效率。
The research focus on the cerebellum has been shifting from motor control and learning to higher cognitive functions, such as memory and language, over the past two decades. Supported by developmental, evolutional, and neuroimaging evidence, now it is widely accepted that the cerebellum participates in various function, both in motor and non-motor domain, by means of its densely reciprocal connections with the cerebral cortex. The uniformity of the cerebellar cytoarchitecture leads to the hypothesis that the computation performed by the cerebellum is exactly the same for the numerous functions associated with the cerebellum. Different functions of the cerebellum are fulfilled depending on the cortical inputs received.
Accordingly, many theories about the computation of the cerebellum have been proposed in order to explain the contributions of the cerebellum in various functions. Among these theories, event timing and sensory acquisition are two of the most preeminent and the most actively testing hypotheses. Exploiting the inherent nature of both temporal processing and sensory analysis, duration discrimination tasks are frequently employed for dissociating the role of the cerebellum between temporal processing and sensory analysis
However, most previous studies compared a duration discrimination task with a motor control or a non-temporal discrimination control task in order to see whether the activation of the cerebellum was found only in the duration task or it was observed in both the duration and the control task. If the cerebellum only yields its activation in the duration task, then the view of timing processing is supported. Otherwise, the support is inclined toward the view of sensory analysis. Nevertheless, the interaction between the cerebellum and the cerebral cortex during duration discrimination is scarcely investigated. Furthermore, for the previous studies manipulating task difficulty during duration discrimination, only tasks with different temporal difficulties were examined, the effect of the sensory difficulty on the cerebellar activation and the cerebrocerebellum interaction is barely addressed.
Given the importance of cortical inputs for the contribution of the cerebellum to neuropsychological functions, it is noteworthy to unveil how the function connectivity between the cerebellum and the cerebral cortex changes in response to both temporal and sensory difficulty during duration discrimination. Based on these findings, the role of the cerebellum between timing processing and/or sensory analysis can be better understood.
Thus, a series of experiments were done in this thesis using duration discrimination tasks. The first attempt was to replicate the findings of previous studies comparing a duration discrimination task with a non-temporal discrimination task. An auditory and a visual duration discrimination tasks were contrasted with their corresponding control tasks, i.e. auditory intensity and visual size discrimination tasks. By comparing duration discrimination and other sensory feature discrimination in both auditory and visual modalities, the results of this experiment suggests that duration and non-temporal discrimination share mostly similar neural networks.
The second experiment focused on uncovering whether duration discrimination across different sensory modalities share the same neural substrates or they engage different modality-specific networks in order to understand if the cerebellum plays a role in duration discrimination across auditory and visual modalities. The findings of this experiment support the view that hearing has the superiority for temporal processing over vision, i.e. the modality appropriateness hypothesis, since a relatively extensive neural network (the parietal, limbic cortices and cerebellum besides the frontal-temporal network) was observed in the visual than the auditory task. The results also led to the suggestion that the DLPFC, preSMA/SMA, and the basal ganglia rather than the cerebellum, are the common neural substrates for temporal processing across sensory modalities and sensory structures for explicit timing within the sub-second range.
Having a clear picture of sensory discrimination for temporal and non-temporal events and of duration discrimination across auditory and visual modalities, the last two experiments were designed to reveal the effect of temporal and sensory difficulties on the pattern of cerebrocerebellar interaction during duration discrimination. The results from these two experiments provide a comprehensive view of the role of the cerebellum in sensory discrimination of temporal events and give forth the understanding of the cerebellum in neuropsychological functions.
On the whole, the cortical computational efficiency can be achieved by an enhancement of functional connection between the cerebral cortex and the cerebellum, e.g. the PMC/SMA and DLPFC strengthened their connections with the cerebellum instead of increasing their activation per se when temporal difficulty was increased. Increasing sensory difficulty resulted in a tight coupling between the cerebellum and thalamus/hypothalamus. In addition, relatively restrictive cortical regions accompanying more extensive intra-cerebellum connections were engaged when integration of two kinds of sensory information benefits the discrimination process, in accord with the view proposed in the sensory acquisition hypothesis that specific sensory data are interpreted in the context of all data being acquired in the cerebellum.
Taken together, the work presented in this thesis demonstrates that sensory discrimination of temporal and non-temporal events engages similar neural networks. Concur with the prediction of the sensory acquisition hypothesis, the cerebellum increases its activity in response to increasing both temporal and sensory difficulty and enhances its connection with other brain regions responsible for temporal or sensory processing when demanding information processing is required. A saving of cortical computation can be realized by retrieving the well-controlled sensory information from the cerebellum.
摘要 - 1 -
ABSTRACT - 3 -
CHAPTER 1 - 8 -
THE CEREBELLUM
1.1 THE ANATOMY OF THE CEREBELLUM - 8 -
1.2 FUNCTIONS OF THE CEREBELLUM - 12 -
1.2.1 Motor-related functions - 12 -
1.2.1.1 Motor control - 12 -
1.2.1.2 Motor learning - 14 -
1.2.1.3 A Theory about motor-related functions of the cerebellum - 17 -
1.2.2 Non-motor-related functions - 19 -
1.2.2.1 Ontogenetic and phylogenetic evidence - 19 -
1.2.2.2 Cerebrocerebellum connectivity - 21 -
1.2.2.3 The cognitive involvement of the cerebellum - 22 -


CHAPTER 2 - 27 -
COMPUTATIONS OF THE CEREBELLUM
2.1 SINGLE COMPUTATION - 27 -
2.2 THE CEREBELLUM IN TEMPORAL PROCESSING - 28 -
2.3 THE CEREBELLUM IN SENSORY ANALYSIS - 31 -
CHAPTER 3 - 36 -
THE SENSORY DISCRIMINATION OF TEMPORAL EVENTS
CHAPTER 4 - 39 -
SENSORY DISCRIMINATION OF TEMPORAL AND NON-TEMPORAL EVENTS
CHAPTER 5 - 53 -
COMMONALITIES AND DIFFERENCES OF DURATION DISCRIMINATION ACROSS AUDITORY AND VISUAL MODALITIES
CHAPTER 6 - 71 -
EFFECT OF TEMPORAL DIFFICULTY ON CEREBROCEREBELLAR INTERACTION DURING VISUAL DURATION DISCRIMINATION


CHAPTER 7 - 87 -
EFFECT OF SENSORY DIFFICULTY ON CEREBROCEREBELLAR INTERACTION DURING VISUAL DURATION DISCRIMINATION
CHAPTER 8 - 115 -
8.1 GENERAL DISCUSSION AND CONCLUSION - 115 -
8.2 IMPLICATIONS AND FUTURE DIRECTIONS - 120 -
REFERENCES - 125 -
APPENDIX A - 125 -
TESTING OF THE SCANNING ROOM EFFECT BEFORE THE MAIN EXPERIMENTS
APPENDIX B - 125 -
EXAMINING AUDITORY DOMINANCE IN TEMPORAL PROCESSING:
EFFECT OF SOUND DURING FILLED VISUAL DURATION JUDGMENT
Ackermann, H. (2008). Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives. Trends Neurosci, 31, 265-272.
Adrain, E. D. (1943). Afferent areas in the cerebellum connected with the limbs. Brain, 66, 289-315.
Albus, J. S. (1971). A theory of cerebellar function. Math Biosci, 10, 25-61.
Allen, G., McColl, R., Barnard, H., Ringe, W. K., Fleckenstein, J., & Cullum, C. M. (2005). Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage, 28, 39-48.
Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends Neurosci, 31, 137-145.
Andreasen, N. C., & Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biol Psychiatry, 64, 81-88.
Apps, R., & Garwicz, M. (2005). Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci, 6, 297-311.
Belin, P., McAdams, S., Thivard, L., Smith, B., Savel, S., Zilbovicius, M., et al. (2002). The neuroanatomical substrate of sound duration discrimination. Neuropsychologia, 40, 1956-1964.
Ben-Yehudah, G., Guediche, S., & Fiez, J. A. (2007). Cerebellar contributions to verbal working memory: beyond cognitive theory. Cerebellum, 6, 193-201.
Blakemore, S. J., Frith, C. D., & Wolpert, D. M. (2001). The cerebellum is involved in predicting the sensory consequences of action. Neuroreport, 12, 1879-1884.
Blakemore, S. J., Wolpert, D. M., & Frith, C. D. (1998). Central cancellation of self-produced tickle sensation. Nat Neurosci, 1, 635-640.
Boltz, M. G. (2005). Duration judgments of naturalistic events in the auditory and visual modalities. Percept Psychophys, 67, 1362-1375.
Booth, J. R., Wood, L., Lu, D., Houk, J. C., & Bitan, T. (2007). The role of the basal ganglia and cerebellum in language processing. Brain Res, 1133, 136-144.
Bower, J. M. (1997a). Control of senosry data acquisition. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 490-508). New York: Academic press.
Bower, J. M. (1997b). Is the cerebellum sensory for motor's sake, or motor for sensory's sake: the view from the whiskers of a rat? Prog Brain Res, 114, 463-496.
Boyden, E. S., Katoh, A., & Raymond, J. L. (2004). Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci, 27, 581-609.
Bueti, D., Bahrami, B., & Walsh, V. (2008). Sensory and association cortex in time perception. J Cogn Neurosci, 20, 1054-1062.
Bueti, D., Walsh, V., Frith, C., & Rees, G. (2008). Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci, 20, 204-214.
Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci, 6, 755-765.
Bushara, K. O., Wheat, J. M., Khan, A., Mock, B. J., Turski, P. A., Sorenson, J., et al. (2001). Multiple tactile maps in the human cerebellum. Neuroreport, 12, 2483-2486.
Calvert, G. A., Spence, C., & Stein, B. E. (2004). The handbook of multisensory processes. Cambridge: MITpress.
Carey, M., & Lisberger, S. (2002). Embarrassed, but not depressed: eye opening lessons for cerebellar learning. Neuron, 35, 223-226.
Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280, 747-749.
Chadderton, P., Margrie, T. W., & Hausser, M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature, 428, 856-860.
Chen, S. H., & Desmond, J. E. (2005a). Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage, 24, 332-338.
Chen, S. H., & Desmond, J. E. (2005b). Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia, 43, 1227-1237.
Ciccarelli, O., Toosy, A. T., Marsden, J. F., Wheeler-Kingshott, C. M., Sahyoun, C., Matthews, P. M., et al. (2005). Identifying brain regions for integrative sensorimotor processing with ankle movements. Exp Brain Res, 166, 31-42.
Coull, J., & Nobre, A. (2008). Dissociating explicit timing from temporal expectation with fMRI. Curr Opin Neurobiol, 18, 137-144.
Coull, J. T., Nazarian, B., & Vidal, F. (2008). Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. J Cogn Neurosci, 20, 2185-2197.
Coull, J. T., Vidal, F., Nazarian, B., & Macar, F. (2004). Functional anatomy of the attentional modulation of time estimation. Science, 303, 1506-1508.
Davare, M., Duque, J., Vandermeeren, Y., Thonnard, J. L., & Olivier, E. (2007). Role of the ipsilateral primary motor cortex in controlling the timing of hand muscle recruitment. Cereb Cortex, 17, 353-362.
Day, B. L., Thompson, P. D., Harding, A. E., & Marsden, C. D. (1998). Influence of vision on upper limb reaching movements in patients with cerebellar ataxia. Brain, 121 ( Pt 2), 357-372.
De Zeeuw, C. I., & Yeo, C. H. (2005). Time and tide in cerebellar memory formation. Curr Opin Neurobiol, 15, 667-674.
Deary, I. J., Simonotto, E., Meyer, M., Marshall, A., Marshall, I., Goddard, N., et al. (2004). The functional anatomy of inspection time: an event-related fMRI study. Neuroimage, 22, 1466-1479.
Desmond, J. E., Chen, S. H., & Shieh, P. B. (2005). Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol, 58, 553-560.
Devor, A. (2000). Is the cerebellum like cerebellar-like structures? Brain Res Brain Res Rev, 34, 149-156.
Diamond, A. (2000). Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev, 71, 44-56.
Diedrichsen, J., Criscimagna-Hemminger, S. E., & Shadmehr, R. (2007). Dissociating timing and coordination as functions of the cerebellum. J Neurosci, 27, 6291-6301.
Dum, R. P., & Strick, P. L. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol, 89, 634-639.
Eagleman, D. M. (2008). Human time perception and its illusions. Curr Opin Neurobiol, 18, 131-136.
Eckert, M. A., Leonard, C. M., Richards, T. L., Aylward, E. H., Thomson, J., & Berninger, V. W. (2003). Anatomical correlates of dyslexia: frontal and cerebellar findings. Brain, 126, 482-494.
Egner, T., & Hirsch, J. (2005). The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage, 24, 539-547.
Ehrsson, H. H., Holmes, N. P., & Passingham, R. E. (2005). Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J Neurosci, 25, 10564-10573.
Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). That's my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science, 305, 875-877.
Fan, J., Hof, P. R., Guise, K. G., Fossella, J. A., & Posner, M. I. (2008). The functional integration of the anterior cingulate cortex during conflict processing. Cereb Cortex, 18, 796-805.
Ferrandez, A. M., Hugueville, L., Lehericy, S., Poline, J. B., Marsault, C., & Pouthas, V. (2003). Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage, 19, 1532-1544.
Fierro, B., Palermo, A., Puma, A., Francolini, M., Panetta, M. L., Daniele, O., et al. (2007). Role of the cerebellum in time perception: a TMS study in normal subjects. J Neurol Sci, 263, 107-112.
Frank, B., Schoch, B., Richter, S., Frings, M., Karnath, H. O., & Timmann, D. (2007). Cerebellar lesion studies of cognitive function in children and adolescents - limitations and negative findings. Cerebellum, 6, 242-253.
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6, 218-229.
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119 ( Pt 2), 593-609.
Gao, J. H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science, 272, 545-547.
Georgopoulos, A. P. (2000). Neural aspects of cognitive motor control. Curr Opin Neurobiol, 10, 238-241.
Gibbon, J. (1977). Scalar expectancy theory and Weber's law in animal timing. Psychol Rev, 84, 279-325.
Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage, 19, 200-207.
Gizewski, E. R., Timmann, D., & Forsting, M. (2004). Specific cerebellar activation during Braille reading in blind subjects. Hum Brain Mapp, 22, 229-235.
Glickstein, M. (2000). How are visual areas of the brain connected to motor areas for the sensory guidance of movement? Trends Neurosci, 23, 613-617.
Glickstein, M., & Doron, K. (2008). Cerebellum: connections and functions. Cerebellum, 7, 589-594.
Glickstein, M., & Yeo, C. (1990). The cerebellum and motor learning. J Cogn Neurosci, 2, 69-80.
Grodd, W., Hulsmann, E., Lotze, M., Wildgruber, D., & Erb, M. (2001). Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Hum Brain Mapp, 13, 55-73.
Grondin, S. (1993). Duration discrimination of empty and filled intervals marked by auditory and visual signals. Percept Psychophys, 54, 383-394.
Guttman, S. E., Gilroy, L. A., & Blake, R. (2005). Hearing what the eyes see: auditory encoding of visual temporal sequences. Psychol Sci, 16, 228-235.
Hansel, C., Linden, D. J., & D'Angelo, E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci, 4, 467-475.
Harrington, D. L., Lee, R. R., Boyd, L. A., Rapcsak, S. Z., & Knight, R. T. (2004). Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain, 127, 561-574.
Heekeren, H. R., Marrett, S., Bandettini, P. A., & Ungerleider, L. G. (2004). A general mechanism for perceptual decision-making in the human brain. Nature, 431, 859-862.
Herrup, K., & Kuemerle, B. (1997). The compartmentalization of the cerebellum. Annu Rev Neurosci, 20, 61-90.
Holmes, G. (1917). The symptoms of acute cerebellar injuries due to gunshot injuries. Brain, 40, 461-535.
Holmes, G. (1939). The cerebellum of man. Brain, 62, 1-30.
Honey, G. D., Pomarol-Clotet, E., Corlett, P. R., Honey, R. A., McKenna, P. J., Bullmore, E. T., et al. (2005). Functional dysconnectivity in schizophrenia associated with attentional modulation of motor function. Brain, 128, 2597-2611.
Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., et al. (2000). Human cerebellar activity reflecting an acquired internal model of a new tool. Nature, 403, 192-195.
Ito, M. (1993). Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci, 16, 448-450; discussion 453-444.
Ito, M. (1997). Cerebellar Microcomplexes, in: Schmahmann, J. D. (Ed.), The cerebellum and cognition. New York: Academic Press.
Ito, M. (1998). Cerebellar learning in the vestibulo-ocular reflex. Trends Neurosci, 2, 313-321.
Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci, 9, 304-313.
Ito, M., Nisimaru, N., & Yamamoto, M. (1973). Specific neural connections for the cerebellar control of vestibulo-ocular reflexes. Brain Res, 60, 238-243.
Ivry, R. B. (1997). Cerebellar timing systems. In J. D. Schmahmann (Ed.), The cerebellum and cognition (pp. 556-571). New York: Academic press.
Ivry, R. B., & Keele, S. W. (1989). Timing functions of the cerebellum. J Cogn Neurosci, 1, 136-152.
Ivry, R. B., Keele, S. W., & Diener, H. C. (1988). Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res, 73, 167-180.
Ivry, R. B., & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends Cogn Sci, 12, 273-280.
Ivry, R. B., Spencer, R. M., Zelaznik, H. N., & Diedrichsen, J. (2002). The cerebellum and event timing. Ann N Y Acad Sci, 978, 302-317.
Jahanshahi, M., Jones, C. R., Dirnberger, G., & Frith, C. D. (2006). The substantia nigra pars compacta and temporal processing. J Neurosci, 26, 12266-12273.
Jancke, L., Loose, R., Lutz, K., Specht, K., & Shah, N. J. (2000). Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Brain Res Cogn Brain Res, 10, 51-66.
Jansen, A., Floel, A., Van Randenborgh, J., Konrad, C., Rotte, M., Forster, A. F., et al. (2005). Crossed cerebro-cerebellar language dominance. Hum Brain Mapp, 24, 165-172.
Jantzen, K. J., Oullier, O., Marshall, M., Steinberg, F. L., & Kelso, J. A. (2007). A parametric fMRI investigation of context effects in sensorimotor timing and coordination. Neuropsychologia, 45, 673-684.
Jantzen, K. J., Steinberg, F. L., & Kelso, J. A. (2004). Brain networks underlying human timing behavior are influenced by prior context. Proc Natl Acad Sci U S A, 101, 6815-6820.
Jantzen, K. J., Steinberg, F. L., & Kelso, J. A. (2005). Functional MRI reveals the existence of modality and coordination-dependent timing networks. Neuroimage, 25, 1031-1042.
Jones, J. A., & Callan, D. E. (2003). Brain activity during audiovisual speech perception: an fMRI study of the McGurk effect. Neuroreport, 14, 1129-1133.
Jueptner, M., Ottinger, S., Fellows, S. J., Adamschewski, J., Flerich, L., Muller, S. P., et al. (1997). The relevance of sensory input for the cerebellar control of movements. Neuroimage, 5, 41-48.
Jueptner, M., Rijntjes, M., Weiller, C., Faiss, J. H., Timmann, D., Mueller, S. P., et al. (1995). Localization of a cerebellar timing process using PET. Neurology, 45, 1540-1545.
Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: encoding time in neural network states. Neuron, 53, 427-438.
Kelly, R. M., & Strick, P. L. (2003). Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci, 23, 8432-8444.
Kirschen, M. P., Chen, S. H., Schraedley-Desmond, P., & Desmond, J. E. (2005). Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage, 24, 462-472.
Koch, G., Oliveri, M., Torriero, S., Salerno, S., Gerfo, E. L., & Caltagirone, C. (2007). Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res, 179, 291-299.
Lee, K. H., Egleston, P. N., Brown, W. H., Gregory, A. N., Barker, A. T., & Woodruff, P. W. (2007). The role of the cerebellum in subsecond time perception: evidence from repetitive transcranial magnetic stimulation. J Cogn Neurosci, 19, 147-157.
Lee, T. M., Liu, H. L., Hung, K. N., Pu, J., Ng, Y. B., Mak, A. K., et al. (2005). The cerebellum's involvement in the judgment of spatial orientation: A functional magnetic resonance imaging study. Neuropsychologia, 43, 1870-1877.
Leiner, H. C., Leiner, A. L., & Dow, R. S. (1986). Does the cerebellum contribute to mental skills? Behav Neurosci, 100, 443-454.
Leiner, H. C., Leiner, A. L., & Dow, R. S. (1989). Reappraising the cerebellum: what does the hindbrain contribute to the forebrain? Behav Neurosci, 103, 998-1008.
Leiner, H. C., Leiner, A. L., & Dow, R. S. (1991). The human cerebro-cerebellar system: its computing, cognitive, and language skills. Behav Brain Res, 44, 113-128.
Leiner, H. C., Leiner, A. L., & Dow, R. S. (1993). Cognitive and language functions of the human cerebellum. Trends Neurosci, 16, 444-447.
Lewis, P. A., & Miall, R. C. (2003). Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia, 41, 1583-1592.
Lewis, P. A., & Miall, R. C. (2006a). Remembering the time: a continuous clock. Trends Cogn Sci, 10, 401-406.
Lewis, P. A., & Miall, R. C. (2006b). A right hemispheric prefrontal system for cognitive time measurement. Behav Processes, 71, 226-234.
Lincoln, J. S., McCormick, D. A., & Thompson, R. F. (1982). Ipsilateral cerebellar lesions prevent learning of the classically conditioned nictitating membrane/eyelid response. Brain Res, 242, 190-193.
Livesey, A. C., Wall, M. B., & Smith, A. T. (2007). Time perception: Manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia, 45, 321-331.
Llinas, R., & Welsh, J. P. (1993). On the cerebellum and motor learning. Curr Opin Neurobiol, 3, 958-965.
Loewenstein, Y., Mahon, S., Chadderton, P., Kitamura, K., Sompolinsky, H., Yarom, Y., et al. (2005). Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nat Neurosci, 8, 202-211.
Macar, F., Anton, J. L., Bonnet, M., & Vidal, F. (2004). Timing functions of the supplementary motor area: an event-related fMRI study. Brain Res Cogn Brain Res, 21, 206-215.
MacLeod, C. E., Zilles, K., Schleicher, A., Rilling, J. K., & Gibson, K. R. (2003). Expansion of the neocerebellum in Hominoidea. J Hum Evol, 44, 401-429.
Magno, E., Foxe, J. J., Molholm, S., Robertson, I. H., & Garavan, H. (2006). The anterior cingulate and error avoidance. J Neurosci, 26, 4769-4773.
Manni, E., & Petrosini, L. (2004). A century of cerebellar somatotopy: a debated representation. Nat Rev Neurosci, 5, 241-249.
Manto, M. (2008). The cerebellum, cerebellar disorders, and cerebellar research-two centuries of discoveries. Cerebellum, 7, 505-516.
Maquet, P., Lejeune, H., Pouthas, V., Bonnet, M., Casini, L., Macar, F., et al. (1996). Brain activation induced by estimation of duration: a PET study. Neuroimage, 3, 119-126.
Marien, P., Engelborghs, S., Fabbro, F., & De Deyn, P. P. (2001). The lateralized linguistic cerebellum: a review and a new hypothesis. Brain Lang, 79, 580-600.
Marr, D. (1969). A theory of cerebellar cortex. J Physiol, 202, 437-470.
Mathiak, K., Hertrich, I., Grodd, W., & Ackermann, H. (2002). Cerebellum and speech perception: a functional magnetic resonance imaging study. J Cogn Neurosci, 14, 902-912.
Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annu Rev Neurosci, 27, 307-340.
McCormick, D. A., & Thompson, R. F. (1984). Cerebellum: essential involvement in the classically conditioned eyelid response. Science, 223, 296-299.
Meck, W. H., Penney, T. B., & Pouthas, V. (2008). Cortico-striatal representation of time in animals and humans. Curr Opin Neurobiol, 18, 145-152.
Medina, J. F., Nores, W. L., Ohyama, T., & Mauk, M. D. (2000). Mechanisms of cerebellar learning suggested by eyelid conditioning. Curr Opin Neurobiol, 10, 717-724.
Merchant, H., Zarco, W., & Prado, L. (2008). Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J Neurophysiol, 99, 939-949.
Meriau, K., Wartenburger, I., Kazzer, P., Prehn, K., Lammers, C. H., van der Meer, E., et al. (2006). A neural network reflecting individual differences in cognitive processing of emotions during perceptual decision making. Neuroimage, 33, 1016-1027.
Miall, R. C., Christensen, L. O., Cain, O., & Stanley, J. (2007). Disruption of state estimation in the human lateral cerebellum. PLoS Biol, 5, e316.
Miall, R. C., Reckess, G. Z., & Imamizu, H. (2001). The cerebellum coordinates eye and hand tracking movements. Nat Neurosci, 4, 638-644.
Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the Cerebellum a Smith Predictor? J Mot Behav, 25, 203-216.
Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266, 458-461.
Molinari, M., & Leggio, M. G. (2007). Cerebellar information processing and visuospatial functions. Cerebellum, 6, 214-220.
N'Diaye, K., Ragot, R., Garnero, L., & Pouthas, V. (2004). What is common to brain activity evoked by the perception of visual and auditory filled durations? A study with MEG and EEG co-recordings. Brain Res Cogn Brain Res, 21, 250-268.
Neufang, S., Fink, G. R., Herpertz-Dahlmann, B., Willmes, K., & Konrad, K. (2008). Developmental changes in neural activation and psychophysiological interaction patterns of brain regions associated with interference control and time perception. Neuroimage, 43, 399-409.
Nicolson, R. I., Fawcett, A. J., Berry, E. L., Jenkins, I. H., Dean, P., & Brooks, D. J. (1999). Association of abnormal cerebellar activation with motor learning difficulties in dyslexic adults. Lancet, 353, 1662-1667.
Nicolson, R. I., Fawcett, A. J., & Dean, P. (2001). Developmental dyslexia: the cerebellar deficit hypothesis. Trends Neurosci, 24, 508-511.
Nobre, A. C., & O'Reilly, J. (2004). Time is of the essence. Trends Cogn Sci, 8, 387-389.
Norman, D., & Bobrow, D. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7, 44-64.
Ohyama, T., Nores, W. L., Murphy, M., & Mauk, M. D. (2003). What the cerebellum computes. Trends Neurosci, 26, 222-227.
Pastor, M. A., Day, B. L., Macaluso, E., Friston, K. J., & Frackowiak, R. S. (2004). The functional neuroanatomy of temporal discrimination. J Neurosci, 24, 2585-2591.
Pastor, M. A., Macaluso, E., Day, B. L., & Frackowiak, R. S. (2006). The neural basis of temporal auditory discrimination. Neuroimage, 30, 512-520.
Petacchi, A., Laird, A. R., Fox, P. T., & Bower, J. M. (2005). Cerebellum and auditory function: an ALE meta-analysis of functional neuroimaging studies. Hum Brain Mapp, 25, 118-128.
Pfeuty, M., Ragot, R., & Pouthas, V. (2008). Brain activity during interval timing depends on sensory structure. Brain Res, 1204, 112-117.
Picard, H., Amado, I., Mouchet-Mages, S., Olie, J. P., & Krebs, M. O. (2008). The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr Bull, 34, 155-172.
Rabe, K., Brandauer, B., Li, Y., Gizewski, E. R., Timmann, D., & Hermsdorfer, J. (2009). Size-weight illusion, anticipation, and adaptation of fingertip forces in patients with cerebellar degeneration. J Neurophysiol, 101, 569-579.
Rae, C., Harasty, J. A., Dzendrowskyj, T. E., Talcott, J. B., Simpson, J. M., Blamire, A. M., et al. (2002). Cerebellar morphology in developmental dyslexia. Neuropsychologia, 40, 1285-1292.
Rammsayer, T. H., & Lima, S. D. (1991). Duration discrimination of filled and empty auditory intervals: cognitive and perceptual factors. Percept Psychophys, 50, 565-574.
Rao, H., Di, X., Chan, R. C., Ding, Y., Ye, B., & Gao, D. (2008). A regulation role of the prefrontal cortex in the fist-edge-palm task: evidence from functional connectivity analysis. Neuroimage, 41, 1345-1351.
Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nat Neurosci, 4, 317-323.
Ravizza, S. M., McCormick, C. A., Schlerf, J. E., Justus, T., Ivry, R. B., & Fiez, J. A. (2006). Cerebellar damage produces selective deficits in verbal working memory. Brain, 129, 306-320.
Reiterer, S. M., Erb, M., Droll, C. D., Anders, S., Ethofer, T., Grodd, W., et al. (2005). Impact of task difficulty on lateralization of pitch and duration discrimination. Neuroreport, 16, 239-242.
Restuccia, D., Della Marca, G., Valeriani, M., Leggio, M. G., & Molinari, M. (2007). Cerebellar damage impairs detection of somatosensory input changes. A somatosensory mismatch-negativity study. Brain, 130, 276-287.
Restuccia, D., Valeriani, M., Barba, C., Le Pera, D., Capecci, M., Filippini, V., et al. (2001). Functional changes of the primary somatosensory cortex in patients with unilateral cerebellar lesions. Brain, 124, 757-768.
Riva, D., & Giorgi, C. (2000). The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumours. Brain, 123 ( Pt 5), 1051-1061.
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res, 3, 131-141.
Robinson, D. A. (1976). Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol, 39, 954-969.
Saito, D. N., Yoshimura, K., Kochiyama, T., Okada, T., Honda, M., & Sadato, N. (2005). Cross-modal Binding and Activated Attentional Networks during Audio-visual Speech Integration: a Functional MRI Study. Cereb Cortex.
Schaefer, M., Heinze, H. J., & Rotte, M. (2005). Task-relevant modulation of primary somatosensory cortex suggests a prefrontal-cortical sensory gating system. Neuroimage, 27, 130-135.
Schirmer, A. (2004). Timing speech: a review of lesion and neuroimaging findings. Brain Res Cogn Brain Res, 21, 269-287.
Schmahmann, J. D. (1998). Dysmetria of thought: clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn Sci, 2, 362-371.
Schmahmann, J. D., Doyon, J., McDonald, D., Holmes, C., Lavoie, K., Hurwitz, A. S., et al. (1999). Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. Neuroimage, 10, 233-260.
Schmahmann, J. D., Doyon, J., Toga, A. W., Petrides, M., & Evans, A. C. (2000). MRI atlas of the human cerebellum. San Diego: CA: Academic Press.
Schmahmann, J. D., & Pandya, D. N. (2008). Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex, 44, 1037-1066.
Schmahmann, J. D., Weilburg, J. B., & Sherman, J. C. (2007). The neuropsychiatry of the cerebellum - insights from the clinic. Cerebellum, 6, 254-267.
Schubotz, R. I., Friederici, A. D., & von Cramon, D. Y. (2000). Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. Neuroimage, 11, 1-12.
Sekiyama, K., Kanno, I., Miura, S., & Sugita, Y. (2003). Auditory-visual speech perception examined by fMRI and PET. Neurosci Res, 47, 277-287.
Sergio, L. E., & Scott, S. H. (1998). Hand and joint paths during reaching movements with and without vision. Exp Brain Res, 122, 157-164.
Serrien, D. J., Ivry, R. B., & Swinnen, S. P. (2007). The missing link between action and cognition. Prog Neurobiol, 82, 95-107.
Skipper, J. I., Nusbaum, H. C., & Small, S. L. (2005). Listening to talking faces: motor cortical activation during speech perception. Neuroimage, 25, 76-89.
Smith, A., Taylor, E., Lidzba, K., & Rubia, K. (2003). A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. Neuroimage, 20, 344-350.
Snider, R. S., & Stowell, A. (1944). Receiving areas of the tactile, auditory and visual system in the cerebellum. J Neurophysiol, 7, 331-357.
Sotelo, C. (2008). Viewing the Cerebellum through the Eyes of Ramon Y Cajal. Cerebellum, 7, 517-522.
Spencer, R. M., Zelaznik, H. N., Diedrichsen, J., & Ivry, R. B. (2003). Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science, 300, 1437-1439.
Staddon, J. E. (2005). Interval timing: memory, not a clock. Trends Cogn Sci, 9, 312-314.
Stanberry, L. I., Richards, T. L., Berninger, V. W., Nandy, R. R., Aylward, E. H., Maravilla, K. R., et al. (2006). Low-frequency signal changes reflect differences in functional connectivity between good readers and dyslexics during continuous phoneme mapping. Magn Reson Imaging, 24, 217-229.
Stein, J. F., & Glickstein, M. (1992). Role of the cerebellum in visual guidance of movement. Physiol Rev, 72, 967-1017.
Sterpenich, V., D'Argembeau, A., Desseilles, M., Balteau, E., Albouy, G., Vandewalle, G., et al. (2006). The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J Neurosci, 26, 7416-7423.
Stevens, M. C., Kiehl, K. A., Pearlson, G., & Calhoun, V. D. (2007). Functional neural circuits for mental timekeeping. Hum Brain Mapp, 28, 394-408.
Stoodley, C. J., Fawcett, A. J., Nicolson, R. I., & Stein, J. F. (2006). Balancing and pointing tasks in dyslexic and control adults. Dyslexia, 12, 276-288.
Stoodley, C. J., & Schmahmann, J. D. (2008). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage.
Synofzik, M., Lindner, A., & Thier, P. (2008). The cerebellum updates predictions about the visual consequences of one's behavior. Curr Biol, 18, 814-818.
Thickbroom, G. W., Byrnes, M. L., & Mastaglia, F. L. (2003). Dual representation of the hand in the cerebellum: activation with voluntary and passive finger movement. Neuroimage, 18, 670-674.
Timmann, D., Brandauer, B., Hermsdorfer, J., Ilg, W., Konczak, J., Gerwig, M., et al. (2008). Lesion-symptom mapping of the human cerebellum. Cerebellum, 7, 602-606.
Tregellas, J. R., Davalos, D. B., & Rojas, D. C. (2006). Effect of task difficulty on the functional anatomy of temporal processing. Neuroimage, 32, 307-315.
van Beers, R. J., Sittig, A. C., & Denier van der Gon, J. J. (1998). The precision of proprioceptive position sense. Exp Brain Res, 122, 367-377.
van Beers, R. J., Wolpert, D. M., & Haggard, P. (2002). When feeling is more important than seeing in sensorimotor adaptation. Curr Biol, 12, 834-837.
Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex, 2, 435-443.
Voogd, J., & Glickstein, M. (1998). The anatomy of the cerebellum. Trends Neurosci, 21, 370-375.
Wang, V. Y., & Zoghbi, H. Y. (2001). Genetic regulation of cerebellar development. Nat Rev Neurosci, 2, 484-491.
Weaver, A. H. (2005). Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci U S A, 102, 3576-3580.
Welch, R. B., DuttonHurt, L. D., & Warren, D. H. (1986). Contributions of audition and vision to temporal rate perception. Percept Psychophys, 39, 294-300.
Williams, D., Tijssen, M., Van Bruggen, G., Bosch, A., Insola, A., Di Lazzaro, V., et al. (2002). Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain, 125, 1558-1569.
Wolpert, D. M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nat Neurosci, 3 Suppl, 1212-1217.
Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269, 1880-1882.
Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends Cognit Sci, 2, 338-347.
Xiang, H., Lin, C., Ma, X., Zhang, Z., Bower, J. M., Weng, X., et al. (2003). Involvement of the cerebellum in semantic discrimination: an fMRI study. Hum Brain Mapp, 18, 208-214.
Xu, D., Liu, T., Ashe, J., & Bushara, K. O. (2006). Role of the olivo-cerebellar system in timing. J Neurosci, 26, 5990-5995.
Xuan, B., Zhang, D., He, S., & Chen, X. (2007). Larger stimuli are judged to last longer. J Vis, 7, 2 1-5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top